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Abstract. Future changes in the El Niño–Southern Oscillation (ENSO) are uncertain, both because future pro-
jections differ between climate models and because the large internal variability of ENSO clouds the diagnosis
of forced changes in observations and individual climate model simulations. By leveraging 14 single model
initial-condition large ensembles (SMILEs), we robustly isolate the time-evolving response of ENSO sea sur-
face temperature (SST) variability to anthropogenic forcing from internal variability in each SMILE. We find
nonlinear changes in time in many models and considerable inter-model differences in projected changes in
ENSO and the mean-state tropical Pacific zonal SST gradient. We demonstrate a linear relationship between
the change in ENSO SST variability and the tropical Pacific zonal SST gradient, although forced changes in
the tropical Pacific SST gradient often occur later in the 21st century than changes in ENSO SST variability,
which can lead to departures from the linear relationship. Single-forcing SMILEs show a potential contribution
of anthropogenic forcing (aerosols and greenhouse gases) to historical changes in ENSO SST variability, while
the observed historical strengthening of the tropical Pacific SST gradient sits on the edge of the model spread
for those models for which single-forcing SMILEs are available. Our results highlight the value of SMILEs for
investigating time-dependent forced responses and inter-model differences in ENSO projections. The nonlin-
ear changes in ENSO SST variability found in many models demonstrate the importance of characterizing this
time-dependent behavior, as it implies that ENSO impacts may vary dramatically throughout the 21st century.
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1 Introduction

Understanding how the El Niño–Southern Oscillation
(ENSO) will change under increasing greenhouse gas emis-
sions is critical due to ENSO’s widespread impacts, which
include changes to floods, droughts, and fishery production
(e.g., McPhaden et al., 2006; Cai et al., 2012, 2014, 2021;
Taschetto et al., 2020). While previous work demonstrates
model agreement on future intensification of ENSO’s atmo-
spheric impacts (e.g., precipitation; Yun et al., 2021; Power
et al., 2013; Fasullo et al., 2018), debate remains as to
whether ENSO-driven sea surface temperature (SST) vari-
ability will increase or decrease in the future as disparities
between projections from different climate models persist
(e.g., Cai et al., 2022; Beobide-Arsuaga et al., 2021; Steven-
son et al., 2021). In this study we present ENSO SST projec-
tions for the first time from 14 individual single model initial-
condition large ensembles (SMILEs) with the time-evolving
forced response cleanly separated from internal variability.

Previous work finds a diverse range of projections of
ENSO variability in multi-model ensembles (CMIP; coupled
model intercomparison projects). In CMIP3 a range of ENSO
variability projections were found, leading to a review stat-
ing that it was not yet possible to determine whether ENSO
would change in the future (Collins et al., 2010). In CMIP5
the models again demonstrate a variety of responses with
the multi-model mean change indistinguishable from zero
(Stevenson, 2012; Beobide-Arsuaga et al., 2021). Other stud-
ies have further investigated ENSO projections by excluding
models that have strong ENSO biases in the historical period.
When selecting for models that correctly represent ENSO
skewness, Cai et al. (2018) find an increase in eastern Pacific
ENSO SST variability. This result is supported by the recent
release of CMIP6 wherein Cai et al. (2022) demonstrate that
34 of 43 models show an increase in ENSO SST variability
in SSP585 (27 of 39 in SSP126), in agreement with another
early CMIP6 assessment (Fredriksen et al., 2020).

There is also some evidence for an increase in ENSO vari-
ability in the observational record, with paleoclimate data
suggesting that ENSO variability strengthened post-1950
(Cai et al., 2021). Coral records indicate that ENSO vari-
ability has been 25 % larger over the last 5 decades com-
pared to the pre-industrial era (Grothe et al., 2020; Cobb
et al., 2013). This agrees with tree ring records, which show
a strengthening of ENSO variance in the late 20th century
(Li et al., 2013). A study using linear inverse modeling based
on instrumental data agrees that ENSO SST variance has in-
creased since 1976 (Capotondi and Sardeshmukh, 2017). The
authors, however, note that such differences could be due to
multi-decadal variability or the impact of climate change, and
the cause of this observed change remains unclear. A recent
study also noted the strong contribution of internal variability
in the observed record (Gan et al., 2023). Gan et al. (2023)
conclude that 65 % of the observed increase in extreme El
Niño events is attributable to the internal variability (largely

multi-decadal variability from the Atlantic Multidecadal Os-
cillation), with the rest of the increase attributed to a chang-
ing climate.

While consensus between multi-model ensembles and
paleoclimate records suggests that ENSO variability may
increase with increasing greenhouse gas emissions, other
studies that look at the equilibration to strong greenhouse
gas forcing complicate this result. A recent study using a
very-high-resolution climate model (0.1◦ ocean; 0.25◦ atmo-
sphere) finds that ENSO SST variability decreases substan-
tially under strong (4×CO2) forcing (Wengel et al., 2021).
This study further argues that CMIP-class models are too
low in horizontal resolution to correctly capture some im-
portant aspects of ENSO ocean dynamics, which could lead
to an artificial increase in SST variance in these models. On
longer timescales, ENSO amplitude is also found to decrease
in CMIP-class standard-resolution (1 to 2◦) models (Calla-
han et al., 2021). Using output from the Long Run Model
Intercomparison Project, Callahan et al. (2021) find diverg-
ing transient ENSO variability projections but a consistent
decrease in SST variability across models when the response
has stabilized. Indeed, Kim et al. (2014) suggest that ENSO
variability in CMIP5 models is not linear in time, implying
an important role for analyzing multiple time periods. Col-
lectively, these studies demonstrate the importance of further
research to reconcile these discrepancies.

Differences between the projections of ENSO variability
in individual models have been linked to the pattern of mean-
state warming across the tropical Pacific (e.g., Jin and Neelin,
1993; Fedorov and Philander, 2000; Jin et al., 2006; DiNezio
et al., 2012). For instance, in CMIP5 and CMIP6 models
there is a weak negative correlation between the magnitude
of the tropical Pacific SST gradient and ENSO SST variabil-
ity (Beobide-Arsuaga et al., 2021). In this case, an increase in
ENSO SST variability is linked to a weakening of the trop-
ical Pacific SST gradient. This relationship varies between
models (Fredriksen et al., 2020) and is found to be more ro-
bust in models that have more realistic subsurface nonlinear
dynamical heating and ENSO asymmetry when compared to
observations (Hayashi et al., 2020). Periods of weaker tropi-
cal Pacific SST gradient are also linked to higher ENSO vari-
ability, with periods with a stronger gradient linked to periods
of smaller ENSO SST variability (Capotondi and Sardesh-
mukh, 2017; Rodgers et al., 2004; Ogata et al., 2013; Choi
et al., 2013; McPhaden et al., 2011). Models that show re-
duced ENSO variability in response to anthropogenic forcing
also show a strengthening of the tropical Pacific SST gradi-
ent (Kohyama and Hartmann, 2017; Kohyama et al., 2017).
This relationship between ENSO amplitude and the mean-
state tropical Pacific SST gradient is identified in Paleocli-
mate Modelling Intercomparison Project (PMIP) models, al-
though it is not constant through time (Wyman et al., 2020).
However, paleoclimatic proxies suggest that there is no rela-
tionship between mean zonal SST gradient and ENSO vari-
ability (Cai et al., 2021), demonstrating that this link is either
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not found in our observations or, as in the PMIP models, is
not constant in time. We emphasize that the east–west Pacific
SST gradient is only one of many mean-state metrics that are
potentially important to influence (and vice versa be influ-
enced by) ENSO variability. In fact, different aspects of the
climate mean state affect ENSO feedbacks in multiple ways,
leading to a potentially high sensitivity of the linear ENSO
growth rate (and hence SST variability) to these factors (Jin
et al., 2006).

How the tropical Pacific SST gradient itself will change
in the future is also a point of contention. Most CMIP-class
models agree on a projected weakening of the SST gradient
(El Niño-like warming; Kociuba and Power, 2015; Meehl
and Washington, 1996; Fredriksen et al., 2020; Cai et al.,
2021). This, however, must be reconciled with the recent ob-
served increase in the SST gradient (La Niña-like warming;
Kosaka and Xie, 2013; England et al., 2014; McGregor et al.,
2014). Some studies suggest that the inconsistencies between
models and observations can be explained by internal vari-
ability and observational uncertainty (Watanabe et al., 2021;
Chung et al., 2019; Coats and Karnauskas, 2017), while oth-
ers argue that the observations are truly outside the model
range (Kociuba and Power, 2015; Seager et al., 2022). One
hypothesis is that under transient forcing the ocean ther-
mostat mechanism, whereby upwelling waters delay warm-
ing in the eastern equatorial Pacific, overwhelms the long-
term weakening of the Walker circulation and SST gradient
(Clement et al., 1996; Heede and Fedorov, 2021), leading to
temporary La Niña-like warming. Another study concludes
that a more accurate representation of ENSO nonlinearity
leads to La Niña-like warming in at least one realistic cli-
mate model (Kohyama and Hartmann, 2017; Kohyama et al.,
2017). As such, while most models project an El Niño-like
warming, this is not the only possible future response. Al-
ternatively, realistic ENSO nonlinearity does not necessarily
lead to a La Niña-like warming pattern. While realistic repre-
sentations of ENSO nonlinearities are a necessary condition
for the simulation of rectified mean-state changes via nonlin-
ear dynamical heating, diverging projected changes in future
ENSO SST variability among models with largely realistic
ENSO nonlinear dynamic heating can lead to either ENSO-
induced damped or amplified eastern tropical Pacific mean-
state warming (Hayashi et al., 2020). Additionally, it has
been hypothesized that SST mean-state biases in the Atlantic
Ocean are responsible for low-biased interbasin connectiv-
ity (and hence also low-biased SST variability) between the
Atlantic and Pacific (McGregor et al., 2018). This suite of
studies highlights the need for further research and contin-
ued observations to reduce uncertainties in how the tropical
Pacific SST gradient will change in the future.

A primary reason for uncertainty in future changes in
ENSO variability and the mean-state tropical Pacific SST
gradient is that ENSO itself experiences large multi-decadal
variability (Wittenberg, 2009), meaning that long averag-
ing periods or large ensembles are needed to identify robust

forced changes (e.g., Stevenson et al., 2010; Milinski et al.,
2020; Maher et al., 2018; Deser et al., 2020; Ng et al., 2021).
Projections using multi-model ensembles can be difficult to
interpret because the spread due to internal variability is com-
parable to the spread due to inter-model differences (Maher
et al., 2018; Ng et al., 2021). With this in mind, large ensem-
bles are needed to quantify the time-varying ENSO response
(Stevenson, 2012; Milinski et al., 2020). Without large en-
sembles, previous studies were forced to rely on long time
averages to robustly evaluate changes in ENSO variability
(e.g., 2000–2099 compared to 1900–1999).

In this study, we present ENSO projections from 14
SMILEs, for which the time-dependent response of ENSO
to external forcing can be isolated from internal variability
through ensemble averaging. The unprecedented number of
SMILEs used allows a detailed examination of the model de-
pendence of future ENSO projections. In particular, this pa-
per aims to

– isolate the forced response of ENSO in individual mod-
els,

– evaluate the time evolution of projected changes in
ENSO statistics,

– investigate the time-dependent mean-state response of
the tropical Pacific (tropical Pacific SST gradient) to
greenhouse gas forcing,

– determine whether there is a relationship between pro-
jected changes in ENSO variability and the tropical Pa-
cific SST gradient in climate models, and

– investigate the role of greenhouse gases, aerosol, and
natural forcing in historical ENSO variability changes
using single-forcing SMILEs.

2 Datasets

The 14 SMILEs used in this study include both CMIP5-
and CMIP6-class models and use one of three external forc-
ing scenarios (Table 1). Models used in this study have be-
tween 10 and 100 ensemble members for the historical and
future scenarios. For those with single forcing we allow as
few as three members due to the limited availability of mod-
els with any more than a single ensemble member. Previ-
ous work has investigated how many ensemble members are
needed to investigate ENSO characteristics and find that this
depends on the metric used, the length of time averaging,
the level of acceptable error, and the model itself (Maher
et al., 2018; Milinski et al., 2020; Lee et al., 2021). Lee et al.
(2021) find, for example, that for ENSO amplitude 10–47
members are sufficient depending on which model is used
to make the estimate, while this range widens to 1–45 mem-
bers for ENSO seasonality. Maher et al. (2018) determine

https://doi.org/10.5194/esd-14-413-2023 Earth Syst. Dynam., 14, 413–431, 2023



416 N. Maher et al.: ENSO in large ensembles

Figure 1. Time series of Niño3 (blue), Niño3.4 (black), and Niño4 (red) variability for the December, January, and February average (DJF)
in each model. Variability is computed as the running 30-year standard deviation for each ensemble member after detrending each member
by removing the ensemble mean. The DJF mean is taken prior to computing the variability for this and all subsequent figures. The thick line
shows the ensemble mean of the running standard deviation, and the thin lines show the 5 %–95 % range across the ensemble. The bottom
right panel shows the running standard deviation for ERSSTv5 observations (linearly detrended). The diamond symbols in each panel show
the observed variability for the periods 1951–1980 and 1990–2019. Model name, ensemble size, and scenario used are shown in the title of
each panel for all figures.

that to look at ENSO variance over 30-year periods 10 mem-
bers are sufficient for a 20 % level of acceptable error, while
30–40 are needed to reduce this to 10 %, with 12–20 suffi-
cient for a 15 % error (Milinski et al., 2020). Fewer mem-
bers are needed to estimate mean-state ENSO metrics than
its variability (Milinski et al., 2020; Lee et al., 2021). In this
study we accept models with a minimum of 10 ensemble
members to include as many models as possible; however,
we note that there are larger errors associated with estimates
of ENSO variability for the smaller ensemble sizes. We ad-
ditionally show the time series of ENSO indices in Fig. 1 as

is acts to demonstrate the inherent variability due to different
ensemble sizes.

While the purpose of this study is to provide a detailed
overview of ENSO projections in all available SMILEs, it
is useful to provide some observational context. A detailed
comparison of ENSO characteristics in both CMIP mod-
els and SMILEs can be found in the following studies for
a large range of ENSO metrics, and we do not repeat this
here, although we note that in general CMIP6 models out-
perform CMIP5 in 8 out of 24 metrics and are only de-
graded in 1 (Planton et al., 2021; Lee et al., 2021) and that
ENSO-related SST biases and its teleconnections are also
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Table 1. SMILEs used in this study. CMIP6 models are highlighted in bold font.

Model Time period Forcing (ensemble size) Reference

ACCESS-ESM1-5 1850–2100 hist(40), ssp370(40) Ziehn et al. (2020)

CanESM2 1950–2100 Hist+rcp85(50) Kirchmeier-Young et al. (2017)

CanESM5 1850–2100 hist(40), ssp370(25), Swart et al. (2019)
hist-aer(15), hist-nat(8), hist-GHG(8)

CESM1-LE 1920–2100 hist+rcp85(40) Kay et al. (2015)

CESM2-LE 1850–2100 hist(100), ssp370(99) Rodgers et al. (2021)

CSIRO-Mk36 1850–2100 hist+rcp85(30) Jeffrey et al. (2012)

EC-EARTH3 1850(1970)–2100 hist(1850; 23), hist(1970; 50), ssp585(58) Döscher et al. (2022),
Wyser et al. (2021)

GFDL-CM3 1920–2100 hist+rcp85(20) Sun et al. (2018)

GFDL-ESM2M 1861–2100 hist+rcp85(30) Burger et al. (2022)

GFDL-SPEAR-MED 1921–2100 hist+ssp585(30) Delworth et al. (2020)

IPSL-CM6A-LR 1850–2100 hist(32), ssp370(10) Boucher et al. (2020)

MIROC6 1850–2100 hist(50),ssp585(50), Tatebe et al. (2019)
hist-nat(50), hist-aer(9), hist-GHG(3)

MIROC-ES2L 1850–2100 hist(30), ssp585(10) Hajima et al. (2020)

MPI-GE 1850–2099 hist+rcp85(100) Maher et al. (2019)

improved (Fasullo et al., 2020). We do, however, compare
model-simulated and observed El Niño and La Niña com-
posites (Figs. S1 and S2 in the Supplement). We find di-
verse errors in ENSO patterns, amplitudes, and transitions.
All models overestimate the westward extension of ENSO
SST anomalies and either overestimate or underestimate the
ENSO amplitude, and some models overestimate the dura-
tion of ENSO events (e.g., MIROC6 and MIROC-ES2L).

When considering ENSO SST variability we find that only
some models capture the observed variability within the en-
semble spread (Figs. 1 and S3), but we note that this is not a
reliable predictor for future change. For example, both MPI-
GE and EC-EARTH3 compare favorably with the observed
magnitude of ENSO SST variability but have different fu-
ture responses (Fig. 1). MPI-GE shows no change in ENSO
SST variability, while EC-EARTH3 has strongly increas-
ing ENSO SST variability. We additionally note that there
is large multi-decadal variability in the amplitude of ENSO
variability in individual ensemble members. This indicates
that we need a SMILE to robustly detect a forced change, but
also that an actual forced change in the real world might be
masked by this large multi-decadal variability.

3 ENSO projections

In this section we evaluate the response of ENSO variabil-
ity in each individual SMILE in one of three future scenar-

ios dependent on availability (RCP8.5, SSP370, SSP585).
We note that there may be differences between SSP370 and
RCP85/SSP585, particularly regarding early 21st century
sulfate aerosols, which have potential consequences for the
evolution of ENSO (O’Neill et al., 2014; Fasullo and Richter,
2022).

3.1 Amplitude

Projections of ENSO amplitude are nonlinear in time and dif-
fer between models (Fig. 1). A large proportion of the models
demonstrate an increase in ENSO amplitude as characterized
by December–January–February (DJF) SST variability of
three ENSO indices (Niño3, Niño3.4 and Niño4; ACCESS-
ESM1.5, CESM1-LE, CSIRO-Mk36, EC-EARTH, IPSL-
CM6A-LR, MIROC6, MIROC-ES2L). This increase is often
nonlinear in time, and there is a large spread across mod-
els in the magnitude of the increase. Other models show a
decrease (CanESM2) or limited change (MPI-GE) in ENSO
amplitude. Finally, five models display nonmonotonic behav-
ior (CESM2-LE, GFDL-CM3, GFDL-ESM2M, CanESM5,
GFDL-SPEAR-MED). In these models, ENSO amplitude
first increases, then plateaus, and lastly decreases. These re-
sults are consistent for all three ENSO indices, with subtle
differences for some models (e.g., CSIRO-Mk36 and IPSL-
CM6A-LR). Given the time-dependent response of ENSO
amplitude exhibited in these time series plots, we consider
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Figure 2. Spatial pattern of relative change in DJF SST variance in the (2–7 years) ENSO band between the late 21st century (2070–2099)
simulations and the historical (1951–1980) period. The differences in variance have been normalized by the variance of the historical (1951–
1980) period (contours). The multi-ensemble mean of the individual model ensemble means can be found in the last panel. Red indicates
heightened variability, and cool colors indicate dampened variability. For this and following figures using DJF, 30 years are used in the
calculations; e.g., for 1951–1980 we include 30 DJFs starting with December 1950 and DJF variance is computed as the variance of the DJF
means. We note that a maximum ensemble size of the first 20 members is used in this analysis, with all members of models with 20 or fewer
members used.

projections for two future time periods (2021–2050 and
2070–2099) in the following sections.

3.2 Pattern

Forced changes in the spatial pattern of ENSO-related SST
variability differ between models (Figs. 2 and S4). While
the multi-ensemble mean (MEM; used for ease of com-
parison to CMIP multi-model mean results) shows an in-
crease in variability in the central Pacific, each model has
its own unique pattern of change (Fig. 2). Some models
demonstrate a general decrease in SST variability along
the Equator (CanESM2, CESM2-LE, MPI-GE), while oth-
ers show a general increase in this region (CESM1-LE, EC-
EARTH, MIROC6, MIROC-ESL2L, GFDL-SPEAR-MED).
There are also differences in the zonal pattern of variabil-
ity changes. A group of models has large increases in vari-
ability in the central Pacific (ACCESS-ESM1.5, CanESM5,
IPSL-CM6A-LR), while another group shows a clear in-
crease across the Pacific (CESM1-LE, EC-EARTH, GFDL-
SPEAR-MED, MIROC-ES2L). These diverse patterns are
generally similar between the two time periods considered
but smaller in magnitude for the earlier period (Fig. S4;
2021–2050) compared to the later period (Fig. 2; 2071–
2100), with the MEM pattern consistent between time peri-
ods. This result is, however, not true for all models. CESM2-
LE has a central equatorial Pacific response of opposite sign
between the two periods considered, while GFDL-CM3 and
CSIRO-Mk36 have very different patterns of spatial change
in the two periods considered. These figures give the pattern
of overall change in ENSO SST variability; however, El Niño

and La Niña are not symmetric and may evolve in different
ways. Due to this we next consider changes in El Niño and
La Niña events individually.

3.3 ENSO event evolution

Composites of El Niño events in each period show increased
El Niño SST amplitude relative to the baseline period 1951–
1980 in most models and the MEM (Fig. 3; 2070–2099,
Fig. S5; 2021–2050). In the baseline period, most mod-
els have maximum SST anomalies in the eastern equato-
rial Pacific sometime between November and February, fol-
lowed by a westward propagation of warm anomalies and
then a switch to cold anomalies in the following year. In
the MEM, the longitudinal location of the maximum SST
anomaly shifts westward by approximately 15◦ in 2070–
2099 compared to that in 1951–1980, indicating that El Niño
SST variability gets stronger over the central Pacific in the
future period, consistent with results shown in Fig. 2. In
models wherein the amplitude of El Niño increases, the am-
plitude of the subsequent La Niña also tends to increase
(Figs. S6 and S7), presumably due to a stronger heat con-
tent discharge, and vice versa for models wherein the ampli-
tude of El Niño decreases. When considering the asymmetry
between El Niño and La Niña event composites, the MEM
shows that the amplitude of La Niña intensifies more than El
Niño in the western-central equatorial Pacific, and the dura-
tion of La Niña becomes longer following the amplitude in-
tensification, highlighting the nonlinearity of their responses
(Fig. S6). The individual model responses, however, demon-
strate strong inter-model differences, which might be related
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Figure 3. Longitude–time sections of the difference of equatorial Pacific (5◦ S–5◦ N) SST anomalies (◦C; shading) composited for El Niño
events during 2070–2099 compared to 1951–1980 in 14 SMILEs and the multi-ensemble mean. The SST anomalies for El Niño events
during 1951–1980 are overlaid (◦C; contours at intervals of 0.4 ◦C; zero contours thickened and negative contours dashed). El Niño events
are defined when the Niño3.4 index exceeds 0.75 standard deviations in Dec0 but not in Dec−1. Monthly SST anomalies are calculated by
removing the ensemble mean from individual ensemble members.

to the diverse model biases in simulating ENSO (Figs. S1 and
S2). Overall, ENSO SST changes in the period 2021–2050
show patterns similar, but with weaker amplitude, to those in
the periods in 2070–2099 (Figs. S5 and S7). CESM2-LE is
an exception that has opposite changes in El Niño SST am-
plitude and La Niña duration between the two periods.

3.4 Seasonal synchronization

We next investigate the seasonal synchronization of pro-
jected changes in ENSO SST variability (Figs. 4 and 5).
We aim to determine during which seasons ENSO SST vari-
ability changes in each SMILE and determine whether the
ENSO seasonality is likely to increase or decrease. We find
that models demonstrate different magnitudes of change for
different months (Fig. 4). Most models show the largest
change (generally an increase) in boreal winter with limited
changes in boreal summer. Individual models have opposite-
signed changes between the two seasons. Overall, there is
an increase in ENSO seasonality (Fig. 5); i.e., increases in

ENSO variability are concentrated in the season when ENSO
SST variability is climatologically largest. These changes are
largely consistent across models, with an overall increase in
ENSO SST variability found in boreal fall and winter and a
decrease in the variability in spring and summer.

4 Mean-state projections

The warming rate over the equatorial Pacific varies season-
ally and as a function of longitude (Fig. 6). While some
models have larger warming trends in the eastern Pacific (El
Niño-like warming) for all months (MIROC6, CESM1-LE,
EC-EARTH, CESM2-LE), others demonstrate a more com-
plicated seasonal cycle of warming rate, with the location
of the largest warming dependent on which month is con-
sidered. In the MEM, the eastern Pacific warms more in all
seasons; however, from December to June the strong warm-
ing trend extends into the central Pacific, which warms with
almost equal magnitude to the east. The MEM warming rate

https://doi.org/10.5194/esd-14-413-2023 Earth Syst. Dynam., 14, 413–431, 2023
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Figure 4. Change in ENSO SST variability, taken as the ensemble standard deviation in the Niño3.4 region for each SMILE and the
multi-ensemble mean. Blue lines show the climatology in 1951–1980, shading shows the 5-year running-mean anomalies with respect to
1951–1980, and red lines show the climatology in 2070–2099. Black lines show the observational climatology based on ERSST5 in the
period 1951–1980. We note that the climatology is computed as 1970–1999 for EC-Earth in blue and will be updated upon revision.

is larger over the eastern equatorial Pacific during late bo-
real spring (the climatological warm season of the equatorial
Pacific) compared to boreal autumn (the cold season), but
the season of strongest warming is model-dependent. For ex-
ample, GFDL-CM3 has the largest eastern equatorial Pacific
warming in boreal summer, while CESM1-LE has the largest
warming in boreal fall and winter.

The time evolution of tropical Pacific SST gradient
changes is investigated by considering the SST difference be-
tween the eastern and western equatorial Pacific (Fig. 7). A
decrease in this gradient indicates stronger warming in the
eastern Pacific, i.e., El Niño-like warming (red in Fig. 7),
while a strengthening of the gradient corresponds to La Niña-
like warming (blue in Fig. 7). We find El Niño-like warm-
ing in most models, which is evident in the MEM. This is,
however, not the case for CSIRO-Mk36 and is seasonally de-
pendent for GFDL-CM3, GFDL-ESM2M, IPSL-CM5A-LR,
and MPI-GE. With the exception of CSIRO-Mk36, models
with a stronger climatological gradient tend to have stronger
El Niño-like warming (Fig. S3b), although the correlation be-
tween the gradient climatology and the gradient change is
not significant. The season during which projected changes
are strongest is again model-dependent, but SST gradient
changes are often concentrated in the season during which
the climatological SST gradient is strongest in the specific
model considered. The following section relates the pro-

jected changes in ENSO variability to the changes in the
tropical Pacific SST gradient to investigate whether these
changes are linked.

5 Relationship between ENSO variability and
mean-state changes

The projected change in ENSO SST variability is linearly
related to the projected change in the tropical Pacific SST
gradient across ensemble members from all models in the pe-
riod 2021–2050 (Fig. 8). This relationship breaks down in the
later period (2070–2099) for models that have large SST gra-
dient changes (e.g., CESM2-LE, CSIRO-Mk3.6, CanESM2).
In general, an ensemble member that experiences El Niño-
like warming is more likely to see an increase in ENSO vari-
ability, while a La Niña-like warming is associated with the
opposite response. While this does not occur for all ensemble
members, the larger the response in either the tropical Pacific
SST gradient or ENSO SST variability the more likely that a
concurrent change in the other variable will be seen.

We further investigate the relationship between changes in
ENSO SST variability and the change in the tropical Pacific
SST gradient by plotting the evolving relationship between
the two variables over time (Fig. 9). Many models have a
hook-shaped ensemble mean (forced) response that corre-
sponds to the following time-dependent response. First, there
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Figure 5. Change in ENSO SST variability taken as the ensemble
standard deviation in the Niño3.4 region for the period 2070–2099
as compared to 1951–1980. The grey lines are individual large en-
sembles, while the black line is the multi-ensemble mean and the
black dashed line is the multi-ensemble median. Red shading indi-
cates an increase in this metric, while blue indicates a decrease.

is an increase in ENSO SST variability concurrent with uni-
form warming across the Pacific (i.e., no change in tropical
Pacific SST gradient) or weak El Niño-like warming. Then
there is El Niño-like warming concurrent with a plateau in
ENSO SST variability. In some models, this is followed by
a decrease in ENSO SST variability as the mean state con-
tinues to warm in an El Niño-like fashion. This behavior
is seen in seven models (CESM1-LE, GFDL-SPEAR-MED,
MIROC6, MIROC-ES2L, CanESM5, CESM2-LE, IPSL-
CM6A-LR), with an additional four that demonstrate a por-
tion of the hook-shaped response (EC-EARTH3, ACCESS-
ESM1-6, CanESM2, MPI-GE). The three outliers are GFDL-
ESM2M, which exhibits an increase then a decrease in both
ENSO SST variability and the mean-state tropical Pacific
SST gradient, GFDL-CM3, which shows an increase then
a decrease in ENSO SST variability without much change
in the mean-state tropical Pacific SST gradient, and CSIRO-
Mk36, which has strong La Niña-like warming and an in-
crease in ENSO SST variability.

The time evolution of ENSO SST variability and the trop-
ical Pacific SST gradient (Fig. 9) provide context for the
results in Fig. 8. The internal variability relationship that
is the primary contribution to Fig. 8a clearly shows the
role of rectification in the mean state (e.g., Hayashi et al.,
2020), but for the forced changes this is only one of several
mechanisms at play, so the forced changes can depart from
this linear relationship (Figs. 8b and 9). The observational
changes between 1951–1980 and 1990–2019 also show a no-
table departure from this linear relationship, with a strong La
Niña-like mean-state trend together with a weak increase in
Niño3.4 variance (Fig. 9). The multi-decadal La Niña-like
mean-state change in observations is near the edge of what
could result from the internal variability found in models (z
score=−1.88), suggesting that this mean state is likely par-
tially forced (see Seager et al., 2022; Wills et al., 2022). Our
results highlight the value of using SMILEs to analyze the

time-dependent response of the tropical Pacific in climate
models. We additionally note that the individual ensemble
member spread is much larger for ENSO SST variability pro-
jections than the tropical Pacific SST gradient (Fig. 9). This
means that more ensemble members are needed to retrieve
the forced change in ENSO SST variability under warming
(as well as higher-order moments of other Earth system vari-
ables; Rodgers et al., 2021), but somewhat fewer are needed
to isolate the forced change in the tropical Pacific SST gradi-
ent (e.g., Wills et al., 2020; Rodgers et al., 2021).

6 A single-forcing perspective

Using two SMILEs (CanESM5 and MIROC6) that have
single-forcing simulations available, we separate the con-
tribution of aerosols, greenhouse gases, and natural forcing
to historical changes in both ENSO SST variability and the
tropical Pacific SST gradient (Fig. 10). Both models have
forced increases in ENSO variability over this time period
(1985–2014 compared to 1951–1980), although this is not
evident in all ensemble members. This increase is consis-
tent with observations and is driven by anthropogenic forc-
ing (greenhouse gases and aerosols), not natural forcing. The
larger ensemble (MIROC6) has strong variability across en-
semble members in the natural forcing ensemble, with large
increases or decreases observed in a single realization (or ob-
servations) due to this variability alone. This indicates that
ENSO SST variability changes have not yet emerged from
internal variability, consistent with previous work (e.g., Ying
et al., 2022).

Over the historical period, the tropical Pacific SST gradi-
ent weakens in MIROC6 and does not change in CanESM5
in response to all forcings. This is a result of the combina-
tion of greenhouse gas and aerosol forcings, which generally
oppose each other (Fig. 10). Specifically, greenhouse gases
act to weaken the gradient in both models, while aerosols
strengthen the gradient in CanESM2 and have a minimal ef-
fect in MIROC6. The observed change in the tropical Pacific
SST gradient sits right at the edge of the ensemble spread
in the all-forcing historical scenario. This suggests that the
observed gradient could be due to internal variability; how-
ever, it would be an extreme event. Differences between these
models and observations could also be due to an incorrect
model response to external forcing.

7 Discussion

While the MEM change in ENSO SST variability in this
study compares well with previous literature, the SMILEs
add information by allowing for the isolation of the time-
dependent ENSO response in individual models. In most
models, although not all, ENSO amplitude is projected to in-
crease, in agreement with Cai et al. (2018, 2022) and Fredrik-
sen et al. (2020). However, while previous work used the dif-
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Figure 6. Longitude–time sections of the ensemble mean linear trend of SST over the equatorial Pacific (5◦ S–5◦ N) during 2015–2099
normalized by the global mean SST trend. The bottom right panel shows the multi-ensemble mean climatological seasonal cycle of SST in
the equatorial Pacific over 2015–2044. Vertical black lines delineate the averaging regions used in Figs. 7–10, with the solid lines indicating
the western Pacific region and the dashed lines indicating the eastern Pacific region.

ferences between long time periods (i.e., 2000–2099 com-
pared to 1900–1999) to isolate the projected change, we
leveraged SMILEs to separate the time-dependent response
of ENSO amplitude to external forcing from internal vari-
ability. Individual SMILEs have a range of projected evolu-
tions of ENSO amplitude that are not linear in time. Addi-
tionally, in CESM2-LE, GFDL-CM3, and GFDL-ESM2M
ENSO amplitude first increases, then decreases. In these
models, the response captured using long time averaging is
dependent on the specific period used. Here, SMILEs add
value as an important new tool to fully capture the time-
dependent ENSO variability projections.

The spatial pattern of projected changes in ENSO variabil-
ity also differs between models. In the MEM, we find a gen-
eral shift toward more variability in the central Pacific. How-
ever, the individual model patterns that make up the MEM
are diverse, and more work is needed to understand the model
differences that we find. The MEM increase in the central
Pacific variability is also clear in the MEM composite of El
Niño event evolution. Additionally, La Niña events appear
to strengthen in the MEM more than El Niño events, high-
lighting nonlinear behavior. In general, for both pattern and
event evolution changes, the individual model responses are
similar between the two time periods considered (2021–2050
and 2070–2099), albeit smaller in magnitude for the earlier
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Figure 7. Tropical Pacific SST gradient climatology and mean-state changes, taken as the ensemble mean difference between the eastern
equatorial Pacific (90–150◦W, 5◦ S–5◦ N) and the western equatorial Pacific (120–180◦ E, 5◦ S–5◦ N) for each large ensemble and the
multi-ensemble mean (see Fig. 6 for region outlines). Black lines show the climatology in 1951–1980, shading shows the 5-year running-
mean anomalies with respect to 1951–1980, and red lines show the climatology in 2070–2099. Black dashed lines show the observational
climatology based on ERSST5 in the period 1951–1980. Red anomalies show El Niño-like changes, and blue anomalies show La Niña-like
changes.

period. However, this is not true for all models, with CESM2-
LE a clear outlier showing opposite changes in the earlier and
later periods. Model differences could be related to different
climatological biases, different patterns of transient mean-
state warming, and different ENSO feedbacks and dynamics
(e.g., Bellenger et al., 2014; Capotondi et al., 2015; Planton
et al., 2021; Wills et al., 2022), with additional work needed
to diagnose why individual models behave the way they do.

We find that the seasonal synchronization of ENSO SST
variability increases in most models investigated in this
study. This manifests in an increase in ENSO SST variability
in boreal fall and winter and a decrease in spring and early
summer. These changes have implications for understand-
ing ENSO’s intrinsic dynamics (e.g., Stuecker et al., 2013;
Stein et al., 2014; Chen and Jin, 2022), changes to remote
ENSO impacts (e.g., potentially amplifying the ENSO im-
pact in one season for a given region and reducing it in a dif-

ferent season), and potential changes to ENSO predictabil-
ity (e.g., Balmaseda et al., 1995; Timmermann et al., 2018).
Thus, changes in variability should be assessed seasonally
and not by using annual averages. We note that determining
the dynamical cause for the increased ENSO seasonal syn-
chronization in most of the models will require a detailed
ENSO feedback analysis (e.g., Chen and Jin, 2022), includ-
ing assessing potential future changes in the southward wind
shift mechanism (e.g., McGregor et al., 2012; Stuecker et al.,
2013).

The tropical Pacific SST gradient response also agrees
with previous work showing an El Niño-like warming in
most models and the MEM (e.g., Kociuba and Power, 2015;
Fredriksen et al., 2020; Lian et al., 2018; Cai et al., 2021).
However, again the individual model responses that go into
the MEM are diverse, with the warming varying both season-
ally and longitudinally. In general, the season of strongest
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Figure 8. Time differences of the Niño3.4 standard deviation (y
axis) and the difference in SST between the eastern and west-
ern equatorial Pacific (defined as in Fig. 7; x axis) for each en-
semble member of the 14 SMILEs, indicated by colored symbols.
(a) Difference between 2021–2050 and 1951–1980; (b) difference
between 2071–2099 and 1951–1980. Niño3.4 time series are de-
trended by subtraction of the time-varying ensemble mean prior to
computation of the standard deviation.

SST gradient weakens the most; however, this is again not
consistent across all models. In most models, weakening of
the SST gradient intensifies in the second half of the 20th
century, consistent with a weakening of the Walker circula-
tion gradually overwhelming the ocean thermostat mecha-
nism (Heede et al., 2020; Heede and Fedorov, 2021).

Similar to the previous hypotheses, we find a link between
the projected tropical Pacific SST gradient and the change
in ENSO SST variability (DiNezio et al., 2012; Beobide-
Arsuaga et al., 2021; Fredriksen et al., 2020; Hayashi et al.,
2020; Wyman et al., 2020; Capotondi and Sardeshmukh,
2017; Rodgers et al., 2004; Ogata et al., 2013; Choi et al.,
2013). However, the SMILEs provide a much clearer pic-
ture of the time evolution of anomalies. We find a large sub-
set of models that have an increase in ENSO SST variabil-
ity that precedes the mean-state change, with ENSO SST
variability plateauing, and in some models decreasing as the
mean state warms in an El Niño-like fashion. This result be-
gins to conceptually link together previous work that found
an increase in ENSO SST variability over the coming cen-
tury (e.g., Cai et al., 2022) and a decrease in the longer-

term equilibrated state (e.g., Callahan et al., 2021). The in-
dividual model responses may also put into context a recent
high-resolution study (Wengel et al., 2021) that finds a de-
crease in ENSO SST variability and argues that CMIP-class
models cannot capture all aspects of ENSO ocean dynam-
ics correctly, leading to a potentially incorrect projected in-
crease in ENSO SST variability. Based on our study, their
model could be capturing a longer-term decrease in ENSO
SST variability due to the strong forcing used (4×CO2).
Alternatively, we do find CMIP-class SMILEs that show a
decrease in ENSO SST variability, highlighting the need to
use multiple models for robustness. Based on these results,
high-resolution modeling studies that use multiple models
are needed to reconcile projections and determine the robust-
ness of the higher-resolution result compared to standard-
resolution CMIP-class models.

In the two models that have single-forcing SMILE exper-
iments, greenhouse gas and aerosol forcings contribute to a
historical increase in ENSO SST variability. While one might
expect aerosol forcing to have the opposite effect of green-
house gas increases, aerosols are hemispherically asymmet-
ric unlike greenhouse gas forcing, leading to shifts in the In-
tertropical Convergence Zone that can also influence ENSO
(Kang et al., 2020; Pausata et al., 2020). In contrast, green-
house gas and aerosol forcings have competing influences on
historical trends in the tropical Pacific SST gradient. The ob-
served change in the tropical Pacific SST gradient sits right
at the edge of all ensemble members of the all-forcing histor-
ical scenario (consistent with McGregor et al., 2014; Seager
et al., 2019, 2022; Wills et al., 2022). This suggests that the
modeled SST gradient response to greenhouse gas forcing
could be too strong or incorrect, the modeled SST gradient
response to aerosol forcing could be too weak, the observed
change could be an extreme event caused by internal vari-
ability, the modeled internal variability could be too small,
or some combination of the above. Further investigation is
needed as more single-forcing ensembles are released to de-
termine the relative roles of these possibilities.

8 Summary and conclusions

In this study we highlight the value of SMILEs for inves-
tigating ENSO projections. SMILEs allow the isolation of
the time-dependent response of ENSO SST variability to in-
creasing greenhouse gases. By using SMILEs we can better
understand projected changes in ENSO variability and the
tropical Pacific SST gradient and isolate inter-model differ-
ences in their response to anthropogenic forcing.

Our results show the following.

1. ENSO SST projections

a. Projections of ENSO amplitude are not linear in
time.
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Figure 9. Time evolution of the 30-year running-mean DJF tropical Pacific SST gradient (defined as in Fig. 7; x axis) and 30-year running
standard deviation of DJF Niño3.4 variance (y axis) in each SMILE. Symbols with black edges show the ensemble mean for overlapping 30-
year periods every 15 years between 1850 and 2100, with the center year of the averaging period computed as indicated by the fill color. The
30-year running-mean DJF tropical Pacific SST gradient and 30-year running standard deviation of DJF Niño3.4 in each ensemble member
is shown for the first and last averaging periods (symbols without black edges). The observational values for ERSST5 during the period
1951–1980 and 1990–2019 are shown with light blue and light green stars, respectively. The internal variability in each quantity expected
in a single 30-year period, estimated from the multi-model mean of the ensemble mean variance in each quantity, is depicted with a 95 %
confidence interval behind the light blue star in the bottom right panel.

b. Models differ in their projections of the pattern and
time evolution of ENSO SST variability and El
Niño and La Niña event evolution.

c. The MEM projects an increase in ENSO SST vari-
ability, with more variability particularly in the cen-
tral Pacific.

d. The seasonality of ENSO SST variability increases.
ENSO SST variability increases in boreal fall and
winter with a decrease in spring and early summer.
This is qualitatively consistent across all models.

2. Mean-state projections

a. Most models project El Niño-like warming, al-
though some models project the opposite.

b. Individual models are different in their longitude
and season of maximum warming in the tropical
Pacific.

3. Relationship between ENSO SST variability and the
tropical Pacific SST gradient

a. When considering individual ensemble members,
tropical Pacific SST gradient changes are linearly
related to changes in ENSO SST variability in most
models.

b. This response is time-dependent. In many, but not
all, models ENSO variability first increases, and
then the tropical Pacific SST gradient weakens as
ENSO variability plateaus or decreases.

4. A single-forcing perspective
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Figure 10. Change in the Niño 3.4 index standard deviation and tropical Pacific SST gradient in DJF in the two available single-forcing
ensembles. (a) Change in the Niño3.4 index standard deviation over the second half of the 20th century (1985–2014 minus 1951–1980).
Individual ensemble members from CanESM5 (squares), MIROC6 (triangles), and the combination of the two ensembles (circles) are shown
with open symbols. The average change is shown with a filled marker. Observed changes (ERSSTv5) are shown by the dashed black line.
(b) Change in the tropical Pacific SST gradient (the difference in SST between the eastern and western equatorial Pacific; defined as in Fig. 7;
x axis) over the same time period. We use the same visual conventions. Note that the sum of individual forcings may not add up to the “all
forcings” scenario, particularly in relatively small ensembles.

a. Increases in ENSO SST variability in the two
single-forced SMILEs result from anthropogenic
(aerosol and greenhouse gas) forcing.

b. More single-forced SMILEs are needed to under-
stand the tropical Pacific SST gradient change.

These results present an extensive picture of future
changes in ENSO in 14 SMILEs. The use of SMILEs means
that the diverse responses across models can be truly at-
tributed to model differences, rather than including contri-
butions from internal variability. These diverse responses
demonstrate a need for further investigation into the pro-
cesses causing model differences in ENSO projections and
provide a baseline for future research. Additionally, our re-
sults highlight time-dependent behavior including nonlinear
changes in ENSO SST variability and changes in the tropi-
cal Pacific SST gradient that intensify near the end of the 21st
century. This has important implications for ENSO’s telecon-
nections and impacts, as a nonlinear change in ENSO SST
variability likely has nonlinear time-dependent changes in its

impacts as well. Our results may also help to reconcile pre-
vious work that suggests a transient increase in ENSO SST
variability, but a long-term equilibrated decrease, by isolat-
ing the time-dependent behavior of ENSO SST variability
projections. While many models agree on the trajectory of
projected changes, not all models behave the same way. This
highlights the need for further research on the mechanisms of
inter-model differences in ENSO projections. There is a rich
diversity of future ENSO changes projected by climate mod-
els, and more work is needed to understand which aspects of
these projections are robust.
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Data availability. Large ensemble data are available as follows.

– CanESM2, CESM1-LE, CSIRO-Mk36 and GFDL-CM3 are
available from the multi-model large ensemble archive at https:
//www.cesm.ucar.edu/projects/community-projects/MMLEA/
(Multi-Model Large Ensemble Archive, 2023).

– ACCESS-ESM1-5, CanESM5, EC-EARTH3, IPSL-CM6-LR,
MIROC6 and MIROC-ES2L are available from the CMIP6
archive at https://esgf-node.llnl.gov/projects/cmip6/ (ESGF,
2014). In this study, CMIP6 data were obtained from the
CMIP6 next-generation archive at ETH Zurich (Brunner et al.,
2020).

– CESM2-LE is available at https://www.cesm.ucar.edu/
projects/community-projects/LENS2/ (CESM2 Large Ensem-
ble Community Project, 2023).

– GFDL-SPEAR-MED is available at https://www.gfdl.noaa.
gov/spear_large_ensembles/ (GFDL SPEAR Large Ensem-
bles, 2023).

– GFDL-ESM2M data were provided by Thomas Frölicher at the
University of Bern.

– MPI-GE is available at https://esgf-data.dkrz.de/projects/
mpi-ge/ (Max-Planck-Institut für Meteorologie, 2023).

Supplement. The supplement related to this article is available
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