Articles | Volume 14, issue 2
https://doi.org/10.5194/esd-14-413-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-14-413-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The future of the El Niño–Southern Oscillation: using large ensembles to illuminate time-varying responses and inter-model differences
Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado at Boulder, Boulder, CO 80309, USA
Department of Atmospheric and Oceanic Sciences (ATOC), University of Colorado at Boulder, Boulder, CO 80309, USA
Robert C. Jnglin Wills
Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA
Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO 80307, USA
Pedro DiNezio
Department of Atmospheric and Oceanic Sciences (ATOC), University of Colorado at Boulder, Boulder, CO 80309, USA
Jeremy Klavans
Department of Atmospheric and Oceanic Sciences (ATOC), University of Colorado at Boulder, Boulder, CO 80309, USA
Sebastian Milinski
Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO 80307, USA
Cooperative Programs for the Advancement of Earth System Science, University Corporation for Atmospheric Research, Boulder, CO 80307, USA
Sara C. Sanchez
Department of Atmospheric and Oceanic Sciences (ATOC), University of Colorado at Boulder, Boulder, CO 80309, USA
Samantha Stevenson
Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
Malte F. Stuecker
Department of Oceanography and International Pacific Research Center (IPRC), School of Ocean and Earth Science and Technology (SOEST), University of Hawai`i at Mānoa, Honolulu, HI 96822, USA
Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO 80307, USA
Related authors
Ming Cheng, Nicola Maher, and Michael J. Ellwood
EGUsphere, https://doi.org/10.5194/egusphere-2025-2633, https://doi.org/10.5194/egusphere-2025-2633, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The Southern Ocean helps regulate Earth’s climate by cycling nutrients and carbon. We studied how well 14 modern climate models represent key ocean properties, such as plant growth, nutrients, and carbon particles. By comparing model results with real-world observations, we found large differences in model performance. Some models captured certain features better than others. Our findings can guide future improvements in ocean and climate predictions.
Nicola Maher, Adam S. Phillips, Clara Deser, Robert C. Jnglin Wills, Flavio Lehner, John Fasullo, Julie M. Caron, Lukas Brunner, and Urs Beyerle
EGUsphere, https://doi.org/10.5194/egusphere-2024-3684, https://doi.org/10.5194/egusphere-2024-3684, 2024
Short summary
Short summary
We present a new multi-model large ensemble archive (MMLEAv2) and introduce the newly updated Climate Variability Diagnostics Package version 6 (CVDPv6), which is designed specifically for use with large ensembles. For highly variable quantities, we demonstrate that a model might evaluate poorly or favourably compared to the single realisation of the world that the observations represent, highlighting the need for large ensembles for model evaluation.
Andrew D. King, Tilo Ziehn, Matthew Chamberlain, Alexander R. Borowiak, Josephine R. Brown, Liam Cassidy, Andrea J. Dittus, Michael Grose, Nicola Maher, Seungmok Paik, Sarah E. Perkins-Kirkpatrick, and Aditya Sengupta
Earth Syst. Dynam., 15, 1353–1383, https://doi.org/10.5194/esd-15-1353-2024, https://doi.org/10.5194/esd-15-1353-2024, 2024
Short summary
Short summary
Governments are targeting net-zero emissions later this century with the aim of limiting global warming in line with the Paris Agreement. However, few studies explore the long-term consequences of reaching net-zero emissions and the effects of a delay in reaching net-zero. We use the Australian Earth system model to examine climate evolution under net-zero emissions. We find substantial changes which differ regionally, including continued Southern Ocean warming and Antarctic sea ice reduction.
Víctor Malagón-Santos, Aimée B. A. Slangen, Tim H. J. Hermans, Sönke Dangendorf, Marta Marcos, and Nicola Maher
Ocean Sci., 19, 499–515, https://doi.org/10.5194/os-19-499-2023, https://doi.org/10.5194/os-19-499-2023, 2023
Short summary
Short summary
Climate change will alter heat and freshwater fluxes as well as ocean circulation, driving local changes in sea level. This sea-level change component is known as ocean dynamic sea level (DSL), and it is usually projected using computationally expensive global climate models. Statistical models are a cheaper alternative for projecting DSL but may contain significant errors. Here, we partly remove those errors (driven by internal climate variability) by using pattern recognition techniques.
Nicola Maher, Thibault P. Tabarin, and Sebastian Milinski
Earth Syst. Dynam., 13, 1289–1304, https://doi.org/10.5194/esd-13-1289-2022, https://doi.org/10.5194/esd-13-1289-2022, 2022
Short summary
Short summary
El Niño events occur as two broad types: eastern Pacific (EP) and central Pacific (CP). EP and CP events differ in strength, evolution, and in their impacts. In this study we create a new machine learning classifier to identify the two types of El Niño events using observed sea surface temperature data. We apply our new classifier to climate models and show that CP events are unlikely to change in frequency or strength under a warming climate, with model disagreement for EP events.
Benjamin Ward, Francesco S. R. Pausata, and Nicola Maher
Earth Syst. Dynam., 12, 975–996, https://doi.org/10.5194/esd-12-975-2021, https://doi.org/10.5194/esd-12-975-2021, 2021
Short summary
Short summary
Using the largest ensemble of a climate model currently available, the Max Planck Institute Grand Ensemble (MPI-GE), we investigated the impact of the spatial distribution of volcanic aerosols on the El Niño–Southern Oscillation (ENSO) response. By selecting three eruptions with different aerosol distributions, we found that the shift of the Intertropical Convergence Zone (ITCZ) is the main driver of the ENSO response, while other mechanisms commonly invoked seem less important in our model.
Nicola Maher, Sebastian Milinski, and Ralf Ludwig
Earth Syst. Dynam., 12, 401–418, https://doi.org/10.5194/esd-12-401-2021, https://doi.org/10.5194/esd-12-401-2021, 2021
Sebastian Milinski, Nicola Maher, and Dirk Olonscheck
Earth Syst. Dynam., 11, 885–901, https://doi.org/10.5194/esd-11-885-2020, https://doi.org/10.5194/esd-11-885-2020, 2020
Short summary
Short summary
Initial-condition large ensembles with ensemble sizes ranging from 30 to 100 members have become a commonly used tool to quantify the forced response and internal variability in various components of the climate system, but there is no established method to determine the required ensemble size for a given problem. We propose a new framework that can be used to estimate the required ensemble size from a model's control run or an existing large ensemble.
Alyssa R. Atwood, Andrea L. Moore, Kristine L. DeLong, Sylvia E. Long, Sara C. Sanchez, Jessica A. Hargreaves, Chandler A. Morris, Raquel E. Pauly, Emilie P. Dassie, Thomas Felis, Antje H. L. Voelker, Sujata A. Murty, and Kim M. Cobb
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-467, https://doi.org/10.5194/essd-2025-467, 2025
Preprint under review for ESSD
Short summary
Short summary
The stable isotopic composition of seawater is a valuable tool for studying the global water cycle in the past, present, and future. However, an active repository dedicated to archiving this type of data has been lacking, and many datasets remain hidden from public view. We have created a new database of observational seawater isotope data that is rich in metadata, publicly accessible, and machine readable to increase its availability and usability for a variety of Earth Science applications.
Francisco J. Doblas-Reyes, Jenni Kontkanen, Irina Sandu, Mario Acosta, Mohammed Hussam Al Turjmam, Ivan Alsina-Ferrer, Miguel Andrés-Martínez, Leo Arriola, Marvin Axness, Marc Batlle Martín, Peter Bauer, Tobias Becker, Daniel Beltrán, Sebastian Beyer, Hendryk Bockelmann, Pierre-Antoine Bretonnière, Sebastien Cabaniols, Silvia Caprioli, Miguel Castrillo, Aparna Chandrasekar, Suvarchal Cheedela, Victor Correal, Emanuele Danovaro, Paolo Davini, Jussi Enkovaara, Claudia Frauen, Barbara Früh, Aina Gaya Àvila, Paolo Ghinassi, Rohit Ghosh, Supriyo Ghosh, Iker González, Katherine Grayson, Matthew Griffith, Ioan Hadade, Christopher Haine, Carl Hartick, Utz-Uwe Haus, Shane Hearne, Heikki Järvinen, Bernat Jiménez, Amal John, Marlin Juchem, Thomas Jung, Jessica Kegel, Matthias Kelbling, Kai Keller, Bruno Kinoshita, Theresa Kiszler, Daniel Klocke, Lukas Kluft, Nikolay Koldunov, Tobias Kölling, Joonas Kolstela, Luis Kornblueh, Sergey Kosukhin, Aleksander Lacima-Nadolnik, Jeisson Javier Leal Rojas, Jonni Lehtiranta, Tuomas Lunttila, Anna Luoma, Pekka Manninen, Alexey Medvedev, Sebastian Milinski, Ali Omar Abdelazim Mohammed, Sebastian Müller, Devaraju Naryanappa, Natalia Nazarova, Sami Niemelä, Bimochan Niraula, Henrik Nortamo, Aleksi Nummelin, Matteo Nurisso, Pablo Ortega, Stella Paronuzzi, Xabier Pedruzo Bagazgoitia, Charles Pelletier, Carlos Peña, Suraj Polade, Himansu Pradhan, Rommel Quintanilla, Tiago Quintino, Thomas Rackow, Jouni Räisänen, Maqsood Mubarak Rajput, René Redler, Balthasar Reuter, Nuno Rocha Monteiro, Francesc Roura-Adserias, Silva Ruppert, Susan Sayed, Reiner Schnur, Tanvi Sharma, Dmitry Sidorenko, Outi Sievi-Korte, Albert Soret, Christian Steger, Bjorn Stevens, Jan Streffing, Jaleena Sunny, Luiggi Tenorio, Stephan Thober, Ulf Tigerstedt, Oriol Tinto, Juha Tonttila, Heikki Tuomenvirta, Lauri Tuppi, Ginka Van Thielen, Emanuele Vitali, Jost von Hardenberg, Ingo Wagner, Nils Wedi, Jan Wehner, Sven Willner, Xavier Yepes-Arbós, Florian Ziemen, and Janos Zimmermann
EGUsphere, https://doi.org/10.5194/egusphere-2025-2198, https://doi.org/10.5194/egusphere-2025-2198, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Climate Change Adaptation Digital Twin (Climate DT) pioneers the operationalisation of climate projections. The system produces global simulations with local granularity for adaptation decision-making. Applications are embedded to generate tailored indicators. A unified workflow orchestrates all components in several supercomputers. Data management ensures consistency and streaming enables real-time use. It is a complementary innovation to initiatives like CMIP, CORDEX, and climate services.
Xue Feng, Matthew J. Widlansky, Tong Lee, Ou Wang, Magdalena A. Balmaseda, Hao Zuo, Gregory Dusek, William Sweet, and Malte F. Stuecker
Ocean Sci., 21, 1663–1676, https://doi.org/10.5194/os-21-1663-2025, https://doi.org/10.5194/os-21-1663-2025, 2025
Short summary
Short summary
Forecasting sea level changes months in advance along the Gulf Coast and East Coast of the United States is challenging. Here, we present a method that uses past ocean states to forecast future sea levels, while assuming no knowledge of how the atmosphere will evolve other than its typical annual cycle near the ocean's surface. Our findings indicate that this method improves sea level outlooks for many locations along the Gulf Coast and East Coast, especially south of Cape Hatteras.
Ming Cheng, Nicola Maher, and Michael J. Ellwood
EGUsphere, https://doi.org/10.5194/egusphere-2025-2633, https://doi.org/10.5194/egusphere-2025-2633, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The Southern Ocean helps regulate Earth’s climate by cycling nutrients and carbon. We studied how well 14 modern climate models represent key ocean properties, such as plant growth, nutrients, and carbon particles. By comparing model results with real-world observations, we found large differences in model performance. Some models captured certain features better than others. Our findings can guide future improvements in ocean and climate predictions.
Ja-Yeon Moon, Jan Streffing, Sun-Seon Lee, Tido Semmler, Miguel Andrés-Martínez, Jiao Chen, Eun-Byeoul Cho, Jung-Eun Chu, Christian L. E. Franzke, Jan P. Gärtner, Rohit Ghosh, Jan Hegewald, Songyee Hong, Dae-Won Kim, Nikolay Koldunov, June-Yi Lee, Zihao Lin, Chao Liu, Svetlana N. Loza, Wonsun Park, Woncheol Roh, Dmitry V. Sein, Sahil Sharma, Dmitry Sidorenko, Jun-Hyeok Son, Malte F. Stuecker, Qiang Wang, Gyuseok Yi, Martina Zapponini, Thomas Jung, and Axel Timmermann
Earth Syst. Dynam., 16, 1103–1134, https://doi.org/10.5194/esd-16-1103-2025, https://doi.org/10.5194/esd-16-1103-2025, 2025
Short summary
Short summary
Based on a series of storm-resolving greenhouse warming simulations conducted with the AWI-CM3 model at 9 km global atmosphere and 4–25 km ocean resolution, we present new projections of regional climate change, modes of climate variability, and extreme events. The 10-year-long high-resolution simulations for the 2000s, 2030s, 2060s, and 2090s were initialized from a coarser-resolution transient run (31 km atmosphere) which follows the SSP5-8.5 greenhouse gas emission scenario from 1950–2100 CE.
Ingo Richter, Ping Chang, Ping-Gin Chiu, Gokhan Danabasoglu, Takeshi Doi, Dietmar Dommenget, Guillaume Gastineau, Zoe E. Gillett, Aixue Hu, Takahito Kataoka, Noel S. Keenlyside, Fred Kucharski, Yuko M. Okumura, Wonsun Park, Malte F. Stuecker, Andréa S. Taschetto, Chunzai Wang, Stephen G. Yeager, and Sang-Wook Yeh
Geosci. Model Dev., 18, 2587–2608, https://doi.org/10.5194/gmd-18-2587-2025, https://doi.org/10.5194/gmd-18-2587-2025, 2025
Short summary
Short summary
Tropical ocean basins influence each other through multiple pathways and mechanisms, referred to here as tropical basin interaction (TBI). Many researchers have examined TBI using comprehensive climate models but have obtained conflicting results. This may be partly due to differences in experiment protocols and partly due to systematic model errors. The Tropical Basin Interaction Model Intercomparison Project (TBIMIP) aims to address this problem by designing a set of TBI experiments that will be performed by multiple models.
Nora L. S. Fahrenbach, Steven J. De Hertog, and Robert C. J. Wills
EGUsphere, https://doi.org/10.5194/egusphere-2025-1262, https://doi.org/10.5194/egusphere-2025-1262, 2025
Short summary
Short summary
Afforestation is a key strategy for climate change mitigation, yet the impacts on tropical hydroclimate remain uncertain. We find that future afforestation would increase evaporation and precipitation in the tropics, especially over Africa. It would also reduce net precipitation (precipitation minus evaporation) in these regions, which determines water availability. This happens because trees slow near-surface winds, while their influence on the energy budget strengthens convection.
Clarissa A. Kroll, Andrea Schneidereit, Robert C. J. Wills, Luis Kornblueh, and Ulrike Niemeier
EGUsphere, https://doi.org/10.5194/egusphere-2025-1212, https://doi.org/10.5194/egusphere-2025-1212, 2025
Short summary
Short summary
The double Inter-Tropical Convergence Zone is a prominent precipitation bias in climate models. We demonstrate its persistence from a resolution of 160 km up to 5 km. Its root cause lies in biased moisture transport from the subtropics to the inner tropics reducing convection and weakening tropical circulation. Increasing the surface wind speed addresses the bias, but deteriorates the global circulation. This highlights the importance of resolution hierarchies and parametrization development.
Hans Segura, Xabier Pedruzo-Bagazgoitia, Philipp Weiss, Sebastian K. Müller, Thomas Rackow, Junhong Lee, Edgar Dolores-Tesillos, Imme Benedict, Matthias Aengenheyster, Razvan Aguridan, Gabriele Arduini, Alexander J. Baker, Jiawei Bao, Swantje Bastin, Eulàlia Baulenas, Tobias Becker, Sebastian Beyer, Hendryk Bockelmann, Nils Brüggemann, Lukas Brunner, Suvarchal K. Cheedela, Sushant Das, Jasper Denissen, Ian Dragaud, Piotr Dziekan, Madeleine Ekblom, Jan Frederik Engels, Monika Esch, Richard Forbes, Claudia Frauen, Lilli Freischem, Diego García-Maroto, Philipp Geier, Paul Gierz, Álvaro González-Cervera, Katherine Grayson, Matthew Griffith, Oliver Gutjahr, Helmuth Haak, Ioan Hadade, Kerstin Haslehner, Shabeh ul Hasson, Jan Hegewald, Lukas Kluft, Aleksei Koldunov, Nikolay Koldunov, Tobias Kölling, Shunya Koseki, Sergey Kosukhin, Josh Kousal, Peter Kuma, Arjun U. Kumar, Rumeng Li, Nicolas Maury, Maximilian Meindl, Sebastian Milinski, Kristian Mogensen, Bimochan Niraula, Jakub Nowak, Divya Sri Praturi, Ulrike Proske, Dian Putrasahan, René Redler, David Santuy, Domokos Sármány, Reiner Schnur, Patrick Scholz, Dmitry Sidorenko, Dorian Spät, Birgit Sützl, Daisuke Takasuka, Adrian Tompkins, Alejandro Uribe, Mirco Valentini, Menno Veerman, Aiko Voigt, Sarah Warnau, Fabian Wachsmann, Marta Wacławczyk, Nils Wedi, Karl-Hermann Wieners, Jonathan Wille, Marius Winkler, Yuting Wu, Florian Ziemen, Janos Zimmermann, Frida A.-M. Bender, Dragana Bojovic, Sandrine Bony, Simona Bordoni, Patrice Brehmer, Marcus Dengler, Emanuel Dutra, Saliou Faye, Erich Fischer, Chiel van Heerwaarden, Cathy Hohenegger, Heikki Järvinen, Markus Jochum, Thomas Jung, Johann H. Jungclaus, Noel S. Keenlyside, Daniel Klocke, Heike Konow, Martina Klose, Szymon Malinowski, Olivia Martius, Thorsten Mauritsen, Juan Pedro Mellado, Theresa Mieslinger, Elsa Mohino, Hanna Pawłowska, Karsten Peters-von Gehlen, Abdoulaye Sarré, Pajam Sobhani, Philip Stier, Lauri Tuppi, Pier Luigi Vidale, Irina Sandu, and Bjorn Stevens
EGUsphere, https://doi.org/10.5194/egusphere-2025-509, https://doi.org/10.5194/egusphere-2025-509, 2025
Short summary
Short summary
The nextGEMS project developed two Earth system models that resolve processes of the order of 10 km, giving more fidelity to the representation of local phenomena, globally. In its fourth cycle, nextGEMS performed simulations with coupled ocean, land, and atmosphere over the 2020–2049 period under the SSP3-7.0 scenario. Here, we provide an overview of nextGEMS, insights into the model development, and the realism of multi-decadal, kilometer-scale simulations.
Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Willem Deconinck, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Rohit Ghosh, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Thomas Jung, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Aleksei Koldunov, Tobias Kölling, Josh Kousal, Christian Kühnlein, Pedro Maciel, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Balthasar Reuter, Domokos Sármány, Patrick Scholz, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen
Geosci. Model Dev., 18, 33–69, https://doi.org/10.5194/gmd-18-33-2025, https://doi.org/10.5194/gmd-18-33-2025, 2025
Short summary
Short summary
Detailed global climate model simulations have been created based on a numerical weather prediction model, offering more accurate spatial detail down to the scale of individual cities ("kilometre-scale") and a better understanding of climate phenomena such as atmospheric storms, whirls in the ocean, and cracks in sea ice. The new model aims to provide globally consistent information on local climate change with greater precision, benefiting environmental planning and local impact modelling.
Nicola Maher, Adam S. Phillips, Clara Deser, Robert C. Jnglin Wills, Flavio Lehner, John Fasullo, Julie M. Caron, Lukas Brunner, and Urs Beyerle
EGUsphere, https://doi.org/10.5194/egusphere-2024-3684, https://doi.org/10.5194/egusphere-2024-3684, 2024
Short summary
Short summary
We present a new multi-model large ensemble archive (MMLEAv2) and introduce the newly updated Climate Variability Diagnostics Package version 6 (CVDPv6), which is designed specifically for use with large ensembles. For highly variable quantities, we demonstrate that a model might evaluate poorly or favourably compared to the single realisation of the world that the observations represent, highlighting the need for large ensembles for model evaluation.
Andrew D. King, Tilo Ziehn, Matthew Chamberlain, Alexander R. Borowiak, Josephine R. Brown, Liam Cassidy, Andrea J. Dittus, Michael Grose, Nicola Maher, Seungmok Paik, Sarah E. Perkins-Kirkpatrick, and Aditya Sengupta
Earth Syst. Dynam., 15, 1353–1383, https://doi.org/10.5194/esd-15-1353-2024, https://doi.org/10.5194/esd-15-1353-2024, 2024
Short summary
Short summary
Governments are targeting net-zero emissions later this century with the aim of limiting global warming in line with the Paris Agreement. However, few studies explore the long-term consequences of reaching net-zero emissions and the effects of a delay in reaching net-zero. We use the Australian Earth system model to examine climate evolution under net-zero emissions. We find substantial changes which differ regionally, including continued Southern Ocean warming and Antarctic sea ice reduction.
Tapio Schneider, L. Ruby Leung, and Robert C. J. Wills
Atmos. Chem. Phys., 24, 7041–7062, https://doi.org/10.5194/acp-24-7041-2024, https://doi.org/10.5194/acp-24-7041-2024, 2024
Short summary
Short summary
Climate models are crucial for predicting climate change in detail. This paper proposes a balanced approach to improving their accuracy by combining traditional process-based methods with modern artificial intelligence (AI) techniques while maximizing the resolution to allow for ensemble simulations. The authors propose using AI to learn from both observational and simulated data while incorporating existing physical knowledge to reduce data demands and improve climate prediction reliability.
David B. Bonan, Jakob Dörr, Robert C. J. Wills, Andrew F. Thompson, and Marius Årthun
The Cryosphere, 18, 2141–2159, https://doi.org/10.5194/tc-18-2141-2024, https://doi.org/10.5194/tc-18-2141-2024, 2024
Short summary
Short summary
Antarctic sea ice has exhibited variability over satellite records, including a period of gradual expansion and a period of sudden decline. We use a novel statistical method to identify sources of variability in observed Antarctic sea ice changes. We find that the gradual increase in sea ice is likely related to large-scale temperature trends, and periods of abrupt sea ice decline are related to specific flavors of equatorial tropical variability known as the El Niño–Southern Oscillation.
Roberto Bilbao, Pablo Ortega, Didier Swingedouw, Leon Hermanson, Panos Athanasiadis, Rosie Eade, Marion Devilliers, Francisco Doblas-Reyes, Nick Dunstone, An-Chi Ho, William Merryfield, Juliette Mignot, Dario Nicolì, Margarida Samsó, Reinel Sospedra-Alfonso, Xian Wu, and Stephen Yeager
Earth Syst. Dynam., 15, 501–525, https://doi.org/10.5194/esd-15-501-2024, https://doi.org/10.5194/esd-15-501-2024, 2024
Short summary
Short summary
In recent decades three major volcanic eruptions have occurred: Mount Agung in 1963, El Chichón in 1982 and Mount Pinatubo in 1991. In this article we explore the climatic impacts of these volcanic eruptions with a purposefully designed set of simulations from six CMIP6 decadal prediction systems. We analyse the radiative and dynamical responses and show that including the volcanic forcing in these predictions is important to reproduce the observed surface temperature variations.
John T. Fasullo, Jean-Christophe Golaz, Julie M. Caron, Nan Rosenbloom, Gerald A. Meehl, Warren Strand, Sasha Glanville, Samantha Stevenson, Maria Molina, Christine A. Shields, Chengzhu Zhang, James Benedict, Hailong Wang, and Tony Bartoletti
Earth Syst. Dynam., 15, 367–386, https://doi.org/10.5194/esd-15-367-2024, https://doi.org/10.5194/esd-15-367-2024, 2024
Short summary
Short summary
Climate model large ensembles provide a unique and invaluable means for estimating the climate response to external forcing agents and quantify contrasts in model structure. Here, an overview of the Energy Exascale Earth System Model (E3SM) version 2 large ensemble is given along with comparisons to large ensembles from E3SM version 1 and versions 1 and 2 of the Community Earth System Model. The paper provides broad and important context for users of these ensembles.
Jakob Simon Dörr, David B. Bonan, Marius Årthun, Lea Svendsen, and Robert C. J. Wills
The Cryosphere, 17, 4133–4153, https://doi.org/10.5194/tc-17-4133-2023, https://doi.org/10.5194/tc-17-4133-2023, 2023
Short summary
Short summary
The Arctic sea-ice cover is retreating due to climate change, but this retreat is influenced by natural (internal) variability in the climate system. We use a new statistical method to investigate how much internal variability has affected trends in the summer and winter Arctic sea-ice cover using observations since 1979. Our results suggest that the impact of internal variability on sea-ice retreat might be lower than what climate models have estimated.
Rachel M. Walter, Hussein R. Sayani, Thomas Felis, Kim M. Cobb, Nerilie J. Abram, Ariella K. Arzey, Alyssa R. Atwood, Logan D. Brenner, Émilie P. Dassié, Kristine L. DeLong, Bethany Ellis, Julien Emile-Geay, Matthew J. Fischer, Nathalie F. Goodkin, Jessica A. Hargreaves, K. Halimeda Kilbourne, Hedwig Krawczyk, Nicholas P. McKay, Andrea L. Moore, Sujata A. Murty, Maria Rosabelle Ong, Riovie D. Ramos, Emma V. Reed, Dhrubajyoti Samanta, Sara C. Sanchez, Jens Zinke, and the PAGES CoralHydro2k Project Members
Earth Syst. Sci. Data, 15, 2081–2116, https://doi.org/10.5194/essd-15-2081-2023, https://doi.org/10.5194/essd-15-2081-2023, 2023
Short summary
Short summary
Accurately quantifying how the global hydrological cycle will change in the future remains challenging due to the limited availability of historical climate data from the tropics. Here we present the CoralHydro2k database – a new compilation of peer-reviewed coral-based climate records from the last 2000 years. This paper details the records included in the database and where the database can be accessed and demonstrates how the database can investigate past tropical climate variability.
Víctor Malagón-Santos, Aimée B. A. Slangen, Tim H. J. Hermans, Sönke Dangendorf, Marta Marcos, and Nicola Maher
Ocean Sci., 19, 499–515, https://doi.org/10.5194/os-19-499-2023, https://doi.org/10.5194/os-19-499-2023, 2023
Short summary
Short summary
Climate change will alter heat and freshwater fluxes as well as ocean circulation, driving local changes in sea level. This sea-level change component is known as ocean dynamic sea level (DSL), and it is usually projected using computationally expensive global climate models. Statistical models are a cheaper alternative for projecting DSL but may contain significant errors. Here, we partly remove those errors (driven by internal climate variability) by using pattern recognition techniques.
Nicola Maher, Thibault P. Tabarin, and Sebastian Milinski
Earth Syst. Dynam., 13, 1289–1304, https://doi.org/10.5194/esd-13-1289-2022, https://doi.org/10.5194/esd-13-1289-2022, 2022
Short summary
Short summary
El Niño events occur as two broad types: eastern Pacific (EP) and central Pacific (CP). EP and CP events differ in strength, evolution, and in their impacts. In this study we create a new machine learning classifier to identify the two types of El Niño events using observed sea surface temperature data. We apply our new classifier to climate models and show that CP events are unlikely to change in frequency or strength under a warming climate, with model disagreement for EP events.
Stephen G. Yeager, Nan Rosenbloom, Anne A. Glanville, Xian Wu, Isla Simpson, Hui Li, Maria J. Molina, Kristen Krumhardt, Samuel Mogen, Keith Lindsay, Danica Lombardozzi, Will Wieder, Who M. Kim, Jadwiga H. Richter, Matthew Long, Gokhan Danabasoglu, David Bailey, Marika Holland, Nicole Lovenduski, Warren G. Strand, and Teagan King
Geosci. Model Dev., 15, 6451–6493, https://doi.org/10.5194/gmd-15-6451-2022, https://doi.org/10.5194/gmd-15-6451-2022, 2022
Short summary
Short summary
The Earth system changes over a range of time and space scales, and some of these changes are predictable in advance. Short-term weather forecasts are most familiar, but recent work has shown that it is possible to generate useful predictions several seasons or even a decade in advance. This study focuses on predictions over intermediate timescales (up to 24 months in advance) and shows that there is promising potential to forecast a variety of changes in the natural environment.
Keith B. Rodgers, Sun-Seon Lee, Nan Rosenbloom, Axel Timmermann, Gokhan Danabasoglu, Clara Deser, Jim Edwards, Ji-Eun Kim, Isla R. Simpson, Karl Stein, Malte F. Stuecker, Ryohei Yamaguchi, Tamás Bódai, Eui-Seok Chung, Lei Huang, Who M. Kim, Jean-François Lamarque, Danica L. Lombardozzi, William R. Wieder, and Stephen G. Yeager
Earth Syst. Dynam., 12, 1393–1411, https://doi.org/10.5194/esd-12-1393-2021, https://doi.org/10.5194/esd-12-1393-2021, 2021
Short summary
Short summary
A large ensemble of simulations with 100 members has been conducted with the state-of-the-art CESM2 Earth system model, using historical and SSP3-7.0 forcing. Our main finding is that there are significant changes in the variance of the Earth system in response to anthropogenic forcing, with these changes spanning a broad range of variables important to impacts for human populations and ecosystems.
Benjamin Ward, Francesco S. R. Pausata, and Nicola Maher
Earth Syst. Dynam., 12, 975–996, https://doi.org/10.5194/esd-12-975-2021, https://doi.org/10.5194/esd-12-975-2021, 2021
Short summary
Short summary
Using the largest ensemble of a climate model currently available, the Max Planck Institute Grand Ensemble (MPI-GE), we investigated the impact of the spatial distribution of volcanic aerosols on the El Niño–Southern Oscillation (ENSO) response. By selecting three eruptions with different aerosol distributions, we found that the shift of the Intertropical Convergence Zone (ITCZ) is the main driver of the ENSO response, while other mechanisms commonly invoked seem less important in our model.
Nicola Maher, Sebastian Milinski, and Ralf Ludwig
Earth Syst. Dynam., 12, 401–418, https://doi.org/10.5194/esd-12-401-2021, https://doi.org/10.5194/esd-12-401-2021, 2021
Kyung-Sook Yun, Axel Timmermann, and Malte F. Stuecker
Earth Syst. Dynam., 12, 121–132, https://doi.org/10.5194/esd-12-121-2021, https://doi.org/10.5194/esd-12-121-2021, 2021
Short summary
Short summary
Changes in the Hadley and Walker cells cause major climate disruptions across our planet. What has been overlooked so far is the question of whether these two circulations can shift their positions in a synchronized manner. We here show the synchronized spatial shifts between Walker and Hadley cells and further highlight a novel aspect of how tropical sea surface temperature anomalies can couple these two circulations. The re-positioning has important implications for extratropical rainfall.
Sebastian Milinski, Nicola Maher, and Dirk Olonscheck
Earth Syst. Dynam., 11, 885–901, https://doi.org/10.5194/esd-11-885-2020, https://doi.org/10.5194/esd-11-885-2020, 2020
Short summary
Short summary
Initial-condition large ensembles with ensemble sizes ranging from 30 to 100 members have become a commonly used tool to quantify the forced response and internal variability in various components of the climate system, but there is no established method to determine the required ensemble size for a given problem. We propose a new framework that can be used to estimate the required ensemble size from a model's control run or an existing large ensemble.
Josephine R. Brown, Chris M. Brierley, Soon-Il An, Maria-Vittoria Guarino, Samantha Stevenson, Charles J. R. Williams, Qiong Zhang, Anni Zhao, Ayako Abe-Ouchi, Pascale Braconnot, Esther C. Brady, Deepak Chandan, Roberta D'Agostino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, Ryouta O'ishi, Bette L. Otto-Bliesner, W. Richard Peltier, Xiaoxu Shi, Louise Sime, Evgeny M. Volodin, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 16, 1777–1805, https://doi.org/10.5194/cp-16-1777-2020, https://doi.org/10.5194/cp-16-1777-2020, 2020
Short summary
Short summary
El Niño–Southern Oscillation (ENSO) is the largest source of year-to-year variability in the current climate, but the response of ENSO to past or future changes in climate is uncertain. This study compares the strength and spatial pattern of ENSO in a set of climate model simulations in order to explore how ENSO changes in different climates, including past cold glacial climates and past climates with different seasonal cycles, as well as gradual and abrupt future warming cases.
Cited articles
Balmaseda, M. A., Davey, M. K., and Anderson, D. L. T.: Decadal and Seasonal
Dependence of ENSO Prediction Skill, J. Climate, 8, 2705–2715,
https://doi.org/10.1175/1520-0442(1995)008<2705:DASDOE>2.0.CO;2, 1995. a
Bellenger, H., Guilyardi, E., Leloup, J., Lengaigne, M., and Vialard, J.: ENSO
representation in climate models: from CMIP3 to CMIP5, Clim. Dynam., 42,
1999–2018, https://doi.org/10.1007/s00382-013-1783-z, 2014. a
Beobide-Arsuaga, G., Bayr, T., Reintges, A., and Latif, M.: Uncertainty of
ENSO-amplitude projections in CMIP5 and CMIP6 models, Clim. Dynam., 56, 3875–3888,
https://doi.org/10.1007/s00382-021-05673-4, 2021. a, b, c, d
Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y.,
Bastrikov, V., Bekki, S., Bonnet, R., Bony, S., Bopp, L., Braconnot, P.,
Brockmann, P., Cadule, P., Caubel, A., Cheruy, F., Codron, F., Cozic, A.,
Cugnet, D., D'Andrea, F., Davini, P., de Lavergne, C., Denvil, S., Deshayes,
J., Devilliers, M., Ducharne, A., Dufresne, J.-L., Dupont, E., Éthé, C.,
Fairhead, L., Falletti, L., Flavoni, S., Foujols, M.-A., Gardoll, S.,
Gastineau, G., Ghattas, J., Grandpeix, J.-Y., Guenet, B., Guez, Lionel, E.,
Guilyardi, E., Guimberteau, M., Hauglustaine, D., Hourdin, F., Idelkadi, A.,
Joussaume, S., Kageyama, M., Khodri, M., Krinner, G., Lebas, N., Levavasseur,
G., Lévy, C., Li, L., Lott, F., Lurton, T., Luyssaert, S., Madec, G.,
Madeleine, J.-B., Maignan, F., Marchand, M., Marti, O., Mellul, L.,
Meurdesoif, Y., Mignot, J., Musat, I., Ottlé, C., Peylin, P., Planton, Y.,
Polcher, J., Rio, C., Rochetin, N., Rousset, C., Sepulchre, P., Sima, A.,
Swingedouw, D., Thiéblemont, R., Traore, A. K., Vancoppenolle, M., Vial, J.,
Vialard, J., Viovy, N., and Vuichard, N.: Presentation and Evaluation of the
IPSL-CM6A-LR Climate Model, J. Adv. Model. Earth Sys.,
12, e2019MS002010, https://doi.org/10.1029/2019MS002010, 2020. a
Brunner, L., Hauser, M., Lorenz, R., and Beyerle, U.: The ETH Zurich CMIP6 next generation archive: technical documentation, Zenodo [data set], https://doi.org/10.5281/zenodo.3734128, 2020. a
Burger, F. A., Terhaar, J., and Frölicher, T. L.: Compound marine heatwaves
and ocean acidity extremes, Nat. Commun., 13, 4722,
https://doi.org/10.1038/s41467-022-32120-7, 2022. a
Cai, W., Lengaigne, M., Borlace, S., Collins, M., Cowan, T., McPhaden, M. J.,
Timmermann, A., Power, S., Brown, J., Menkes, C., Ngari, A., Vincent, E. M.,
and Widlansky, M. J.: More extreme swings of the South Pacific convergence
zone due to greenhouse warming, Nature, 488, 365–369,
https://doi.org/10.1038/nature11358, 2012. a
Cai, W., Borlace, S., Lengaigne, M., van Rensch, P., Collins, M., Vecchi, G.,
Timmermann, A., Santoso, A., McPhaden, M. J., Wu, L., England, M. H., Wang,
G., Guilyardi, E., and Jin, F.-F.: Increasing frequency of extreme El Niño
events due to greenhouse warming, Nat. Clim. Change, 4, 111–116,
https://doi.org/10.1038/nclimate2100, 2014. a
Cai, W., Wang, G., Dewitte, B., Wu, L., Santoso, A., Takahashi, K., Yang, Y.,
Carréric, A., and McPhaden, M. J.: Increased variability of eastern Pacific
El Niño under greenhouse warming, Nature, 564, 201–206,
https://doi.org/10.1038/s41586-018-0776-9, 2018. a, b
Cai, W., Santoso, A., Collins, M., Dewitte, B., Karamperidou, C., Kug, J.-S.,
Lengaigne, M., McPhaden, M. J., Stuecker, M. F., Taschetto, A. S.,
Timmermann, A., Wu, L., Yeh, S.-W., Wang, G., Ng, B., Jia, F., Yang, Y.,
Ying, J., Zheng, X.-T., Bayr, T., Brown, J. R., Capotondi, A., Cobb, K. M.,
Gan, B., Geng, T., Ham, Y.-G., Jin, F.-F., Jo, H.-S., Li, X., Lin, X.,
McGregor, S., Park, J.-H., Stein, K., Yang, K., Zhang, L., and Zhong, W.:
Changing El Niño-Southern Oscillation in a warming climate, Nat. Rev. Earth Environ., 2, 628–644, https://doi.org/10.1038/s43017-021-00199-z, 2021. a, b, c, d, e
Cai, W., Ng, B., Wang, G., Santoso, A., Wu, L., and Yang, K.: Increased ENSO
sea surface temperature variability under four IPCC emission scenarios,
Nat. Clim. Change, 12, 228–231, https://doi.org/10.1038/s41558-022-01282-z, 2022. a, b, c, d
Callahan, C. W., Chen, C., Rugenstein, M., Bloch-Johnson, J., Yang, S., and
Moyer, E. J.: Robust decrease in El Niño/Southern Oscillation amplitude
under long-term warming, Nat. Clim. Change, 11, 752–757,
https://doi.org/10.1038/s41558-021-01099-2, 2021. a, b, c
Capotondi, A. and Sardeshmukh, P. D.: Is El Niño really changing?,
Geophys. Res. Lett., 44, 8548–8556,
https://doi.org/10.1002/2017GL074515, 2017. a, b, c
Capotondi, A., Ham, Y., Wittenberg, A., and Kug, J.: Climate model biases and
El Niño Southern Oscillation (ENSO) simulation,
US CLIVAR Variations 13, 1, 21–25, 2015. a
Chen, H.-C. and Jin, F.-F.: Dynamics of ENSO Phase–Locking and Its Biases in
Climate Models, Geophys. Res. Lett., 49, e2021GL097603,
https://doi.org/10.1029/2021GL097603, 2022. a, b
Choi, K.-Y., Vecchi, G. A., and Wittenberg, A. T.: ENSO Transition, Duration,
and Amplitude Asymmetries: Role of the Nonlinear Wind Stress Coupling in a
Conceptual Model, J. Climate, 26, 9462–9476,
https://doi.org/10.1175/JCLI-D-13-00045.1, 2013. a, b
Chung, C. T. Y., Power, S. B., Sullivan, A., and Delage, F.: The role of the
South Pacific in modulating Tropical Pacific variability, Sci. Rep., 9, 18311, https://doi.org/10.1038/s41598-019-52805-2, 2019. a
Clement, A. C., Seager, R., Cane, M. A., and Zebiak, S. E.: An Ocean Dynamical
Thermostat, J. Climate, 9, 2190–2196,
https://doi.org/10.1175/1520-0442(1996)009<2190:AODT>2.0.CO;2, 1996. a
Coats, S. and Karnauskas, K. B.: Are Simulated and Observed Twentieth Century
Tropical Pacific Sea Surface Temperature Trends Significant Relative to
Internal Variability?, Geophys. Res. Lett., 44, 9928–9937,
https://doi.org/10.1002/2017GL074622, 2017. a
Cobb, K. M., Westphal, N., Sayani, H. R., Watson, J. T., Lorenzo, E. D., Cheng,
H., Edwards, R. L., and Charles, C. D.: Highly Variable El Nino Southern
Oscillation Throughout the Holocene, Science, 339, 67–70,
https://doi.org/10.1126/science.1228246, 2013. a
Collins, M., An, S.-I., Cai, W., Ganachaud, A., Guilyardi, E., Jin, F.-F.,
Jochum, M., Lengaigne, M., Power, S., Timmermann, A., Vecchi, G., and
Wittenberg, A.: The impact of global warming on the tropical Pacific Ocean
and El Niño, Nat. Geosci., 3, 391–397, https://doi.org/10.1038/ngeo868, 2010. a
Delworth, T. L., Cooke, W. F., Adcroft, A., Bushuk, M., Chen, J.-H., Dunne,
K. A., Ginoux, P., Gudgel, R., Hallberg, R. W., Harris, L., Harrison, M. J.,
Johnson, N., Kapnick, S. B., Lin, S.-J., Lu, F., Malyshev, S., Milly, P. C.,
Murakami, H., Naik, V., Pascale, S., Paynter, D., Rosati, A., Schwarzkopf,
M., Shevliakova, E., Underwood, S., Wittenberg, A. T., Xiang, B., Yang, X.,
Zeng, F., Zhang, H., Zhang, L., and Zhao, M.: SPEAR: The Next Generation
GFDL Modeling System for Seasonal to Multidecadal Prediction and Projection,
J. Adv. Model. Earth Sys., 12, e2019MS001895,
https://doi.org/10.1029/2019MS001895, 2020. a
Deser, C., Lehner, F., Rodgers, K. B., Ault, T., Delworth, T. L., DiNezio,
P. N., Fiore, A., Frankignoul, C., Fyfe, J. C., Horton, D. E., Kay, J. E.,
Knutti, R., Lovenduski, N. S., Marotzke, J., McKinnon, K. A., Minobe, S.,
Randerson, J., Screen, J. A., Simpson, I. R., and Ting, M.: Insights from
Earth system model initial-condition large ensembles and future prospects,
Nat. Clim. Change, 10, 277–286, https://doi.org/10.1038/s41558-020-0731-2, 2020. a
DiNezio, P. N., Kirtman, B. P., Clement, A. C., Lee, S.-K., Vecchi, G. A., and
Wittenberg, A.: Mean Climate Controls on the Simulated Response of ENSO to
Increasing Greenhouse Gases, J. Climate, 25, 7399–7420,
https://doi.org/10.1175/JCLI-D-11-00494.1, 2012. a, b
Döscher, R., Acosta, M., Alessandri, A., Anthoni, P., Arsouze, T., Bergman, T., Bernardello, R., Boussetta, S., Caron, L.-P., Carver, G., Castrillo, M., Catalano, F., Cvijanovic, I., Davini, P., Dekker, E., Doblas-Reyes, F. J., Docquier, D., Echevarria, P., Fladrich, U., Fuentes-Franco, R., Gröger, M., v. Hardenberg, J., Hieronymus, J., Karami, M. P., Keskinen, J.-P., Koenigk, T., Makkonen, R., Massonnet, F., Ménégoz, M., Miller, P. A., Moreno-Chamarro, E., Nieradzik, L., van Noije, T., Nolan, P., O'Donnell, D., Ollinaho, P., van den Oord, G., Ortega, P., Prims, O. T., Ramos, A., Reerink, T., Rousset, C., Ruprich-Robert, Y., Le Sager, P., Schmith, T., Schrödner, R., Serva, F., Sicardi, V., Sloth Madsen, M., Smith, B., Tian, T., Tourigny, E., Uotila, P., Vancoppenolle, M., Wang, S., Wårlind, D., Willén, U., Wyser, K., Yang, S., Yepes-Arbós, X., and Zhang, Q.: The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6, Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, 2022. a
England, M. H., McGregor, S., Spence, P., Meehl, G. A., Timmermann, A., Cai,
W., Gupta, A. S., McPhaden, M. J., Purich, A., and Santoso, A.: Recent
intensification of wind-driven circulation in the Pacific and the ongoing
warming hiatus, Nat. Clim. Change, 4, 222–227,
https://doi.org/10.1038/nclimate2106, 2014. a
ESGF (The Earth System Grid Federation): An open infrastructure for access to distributed geospatial data, Future Generation Computer Systems, 36, 400–417, https://doi.org/10.1016/j.future.2013.07.002, 2014 (data available at https://esgf-node.llnl.gov/projects/cmip6/, last access: 13 April 2023). a
Fasullo, J. T. and Richter, J. H.: Scenario and Model Dependence of Strategic Solar Climate Intervention in CESM, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-779, 2022. a
Fasullo, J. T., Otto-Bliesner, B. L., and Stevenson, S.: ENSO's Changing
Influence on Temperature, Precipitation, and Wildfire in a Warming Climate,
Geophys. Res. Lett., 45, 9216–9225, https://doi.org/10.1029/2018GL079022, 2018. a
Fasullo, J. T., Phillips, A. S., and Deser, C.: Evaluation of Leading Modes of
Climate Variability in the CMIP Archives, J. Climate, 33, 5527–5545, https://doi.org/10.1175/JCLI-D-19-1024.1, 2020. a
Fedorov, A. V. and Philander, S. G.: Is El Nino Changing?, Science, 288,
1997–2002, https://doi.org/10.1126/science.288.5473.1997, 2000. a
Gan, R., Liu, Q., Huang, G., Hu, K., and Li, X.: Greenhouse warming and
internal variability increase extreme and central Pacific El Niño frequency
since 1980, Nat. Commun., 14, 394, https://doi.org/10.1038/s41467-023-36053-7,
2023. a, b
GFDL SPEAR Large Ensembles: https://www.gfdl.noaa.gov/spear_large_ensembles/ [data set], last access: 6 April 2023. a
Grothe, P. R., Cobb, K. M., Liguori, G., Di Lorenzo, E., Capotondi, A., Lu, Y.,
Cheng, H., Edwards, R. L., Southon, J. R., Santos, G. M., Deocampo, D. M.,
Lynch-Stieglitz, J., Chen, T., Sayani, H. R., Thompson, D. M., Conroy, J. L.,
Moore, A. L., Townsend, K., Hagos, M., O'Connor, G., and Toth, L. T.:
Enhanced El Niño–Southern Oscillation Variability in Recent Decades,
Geophys. Res. Lett., 47, e2019GL083906,
https://doi.org/10.1029/2019GL083906, 2020. a
Hajima, T., Watanabe, M., Yamamoto, A., Tatebe, H., Noguchi, M. A., Abe, M., Ohgaito, R., Ito, A., Yamazaki, D., Okajima, H., Ito, A., Takata, K., Ogochi, K., Watanabe, S., and Kawamiya, M.: Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks, Geosci. Model Dev., 13, 2197–2244, https://doi.org/10.5194/gmd-13-2197-2020, 2020. a
Hayashi, M., Jin, F.-F., and Stuecker, M. F.: Dynamics for El Niño-La Niña
asymmetry constrain equatorial-Pacific warming pattern, Nat.
Commun., 11, 4230, https://doi.org/10.1038/s41467-020-17983-y, 2020. a, b, c, d
Heede, U. K. and Fedorov, A. V.: Eastern equatorial Pacific warming delayed by
aerosols and thermostat response to CO2 increase, Nat. Clim. Change, 11,
696–703, https://doi.org/10.1038/s41558-021-01101-x, 2021. a, b
Heede, U. K., Fedorov, A. V., and Burls, N. J.: Time Scales and Mechanisms for
the Tropical Pacific Response to Global Warming: A Tug of War between the
Ocean Thermostat and Weaker Walker, J. Climate, 33, 6101–6118,
https://doi.org/10.1175/JCLI-D-19-0690.1, 2020. a
Jeffrey, S., Rotstayn, L., Collier, M., Dravitzki, S., Hamalainen, C.,
Moeseneder, C., Wong, K., and Syktus, J.: Australia's CMIP5 submission using
the CSIRO-Mk3.6 model, Aust. Meteorol. Ocean.,
63, 1–13, 2012. a
Jin, F.-F. and Neelin, J. D.: Modes of Interannual Tropical Ocean–Atmosphere
Interaction—a Unified View. Part I: Numerical Results, J. Atmos. Sci., 50, 3477–3503,
https://doi.org/10.1175/1520-0469(1993)050<3477:MOITOI>2.0.CO;2, 1993. a
Jin, F.-F., Kim, S. T., and Bejarano, L.: A coupled-stability index for ENSO,
Geophys. Res. Lett., 33, L23708, https://doi.org/10.1029/2006GL027221,
2006. a, b
Kang, S. M., Xie, S.-P., Shin, Y., Kim, H., Hwang, Y.-T., Stuecker, M. F.,
Xiang, B., and Hawcroft, M.: Walker circulation response to extratropical
radiative forcing, Sci. Adv., 6, eabd3021,
https://doi.org/10.1126/sciadv.abd3021, 2020. a
Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G.,
Arblaster, J. M., Bates, S. C., Danabasoglu, G., Edwards, J., Holland, M.,
Kushner, P., Lamarque, J.-F., Lawrence, D., Lindsay, K., Middleton, A.,
Munoz, E., Neale, R., Oleson, K., Polvani, L., and Vertenstein, M.: The
Community Earth System Model (CESM) Large Ensemble Project: A Community
Resource for Studying Climate Change in the Presence of Internal Climate
Variability, B. Am. Meteorol. Soc., 96, 1333–1349,
https://doi.org/10.1175/BAMS-D-13-00255.1, 2015. a
Kim, S. T., Cai, W., Jin, F.-F., Santoso, A., Wu, L., Guilyardi, E., and An,
S.-I.: Response of El Niño sea surface temperature variability to
greenhouse warming, Nat. Clim. Change, 4, 786–790,
https://doi.org/10.1038/nclimate2326, 2014. a
Kirchmeier-Young, M., Zwiers, F., and Gillett, N.: Attribution of Extreme
Events in Arctic Sea Ice Extent, J. Climate, 30, 553–571,
https://doi.org/10.1175/JCLI-D-16-0412.1, 2017. a
Kociuba, G. and Power, S. B.: Inability of CMIP5 Models to Simulate Recent
Strengthening of the Walker Circulation: Implications for Projections,
J. Climate, 28, 20–35, https://doi.org/10.1175/JCLI-D-13-00752.1, 2015. a, b, c
Kohyama, T. and Hartmann, D. L.: Nonlinear ENSO Warming Suppression (NEWS),
J. Climate, 30, 4227–4251, https://doi.org/10.1175/JCLI-D-16-0541.1, 2017. a, b
Kohyama, T., Hartmann, D. L., and Battisti, D. S.: La Niña–like Mean-State
Response to Global Warming and Potential Oceanic Roles, J. Climate,
30, 4207–4225, https://doi.org/10.1175/JCLI-D-16-0441.1, 2017. a, b
Kosaka, Y. and Xie, S.-P.: Recent global-warming hiatus tied to equatorial
Pacific surface cooling, Nature, 501, 403–407, https://doi.org/10.1038/nature12534,
2013. a
Lee, J., Planton, Y. Y., Gleckler, P. J., Sperber, K. R., Guilyardi, E.,
Wittenberg, A. T., McPhaden, M. J., and Pallotta, G.: Robust Evaluation of
ENSO in Climate Models: How Many Ensemble Members Are Needed?, Geophys. Res. Lett., 48, e2021GL095041,
https://doi.org/10.1029/2021GL095041, 2021. a, b, c, d
CESM2 Large Ensemble Community Project (LENS2), https://www.cesm.ucar.edu/community-projects/lens2 [data set], last access: 6 April 2023. a
Li, J., Xie, S.-P., Cook, E. R., Morales, M. S., Christie, D. A., Johnson,
N. C., Chen, F., D’Arrigo, R., Fowler, A. M., Gou, X., and Fang, K.: El
Niño modulations over the past seven centuries, Nat. Clim. Change, 3,
822–826, https://doi.org/10.1038/nclimate1936, 2013. a
Lian, T., Chen, D., Ying, J., Huang, P., and Tang, Y.: Tropical Pacific trends
under global warming: El Niño-like or La Niña-like?, Nat. Sci.
Rev., 5, 810–812, https://doi.org/10.1093/nsr/nwy134, 2018. a
Maher, N., Matei, D., Milinski, S., and Marotzke, J.: ENSO Change in Climate
Projections: Forced Response or Internal Variability?, Geophys. Res. Lett., 45, 11390–11398, https://doi.org/10.1029/2018GL079764, 2018. a, b, c, d
Maher, N., Milinski, S., Suarez-Gutierrez, L., Botzet, M., Dobrynin, M.,
Kornblueh, L., Kröger, J., Takano, Y., Ghosh, R., Hedemann, C., Li, C., Li,
H., Manzini, E., Notz, D., Putrasahan, D., Boysen, L., Claussen, M., Ilyina,
T., Olonscheck, D., Raddatz, T., Stevens, B., and Marotzke, J.: The Max
Planck Institute Grand Ensemble: Enabling the Exploration of Climate System
Variability, J. Adv. Model. Earth Sys., 11, 2050–2069,
https://doi.org/10.1029/2019MS001639, 2019. a
Max-Planck-Institut für Meteorologie: MPI Grand Ensemble, https://esgf-data.dkrz.de/projects/mpi-ge/ [data set], last access: 6 April 2023. a
McGregor, S., Timmermann, A., Schneider, N., Stuecker, M. F., and England,
M. H.: The Effect of the South Pacific Convergence Zone on the Termination of
El Niño Events and the Meridional Asymmetry of ENSO, J. Climate, 25,
5566–5586, https://doi.org/10.1175/JCLI-D-11-00332.1, 2012. a
McGregor, S., Timmermann, A., Stuecker, M. F., England, M. H., Merrifield, M.,
Jin, F.-F., and Chikamoto, Y.: Recent Walker circulation strengthening and
Pacific cooling amplified by Atlantic warming, Nat. Clim. Change, 4,
888–892, https://doi.org/10.1038/nclimate2330, 2014. a, b
McGregor, S., Stuecker, M. F., Kajtar, J. B., England, M. H., and Collins, M.:
Model tropical Atlantic biases underpin diminished Pacific decadal
variability, Nat. Clim. Change, 8, 493–498,
https://doi.org/10.1038/s41558-018-0163-4, 2018. a
McPhaden, M. J., Zebiak, S. E., and Glantz, M. H.: ENSO as an integrating
concept in earth science., Science, 314, 1740–1745, 2006. a
McPhaden, M. J., Lee, T., and McClurg, D.: El Niño and its relationship to
changing background conditions in the tropical Pacific Ocean, Geophys.
Res. Lett., 38, L15709, https://doi.org/10.1029/2011GL048275, 2011. a
Meehl, G. A. and Washington, W. M.: El Niño-like climate change in a model
with increased atmospheric CO2 concentrations, Nature, 382, 56–60,
https://doi.org/10.1038/382056a0, 1996. a
Multi-Model Large Ensemble Archive (MMLEA): https://www.cesm.ucar.edu/community-projects/mmlea [data set], last access: 6 April 2023. a
Ng, B., Cai, W., Cowan, T., and Bi, D.: Impacts of Low-Frequency Internal
Climate Variability and Greenhouse Warming on El Niño–Southern
Oscillation, J. Climate, 34, 2205–2218,
https://doi.org/10.1175/JCLI-D-20-0232.1, 2021. a, b
O’Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter,
T. R., Mathur, R., and van Vuuren, D. P.: A new scenario framework for
climate change research: the concept of shared socioeconomic pathways,
Clim. Change, 122, 387–400, https://doi.org/10.1007/s10584-013-0905-2, 2014. a
Pausata, F. S. R., Zanchettin, D., Karamperidou, C., Caballero, R., and
Battisti, D. S.: ITCZ shift and extratropical teleconnections drive ENSO
response to volcanic eruptions, Sci. Adv., 6, eaaz5006,
https://doi.org/10.1126/sciadv.aaz5006, 2020. a
Planton, Y. Y., Guilyardi, E., Wittenberg, A. T., Lee, J., Gleckler, P. J.,
Bayr, T., McGregor, S., McPhaden, M. J., Power, S., Roehrig, R., Vialard, J.,
and Voldoire, A.: Evaluating Climate Models with the CLIVAR 2020 ENSO
Metrics Package, B. Am. Meteorol. Soc., 102, 193–217, https://doi.org/10.1175/BAMS-D-19-0337.1, 2021. a, b
Power, S., Delage, F., Chung, C., Kociuba, G., and Keay, K.: Robust
twenty-first-century projections of El Niño and related precipitation
variability, Nature, 502, 541–545, https://doi.org/10.1038/nature12580, 2013. a
Rodgers, K. B., Friederichs, P., and Latif, M.: Tropical Pacific Decadal
Variability and Its Relation to Decadal Modulations of ENSO, J. Climate, 17, 3761–3774,
https://doi.org/10.1175/1520-0442(2004)017<3761:TPDVAI>2.0.CO;2, 2004. a, b
Rodgers, K. B., Lee, S.-S., Rosenbloom, N., Timmermann, A., Danabasoglu, G., Deser, C., Edwards, J., Kim, J.-E., Simpson, I. R., Stein, K., Stuecker, M. F., Yamaguchi, R., Bódai, T., Chung, E.-S., Huang, L., Kim, W. M., Lamarque, J.-F., Lombardozzi, D. L., Wieder, W. R., and Yeager, S. G.: Ubiquity of human-induced changes in climate variability, Earth Syst. Dynam., 12, 1393–1411, https://doi.org/10.5194/esd-12-1393-2021, 2021. a, b, c
Seager, R., Cane, M., Henderson, N., Lee, D.-E., Abernathey, R., and Zhang, H.:
Strengthening tropical Pacific zonal sea surface temperature gradient
consistent with rising greenhouse gases, Nat. Clim. Change, 9, 517–522,
https://doi.org/10.1038/s41558-019-0505-x, 2019. a
Seager, R., Henderson, N., and Cane, M.: Persistent discrepancies between
observed and modeled trends in the tropical Pacific Ocean, J. Climate, 1–41, https://doi.org/10.1175/JCLI-D-21-0648.1, 2022. a, b, c
Stein, K., Timmermann, A., Schneider, N., Jin, F.-F., and Stuecker, M. F.:
ENSO Seasonal Synchronization Theory, J. Climate, 27, 5285–5310,
https://doi.org/10.1175/JCLI-D-13-00525.1, 2014. a
Stevenson, S., Fox-Kemper, B., Jochum, M., Rajagopalan, B., and Yeager, S. G.:
ENSO Model Validation Using Wavelet Probability Analysis, J. Climate, 23, 5540–5547, https://doi.org/10.1175/2010JCLI3609.1, 2010. a
Stevenson, S., Wittenberg, A. T., Fasullo, J., Coats, S., and Otto-Bliesner,
B.: Understanding Diverse Model Projections of Future Extreme El Niño,
J. Climate, 34, 449–464, https://doi.org/10.1175/JCLI-D-19-0969.1, 2021. a
Stevenson, S. L.: Significant changes to ENSO strength and impacts in the
twenty-first century: Results from CMIP5, Geophys. Res. Lett., 39, L17703,
https://doi.org/10.1029/2012GL052759, 2012. a, b
Stuecker, M. F., Timmermann, A., Jin, F.-F., McGregor, S., and Ren, H.-L.: A
combination mode of the annual cycle and the El Niño/Southern Oscillation,
Nat. Geosci., 6, 540–544, https://doi.org/10.1038/ngeo1826, 2013. a, b
Sun, L., Alexander, M., and Deser, C.: Evolution of the Global Coupled Climate
Response to Arctic Sea Ice Loss during 1990-2090 and Its Contribution to
Climate Change, J. Climate, 31, 7823–7843, 2018. a
Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Hanna, S., Jiao, Y., Lee, W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Sigmond, M., Solheim, L., von Salzen, K., Yang, D., and Winter, B.: The Canadian Earth System Model version 5 (CanESM5.0.3), Geosci. Model Dev., 12, 4823–4873, https://doi.org/10.5194/gmd-12-4823-2019, 2019. a
Taschetto, A. S., Ummenhofer, C. C., Stuecker, M. F., Dommenget, D., Ashok, K.,
Rodrigues, R. R., and Yeh, S.-W.: ENSO Atmospheric Teleconnections,
chap. 14, American Geophysical Union (AGU), 309–335
https://doi.org/10.1002/9781119548164.ch14, 2020. a
Tatebe, H., Ogura, T., Nitta, T., Komuro, Y., Ogochi, K., Takemura, T., Sudo, K., Sekiguchi, M., Abe, M., Saito, F., Chikira, M., Watanabe, S., Mori, M., Hirota, N., Kawatani, Y., Mochizuki, T., Yoshimura, K., Takata, K., O'ishi, R., Yamazaki, D., Suzuki, T., Kurogi, M., Kataoka, T., Watanabe, M., and Kimoto, M.: Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6, Geosci. Model Dev., 12, 2727–2765, https://doi.org/10.5194/gmd-12-2727-2019, 2019. a
Timmermann, A., An, S.-I., Kug, J.-S., Jin, F.-F., Cai, W., Capotondi, A.,
Cobb, K. M., Lengaigne, M., McPhaden, M. J., Stuecker, M. F., Stein, K.,
Wittenberg, A. T., Yun, K.-S., Bayr, T., Chen, H.-C., Chikamoto, Y., Dewitte,
B., Dommenget, D., Grothe, P., Guilyardi, E., Ham, Y.-G., Hayashi, M.,
Ineson, S., Kang, D., Kim, S., Kim, W., Lee, J.-Y., Li, T., Luo, J.-J.,
McGregor, S., Planton, Y., Power, S., Rashid, H., Ren, H.-L., Santoso, A.,
Takahashi, K., Todd, A., Wang, G., Wang, G., Xie, R., Yang, W.-H., Yeh,
S.-W., Yoon, J., Zeller, E., and Zhang, X.: El Niño-Southern Oscillation
complexity, Nature, 559, 535–545, https://doi.org/10.1038/s41586-018-0252-6, 2018.
a
Watanabe, M., Dufresne, J.-L., Kosaka, Y., Mauritsen, T., and Tatebe, H.:
Enhanced warming constrained by past trends in equatorial Pacific sea
surface temperature gradient, Nat. Clim. Change, 11, 33–37,
https://doi.org/10.1038/s41558-020-00933-3, 2021. a
Wengel, C., Lee, S.-S., Stuecker, M. F., Timmermann, A., Chu, J.-E., and
Schloesser, F.: Future high-resolution El Niño/Southern Oscillation
dynamics, Nat. Clim. Change, 11, 758–765,
https://doi.org/10.1038/s41558-021-01132-4, 2021. a, b
Wills, R. C. J., Battisti, D. S., Armour, K. C., Schneider, T., and Deser, C.:
Pattern Recognition Methods to Separate Forced Responses from Internal
Variability in Climate Model Ensembles and Observations, J. Climate,
33, 8693–8719, https://doi.org/10.1175/JCLI-D-19-0855.1, 2020. a
Wills, R. C. J., Dong, Y., Proistosecu, C., Armour, K. C., and Battisti, D. S.:
Systematic Climate Model Biases in the Large-Scale Patterns of Recent
Sea-Surface Temperature and Sea-Level Pressure Change, Geophys. Res. Lett., 49,
e2022GL100011, https://doi.org/10.1029/2022GL100011, 2022. a, b, c
Wittenberg, A. T.: Are historical records sufficient to constrain ENSO
simulations?, Geophys. Res. Lett., 36, L12702, https://doi.org/10.1029/2009GL038710,
2009. a
Wyman, D. A., Conroy, J. L., and Karamperidou, C.: The Tropical Pacific
ENSO–Mean State Relationship in Climate Models over the Last Millennium,
J. Climate, 33, 7539–7551, https://doi.org/10.1175/JCLI-D-19-0673.1, 2020. a, b
Wyser, K., Koenigk, T., Fladrich, U., Fuentes-Franco, R., Karami, M. P., and Kruschke, T.: The SMHI Large Ensemble (SMHI-LENS) with EC-Earth3.3.1, Geosci. Model Dev., 14, 4781–4796, https://doi.org/10.5194/gmd-14-4781-2021, 2021. a
Ying, J., Collins, M., Cai, W., Timmermann, A., Huang, P., Chen, D., and Stein,
K.: Emergence of climate change in the tropical Pacific, Nat. Clim.
Change, 12, 356–364, https://doi.org/10.1038/s41558-022-01301-z, 2022. a
Yun, K.-S., Lee, J.-Y., Timmermann, A., Stein, K., Stuecker, M. F., Fyfe,
J. C., and Chung, E.-S.: Increasing ENSO-rainfall variability due to changes
in future tropical temperature-rainfall relationship, Commun. Earth Environ., 2, 43, https://doi.org/10.1038/s43247-021-00108-8, 2021. a
Ziehn, T., Chamberlain, M. A., Law, R. M., Lenton, A., Bodman, R. W., Dix, M.,
Stevens, L., Wang, Y.-P., and Srbinovsky, J.: The Australian Earth System
Model: ACCESS-ESM1.5, J. South. Hemisphere Earth Syst. Sci., 70, 193–214,
2020. a
Short summary
Understanding whether the El Niño–Southern Oscillation (ENSO) is likely to change in the future is important due to its widespread impacts. By using large ensembles, we can robustly isolate the time-evolving response of ENSO variability in 14 climate models. We find that ENSO variability evolves in a nonlinear fashion in many models and that there are large differences between models. These nonlinear changes imply that ENSO impacts may vary dramatically throughout the 21st century.
Understanding whether the El Niño–Southern Oscillation (ENSO) is likely to change in the future...
Altmetrics
Final-revised paper
Preprint