Articles | Volume 13, issue 3
https://doi.org/10.5194/esd-13-1197-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-13-1197-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Present and future European heat wave magnitudes: climatologies, trends, and their associated uncertainties in GCM-RCM model chains
Rossby Centre, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
Regional Climate Group, Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
Erik Kjellström
Rossby Centre, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
Department of Meteorology and the Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Renate Anna Irma Wilcke
Rossby Centre, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
Deliang Chen
Regional Climate Group, Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
Related authors
Renate Anna Irma Wilcke, Erik Kjellström, Changgui Lin, Daniela Matei, Anders Moberg, and Evangelos Tyrlis
Earth Syst. Dynam., 11, 1107–1121, https://doi.org/10.5194/esd-11-1107-2020, https://doi.org/10.5194/esd-11-1107-2020, 2020
Short summary
Short summary
Two long-lasting high-pressure systems in summer 2018 led to heat waves over Scandinavia and an extended summer period with devastating impacts on both agriculture and human life. Using five climate model ensembles, the unique 263-year Stockholm temperature time series and a composite 150-year time series for the whole of Sweden, we found that anthropogenic climate change has strongly increased the probability of a warm summer, such as the one observed in 2018, occurring in Sweden.
Abhay Devasthale, Sandra Andersson, Erik Engström, Frank Kaspar, Jörg Trentmann, Anke Duguay-Tetzlaff, Jan Fokke Meirink, Erik Kjellström, Tomas Landelius, Manu Anna Thomas, and Karl-Göran Karlsson
Earth Syst. Dynam., 16, 1169–1182, https://doi.org/10.5194/esd-16-1169-2025, https://doi.org/10.5194/esd-16-1169-2025, 2025
Short summary
Short summary
By compositing trends in multiple climate variables, this study presents emerging regimes that are relevant for solar energy applications. It is shown that the favourable conditions for exploiting solar energy are emerging during spring and early summer. The study also underscores the increasingly important role of clouds in regulating surface solar radiation as the aerosol concentrations are decreasing over Europe and the societal value of satellite-based climate monitoring.
Gustav Strandberg, August Thomasson, Lars Bärring, Erik Kjellström, Michael Sahlin, Renate Wilcke, and Grigory Nikulin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2002, https://doi.org/10.5194/egusphere-2025-2002, 2025
Short summary
Short summary
The need for information about climate change is ever increasing. Therefore, it is important to have knowledge about climate change, along with an understanding of the uncertainties of climate model ensembles. Here, climate change in Sweden and neighbouring countries and its relation to global warming is described. Global warming results in higher temperature, more warm days and fewer cold days. The local and global warming suggest that climate change in Sweden may currently be at its fastest.
Cheng Shen, Hui-Shuang Yuan, Zhi-Bo Li, Jinling Piao, Youli Chang, and Deliang Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1156, https://doi.org/10.5194/egusphere-2025-1156, 2025
Short summary
Short summary
Near-surface wind speed affects air quality, water cycles, and wind energy, but its future changes in South Asia remain uncertain. This study explores how internal climate variability, particularly the Interdecadal Pacific Oscillation, affects wind speed trends in the region. Using advanced climate simulations, we show that accounting for this variability reduces uncertainty in future projections. Our findings can improve climate adaptation strategies and wind energy planning.
Zhi-Bo Li, Chao Liu, Cesar Azorin-Molina, Soon-Il An, Yang Zhao, Yang Xu, Jongsoo Shin, Deliang Chen, and Cheng Shen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1377, https://doi.org/10.5194/egusphere-2025-1377, 2025
Short summary
Short summary
Our research explores how European wind speeds respond to the removal of carbon dioxide from the atmosphere, focusing on their importance for wind energy. Using advanced climate models, we discovered that wind speeds react differently during periods of increased and decreased carbon dioxide levels. This study not only advances our understanding of climate dynamics but also aids in optimizing strategies for wind energy, crucial for future planning and policy-making in response to climate change.
Peter Berg, Thomas Bosshard, Denica Bozhinova, Lars Bärring, Joakim Löw, Carolina Nilsson, Gustav Strandberg, Johan Södling, Johan Thuresson, Renate Wilcke, and Wei Yang
Geosci. Model Dev., 17, 8173–8179, https://doi.org/10.5194/gmd-17-8173-2024, https://doi.org/10.5194/gmd-17-8173-2024, 2024
Short summary
Short summary
When bias adjusting climate model data using quantile mapping, one needs to prescribe what to do at the tails of the distribution, where a larger data range is likely encountered outside of the calibration period. The end result is highly dependent on the method used. We show that, to avoid discontinuities in the time series, one needs to exclude data in the calibration range to also activate the extrapolation functionality in that time period.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
He Sun, Tandong Yao, Fengge Su, Wei Yang, and Deliang Chen
Hydrol. Earth Syst. Sci., 28, 4361–4381, https://doi.org/10.5194/hess-28-4361-2024, https://doi.org/10.5194/hess-28-4361-2024, 2024
Short summary
Short summary
Our findings show that runoff in the Yarlung Zangbo (YZ) basin is primarily driven by rainfall, with the largest glacier runoff contribution in the downstream sub-basin. Annual runoff increased in the upper stream but decreased downstream due to varying precipitation patterns. It is expected to rise throughout the 21st century, mainly driven by increased rainfall.
Erik Holmgren and Erik Kjellström
Nat. Hazards Earth Syst. Sci., 24, 2875–2893, https://doi.org/10.5194/nhess-24-2875-2024, https://doi.org/10.5194/nhess-24-2875-2024, 2024
Short summary
Short summary
Associating extreme weather events with changes in the climate remains difficult. We have explored two ways these relationships can be investigated: one using a more common method and one relying solely on long-running records of meteorological observations.
Our results show that while both methods lead to similar conclusions for two recent weather events in Sweden, the commonly used method risks underestimating the strength of the connection between the event and changes to the climate.
Zengyun Hu, Xi Chen, Deliang Chen, Zhuo Zhang, Qiming Zhou, and Qingxiang Li
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-82, https://doi.org/10.5194/gmd-2024-82, 2024
Preprint withdrawn
Short summary
Short summary
ERC firstly unified the evaluating, ranking, and clustering by a simple mathematic equation based on Euclidean Distance. It provides new system to solve the evaluating, ranking, and clustering tasks in SDGs. In fact, ERC system can be applied in any scientific domain.
Qian Lin, Jie Chen, and Deliang Chen
EGUsphere, https://doi.org/10.5194/egusphere-2024-826, https://doi.org/10.5194/egusphere-2024-826, 2024
Preprint archived
Short summary
Short summary
Glaciers of the Tibetan Plateau (TP) have experienced widespread retreat in recent decades, but impacts of glacier changes that have occurred on regional climate, including precipitation, is still unknown. Thus, this study addressed this knowledge gap, and found that glacier changes exert a more pronounced impact on summer extreme precipitation events than mean precipitation over the TP. This provides a certain theoretical reference for the further improvement of long-term glacier projection.
Fredrik Lagergren, Robert G. Björk, Camilla Andersson, Danijel Belušić, Mats P. Björkman, Erik Kjellström, Petter Lind, David Lindstedt, Tinja Olenius, Håkan Pleijel, Gunhild Rosqvist, and Paul A. Miller
Biogeosciences, 21, 1093–1116, https://doi.org/10.5194/bg-21-1093-2024, https://doi.org/10.5194/bg-21-1093-2024, 2024
Short summary
Short summary
The Fennoscandian boreal and mountain regions harbour a wide range of ecosystems sensitive to climate change. A new, highly resolved high-emission climate scenario enabled modelling of the vegetation development in this region at high resolution for the 21st century. The results show dramatic south to north and low- to high-altitude shifts of vegetation zones, especially for the open tundra environments, which will have large implications for nature conservation, reindeer husbandry and forestry.
Fangzhong Shi, Xiaoyan Li, Shaojie Zhao, Yujun Ma, Junqi Wei, Qiwen Liao, and Deliang Chen
Hydrol. Earth Syst. Sci., 28, 163–178, https://doi.org/10.5194/hess-28-163-2024, https://doi.org/10.5194/hess-28-163-2024, 2024
Short summary
Short summary
(1) Evaporation under ice-free and sublimation under ice-covered conditions and its influencing factors were first quantified based on 6 years of eddy covariance observations. (2) Night evaporation of Qinghai Lake accounts for more than 40 % of the daily evaporation. (3) Lake ice sublimation reaches 175.22 ± 45.98 mm, accounting for 23 % of the annual evaporation. (4) Wind speed weakening may have resulted in a 7.56 % decrease in lake evaporation during the ice-covered period from 2003 to 2017.
Gustav Strandberg, Jie Chen, Ralph Fyfe, Erik Kjellström, Johan Lindström, Anneli Poska, Qiong Zhang, and Marie-José Gaillard
Clim. Past, 19, 1507–1530, https://doi.org/10.5194/cp-19-1507-2023, https://doi.org/10.5194/cp-19-1507-2023, 2023
Short summary
Short summary
The impact of land use and land cover change (LULCC) on the climate around 2500 years ago is studied using reconstructions and models. The results suggest that LULCC impacted the climate in parts of Europe. Reconstructed LULCC shows up to 1.5 °C higher temperature in parts of Europe in some seasons. This relatively strong response implies that anthropogenic LULCC that had occurred by the late prehistoric period may have already affected the European climate by 2500 years ago.
John Erik Engström, Lennart Wern, Sverker Hellström, Erik Kjellström, Chunlüe Zhou, Deliang Chen, and Cesar Azorin-Molina
Earth Syst. Sci. Data, 15, 2259–2277, https://doi.org/10.5194/essd-15-2259-2023, https://doi.org/10.5194/essd-15-2259-2023, 2023
Short summary
Short summary
Newly digitized wind speed observations provide data from the time period from around 1920 to the present, enveloping one full century of wind measurements. The results of this work enable the investigation of the historical variability and trends in surface wind speed in Sweden for
the last century.
He Sun, Tandong Yao, Fengge Su, Wei Yang, Guifeng Huang, and Deliang Chen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-16, https://doi.org/10.5194/hess-2023-16, 2023
Manuscript not accepted for further review
Short summary
Short summary
Based on field research campaigns since 2017 in the Yarlung Zangbo (YZ) river basin and a well-validated model, our results reveal that large regional differences in runoff regimes and changes exist in the basin. Annual runoff shows decreasing trend in the downstream sub-basin but increasing trends in the upper and middle sub-basins, due to opposing precipitation changes. Glacier runoff plays more important role in annual total runoff in downstream basin.
Eva Sebok, Hans Jørgen Henriksen, Ernesto Pastén-Zapata, Peter Berg, Guillaume Thirel, Anthony Lemoine, Andrea Lira-Loarca, Christiana Photiadou, Rafael Pimentel, Paul Royer-Gaspard, Erik Kjellström, Jens Hesselbjerg Christensen, Jean Philippe Vidal, Philippe Lucas-Picher, Markus G. Donat, Giovanni Besio, María José Polo, Simon Stisen, Yvan Caballero, Ilias G. Pechlivanidis, Lars Troldborg, and Jens Christian Refsgaard
Hydrol. Earth Syst. Sci., 26, 5605–5625, https://doi.org/10.5194/hess-26-5605-2022, https://doi.org/10.5194/hess-26-5605-2022, 2022
Short summary
Short summary
Hydrological models projecting the impact of changing climate carry a lot of uncertainty. Thus, these models usually have a multitude of simulations using different future climate data. This study used the subjective opinion of experts to assess which climate and hydrological models are the most likely to correctly predict climate impacts, thereby easing the computational burden. The experts could select more likely hydrological models, while the climate models were deemed equally probable.
Chenhao Chai, Lei Wang, Deliang Chen, Jing Zhou, Hu Liu, Jingtian Zhang, Yuanwei Wang, Tao Chen, and Ruishun Liu
Hydrol. Earth Syst. Sci., 26, 4657–4683, https://doi.org/10.5194/hess-26-4657-2022, https://doi.org/10.5194/hess-26-4657-2022, 2022
Short summary
Short summary
This work quantifies future snow changes and their impacts on hydrology in the upper Salween River (USR) under SSP126 and SSP585 using a cryosphere–hydrology model. Future warm–wet climate is not conducive to the development of snow. The rain–snow-dominated pattern of runoff will shift to a rain-dominated pattern after the 2040s under SSP585 but is unchanged under SSP126. The findings improve our understanding of cryosphere–hydrology processes and can assist water resource management in the USR.
Chunlüe Zhou, Cesar Azorin-Molina, Erik Engström, Lorenzo Minola, Lennart Wern, Sverker Hellström, Jessika Lönn, and Deliang Chen
Earth Syst. Sci. Data, 14, 2167–2177, https://doi.org/10.5194/essd-14-2167-2022, https://doi.org/10.5194/essd-14-2167-2022, 2022
Short summary
Short summary
To fill the key gap of short availability and inhomogeneity of wind speed (WS) in Sweden, we rescued the early paper records of WS since 1925 and built the first 10-member centennial homogenized WS dataset (HomogWS-se) for community use. An initial WS stilling and recovery before the 1990s was observed, and a strong link with North Atlantic Oscillation was found. HomogWS-se improves our knowledge of uncertainty and causes of historical WS changes.
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
Erika Médus, Emma D. Thomassen, Danijel Belušić, Petter Lind, Peter Berg, Jens H. Christensen, Ole B. Christensen, Andreas Dobler, Erik Kjellström, Jonas Olsson, and Wei Yang
Nat. Hazards Earth Syst. Sci., 22, 693–711, https://doi.org/10.5194/nhess-22-693-2022, https://doi.org/10.5194/nhess-22-693-2022, 2022
Short summary
Short summary
We evaluate the skill of a regional climate model, HARMONIE-Climate, to capture the present-day characteristics of heavy precipitation in the Nordic region and investigate the added value provided by a convection-permitting model version. The higher model resolution improves the representation of hourly heavy- and extreme-precipitation events and their diurnal cycle. The results indicate the benefits of convection-permitting models for constructing climate change projections over the region.
Anna Rutgersson, Erik Kjellström, Jari Haapala, Martin Stendel, Irina Danilovich, Martin Drews, Kirsti Jylhä, Pentti Kujala, Xiaoli Guo Larsén, Kirsten Halsnæs, Ilari Lehtonen, Anna Luomaranta, Erik Nilsson, Taru Olsson, Jani Särkkä, Laura Tuomi, and Norbert Wasmund
Earth Syst. Dynam., 13, 251–301, https://doi.org/10.5194/esd-13-251-2022, https://doi.org/10.5194/esd-13-251-2022, 2022
Short summary
Short summary
A natural hazard is a naturally occurring extreme event with a negative effect on people, society, or the environment; major events in the study area include wind storms, extreme waves, high and low sea level, ice ridging, heavy precipitation, sea-effect snowfall, river floods, heat waves, ice seasons, and drought. In the future, an increase in sea level, extreme precipitation, heat waves, and phytoplankton blooms is expected, and a decrease in cold spells and severe ice winters is anticipated.
H. E. Markus Meier, Christian Dieterich, Matthias Gröger, Cyril Dutheil, Florian Börgel, Kseniia Safonova, Ole B. Christensen, and Erik Kjellström
Earth Syst. Dynam., 13, 159–199, https://doi.org/10.5194/esd-13-159-2022, https://doi.org/10.5194/esd-13-159-2022, 2022
Short summary
Short summary
In addition to environmental pressures such as eutrophication, overfishing and contaminants, climate change is believed to have an important impact on the marine environment in the future, and marine management should consider the related risks. Hence, we have compared and assessed available scenario simulations for the Baltic Sea and found considerable uncertainties of the projections caused by the underlying assumptions and model biases, in particular for the water and biogeochemical cycles.
Ole Bøssing Christensen, Erik Kjellström, Christian Dieterich, Matthias Gröger, and Hans Eberhard Markus Meier
Earth Syst. Dynam., 13, 133–157, https://doi.org/10.5194/esd-13-133-2022, https://doi.org/10.5194/esd-13-133-2022, 2022
Short summary
Short summary
The Baltic Sea Region is very sensitive to climate change, whose impacts could easily exacerbate biodiversity stress from society and eutrophication of the Baltic Sea. Therefore, there has been a focus on estimations of future climate change and its impacts in recent research. Models show a strong warming, in particular in the north in winter. Precipitation is projected to increase in the whole region apart from the south during summer. New results improve estimates of future climate change.
Xiangde Xu, Chan Sun, Deliang Chen, Tianliang Zhao, Jianjun Xu, Shengjun Zhang, Juan Li, Bin Chen, Yang Zhao, Hongxiong Xu, Lili Dong, Xiaoyun Sun, and Yan Zhu
Atmos. Chem. Phys., 22, 1149–1157, https://doi.org/10.5194/acp-22-1149-2022, https://doi.org/10.5194/acp-22-1149-2022, 2022
Short summary
Short summary
A vertical transport window of tropospheric vapor exists on the Tibetan Plateau (TP). The TP's thermal forcing drives the vertical transport
windowof vapor in the troposphere. The effects of the TP's vertical transport window of vapor are of importance in global climate change.
Marcus Reckermann, Anders Omstedt, Tarmo Soomere, Juris Aigars, Naveed Akhtar, Magdalena Bełdowska, Jacek Bełdowski, Tom Cronin, Michał Czub, Margit Eero, Kari Petri Hyytiäinen, Jukka-Pekka Jalkanen, Anders Kiessling, Erik Kjellström, Karol Kuliński, Xiaoli Guo Larsén, Michelle McCrackin, H. E. Markus Meier, Sonja Oberbeckmann, Kevin Parnell, Cristian Pons-Seres de Brauwer, Anneli Poska, Jarkko Saarinen, Beata Szymczycha, Emma Undeman, Anders Wörman, and Eduardo Zorita
Earth Syst. Dynam., 13, 1–80, https://doi.org/10.5194/esd-13-1-2022, https://doi.org/10.5194/esd-13-1-2022, 2022
Short summary
Short summary
As part of the Baltic Earth Assessment Reports (BEAR), we present an inventory and discussion of different human-induced factors and processes affecting the environment of the Baltic Sea region and their interrelations. Some are naturally occurring and modified by human activities, others are completely human-induced, and they are all interrelated to different degrees. The findings from this study can largely be transferred to other comparable marginal and coastal seas in the world.
Renate Anna Irma Wilcke, Erik Kjellström, Changgui Lin, Daniela Matei, Anders Moberg, and Evangelos Tyrlis
Earth Syst. Dynam., 11, 1107–1121, https://doi.org/10.5194/esd-11-1107-2020, https://doi.org/10.5194/esd-11-1107-2020, 2020
Short summary
Short summary
Two long-lasting high-pressure systems in summer 2018 led to heat waves over Scandinavia and an extended summer period with devastating impacts on both agriculture and human life. Using five climate model ensembles, the unique 263-year Stockholm temperature time series and a composite 150-year time series for the whole of Sweden, we found that anthropogenic climate change has strongly increased the probability of a warm summer, such as the one observed in 2018, occurring in Sweden.
Cited articles
Åström, C., Bjelkmar, P., and Forsberg, B.: Attributing summer
mortality to heat during 2018 heatwave in Sweden, Environmental
Epidemiology, 3, 16–17, https://doi.org/10.1097/01.EE9.0000605788.56297.b5, 2019. a
Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R. M., and
García-Herrera, R.: The hot summer of 2010: redrawing the temperature
record map of Europe, Science, 332, 220–224,
https://doi.org/10.1126/science.1201224, 2011. a
Benestad, R. E., Chen, D., and Hanssen-Bauer, I.: Empirical-statistical
downscaling, World Scientific Publishing Company, ISBN 978-981-3107-29-8, https://doi.org/10.1142/6908, 2008. a
Benestad, R. E., van Oort, B., Justino, F., Stordal, F., Parding, K. M., Mezghani, A., Erlandsen, H. B., Sillmann, J., and Pereira-Flores, M. E.: Downscaling probability of long heatwaves based on seasonal mean daily maximum temperatures, Adv. Stat. Clim. Meteorol. Oceanogr., 4, 37–52, https://doi.org/10.5194/ascmo-4-37-2018, 2018. a
Bieli, M., Pfahl, S., and Wernli, H.: A Lagrangian investigation of hot and
cold temperature extremes in Europe, Q. J. Roy.
Meteor. Soc., 141, 98–108, https://doi.org/10.1002/qj.2339, 2015. a
Ceccherini, G., Russo, S., Ameztoy, I., Marchese, A. F., and Carmona-Moreno, C.: Heat waves in Africa 1981–2015, observations and reanalysis, Nat. Hazards Earth Syst. Sci., 17, 115–125, https://doi.org/10.5194/nhess-17-115-2017, 2017. a
Coppola, E., Nogherotto, R., Ciarlò, J. M., Giorgi, F., van Meijgaard, E.,
Kadygrov, N., Iles, C., Corre, L., Sandstad, M., Somot, S., Nabat, P.,
Vautard, R., Levavasseur, G., Schwingshackl, C., Sillmann, J.,
Kjellström, E., Nikulin, G., Aalbers, E., Lenderink, G., Christensen,
O. B., Boberg, F., Sørland, S. L., Demory, M.-E., Bülow, K.,
Teichmann, C., Warrach-Sagi, K., and Wulfmeyer, V.: Assessment of the
European Climate Projections as Simulated by the Large EURO-CORDEX
Regional and Global Climate Model Ensemble, J. Geophys. Res.-Atmos., 126, e2019JD032356, https://doi.org/10.1029/2019JD032356, 2021. a, b
Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M., and Jones,
P. D.: An Ensemble Version of the E-OBS Temperature and Precipitation Data
Sets, J. Geophys. Res.-Atmos., 123, 9391–9409,
https://doi.org/10.1029/2017JD028200, 2018 (data available at: https://www.ecad.eu/, last access: 17 August 2022). a, b
Davini, P. and D'Andrea, F.: Northern Hemisphere Atmospheric Blocking
Representation in Global Climate Models: Twenty Years of Improvements?,
J. Climate, 29, 8823–8840, https://doi.org/10.1175/JCLI-D-16-0242.1, 2016. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and
Vitart, F.: The ERA-Interim reanalysis: Configuration and performance of
the data assimilation system, Q. J. Roy. Meteor.
Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011 (data available at: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim, last access: 17 August 2022). a, b
Di Luca, A., Argüeso, D., Evans, J. P., de Elía, R., and Laprise, R.:
Quantifying the overall added value of dynamical downscaling and the
contribution from different spatial scales, J. Geophys. Res.-Atmos., 121, 1575–1590, https://doi.org/10.1002/2015JD024009, 2016. a
Dosio, A., Mentaschi, L., Fischer, E. M., and Wyser, K.: Extreme heat waves
under 1.5 °C and
2 °C global warming, Environ. Res.
Lett., 13, 054006, https://doi.org/10.1088/1748-9326/aab827, 2018. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Giorgi, F., Jones, C., and Asrar, G. R.: Addressing climate information needs
at the regional level: the CORDEX framework, World Meteorological
Organization (WMO) Bulletin, 58, 175–183, 2009. a
Guo, Y., Gasparrini, A., Armstrong, B. G., Tawatsupa, B., Tobias, A., Lavigne,
E., de Sousa Zanotti Stagliorio Coelho, M., Pan, X., Kim, H., Hashizume, M.,
Honda, Y., Guo, Y.-L. L., Wu, C.-F., Zanobetti, A., Schwartz, J. D., Bell,
M. L., Scortichini, M., Michelozzi, P., Punnasiri, K., Li, S., Tian, L.,
Garcia, S. D. O., Seposo, X., Overcenco, A., Zeka, A., Goodman, P., Dang,
T. N., Dung, D. V., Mayvaneh, F., Saldiva, P. H. N., Williams, G., and Tong,
S.: Heat wave and mortality: a multicountry, multicommunity study,
Environ. Health Persp., 125, 087006, https://doi.org/10.1289/EHP1026,
2017. a
Hertig, E., Maraun, D., Bartholy, J., Pongracz, R., Vrac, M., Mares, I.,
Gutiérrez, J. M., Wibig, J., Casanueva, A., and Soares, P. M.: Comparison
of statistical downscaling methods with respect to extreme events over
Europe: Validation results from the perfect predictor experiment of the
COST Action VALUE, Int. J. Climatol., 39,
3846–3867, https://doi.org/10.1002/joc.5469, 2019. a
Horton, R. M., Mankin, J. S., Lesk, C., Coffel, E., and Raymond, C.: A review
of recent advances in research on extreme heat events, Current Climate Change
Reports, 2, 242–259, https://doi.org/10.1007/s40641-016-0042-x, 2016. a, b
IPCC: Part A: Global and Sectoral Aspects, in: Climate Change 2014:
Impacts, Adaptation, and Vulnerability. Working Group II
Contribution to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Field, C., Van
Aalst, M., Aalst, M., Adger, W., Arent, D., Barnett, J., Betts, R., Bilir,
E., Birkmann, J., Carmin, J., Chadee, D., Challinor, A., Chatterjee, M.,
Cramer, W., Davidson, D., Estrada, Y., Gattuso, J.-P., Hijioka, Y., Guldberg,
O., Huang, H.-Q., Insarov, G., Jones, R., Kovats, S., Lankao, P., Larsen, J.,
nigo Losada, I., Marengo, J., McLean, R., Mearns, L., Mechler, R., Morton,
J., Niang, I., Oki, T., Olwoch, J., Opondo, M., Poloczanska, E., Pörtner,
H.-O., Redsteer, M., Reisinger, A., Revi, A., Schmidt, D., Shaw, R., Solecki,
W., Stone, D., Stone, J., Strzepek, K., Suarez, A., Tschakert, P., Valentini,
R., Vicuna, S., Villamizar, A., Vincent, K., Warren, R., White, L., Wilbanks,
T., Wong, P., and Yoh, G., Cambridge University Press, Cambridge,
United Kingdom and New York, NY, USA, p. 1132, 2014. a
IPCC: Summary for Policymakers, in: Global Warming of 1.5 °C. An
IPCC Special Report on the impacts of global warming of
1.5 °C above pre-industrial levels and related global greenhouse
gas emission pathways, in the context of strengthening the global response to
the threat of climate change, sustainable development, and efforts to
eradicate poverty, edited by: Masson-Delmotte, V., Zhai, P., Pörtner,
H.-O., Roberts, D., Skea, J., Shukla, P., Pirani, A., Moufouma-Okia, W.,
Péan, C., Pidcock, R., Connors, S., Matthews, J., Chen, Y., Zhou, X.,
Gomis, M., Lonnoy, E., Maycock, T., Tignor, M., and Waterfield, T.,
World Meteorological Organization, Geneva, Switzerland, p. 32, 2018. a
IPCC: Summary for Policymakers, in: Climate Change 2022: Impacts,
Adaptation, and Vulnerability. Working Group II Contribution to
the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Pörtner, H.-O., Roberts, D., Poloczanska,
E., Mintenbeck, K., Tignor, M., Alegría, A., Craig, M., Langsdorf, S.,
Löschke, S., Möller, V., and Okem, A., Cambridge University
Press, Cambridge, United Kingdom and New York, NY, USA, p. 37, in press, 2022. a
Jacob, D., Bärring, L., Christensen, O. B., Christensen, J. H., de Castro,
M., Deque, M., Giorgi, F., Hagemann, S., Hirschi, M., Jones, R.,
Kjellström, E., Lenderink, G., Rockel, B., Sánchez, E., Schär,
C., Seneviratne, S. I., Somot, S., van Ulden, A., and van den Hurk, B.: An
inter-comparison of regional climate models for Europe: model performance
in present-day climate, Climatic Change, 81, 31–52,
https://doi.org/10.1007/s10584-006-9213-4, 2007. a
Jacob, D., Teichmann, C., Sobolowski, S., Katragkou, E., Anders, I., Belda, M.,
Benestad, R., Boberg, F., Buonomo, E., Cardoso, R. M., Casanueva, A.,
Christensen, O. B., Christensen, J. H., Coppola, E., Cruz, L. D., Davin,
E. L., Dobler, A., Domínguez, M., Fealy, R., Fernandez, J., Gaertner,
M. A., García-Díez, M., Giorgi, F., Gobiet, A., Goergen, K.,
Gómez-Navarro, J. J., Alemán, J. J. G., Gutiérrez, C.,
Gutiérrez, J. M., Güttler, I., Haensler, A., Halenka, T., Jerez, S.,
Jiménez-Guerrero, P., Jones, R. G., Keuler, K., Kjellström, E.,
Knist, S., Kotlarski, S., Maraun, D., van Meijgaard, E., Mercogliano, P.,
Montávez, J. P., Navarra, A., Nikulin, G., de Noblet-Ducoudré, N.,
Panitz, H.-J., Pfeifer, S., Piazza, M., Pichelli, E., Pietikäinen, J.-P.,
Prein, A. F., Preuschmann, S., Rechid, D., Rockel, B., Romera, R.,
Sánchez, E., Sieck, K., Soares, P. M. M., Somot, S., Srnec, L.,
Sørland, S. L., Termonia, P., Truhetz, H., Vautard, R., Warrach-Sagi, K.,
and Wulfmeyer, V.: Regional climate downscaling over Europe: perspectives
from the EURO-CORDEX community, Reg. Environ. Change, 20, 51,
https://doi.org/10.1007/s10113-020-01606-9, 2020. a
Jerez, S., Palacios-Peña, L., Gutiérrez, C., Jiménez-Guerrero, P., López-Romero, J. M., Pravia-Sarabia, E., and Montávez, J. P.: Sensitivity of surface solar radiation to aerosol–radiation and aerosol–cloud interactions over Europe in WRFv3.6.1 climatic runs with fully interactive aerosols, Geosci. Model Dev., 14, 1533–1551, https://doi.org/10.5194/gmd-14-1533-2021, 2021. a
Jury, M. W., Herrera, S., Gutiérrez, J., and Barriopedro, D.: Blocking
representation in the ERA-Interim driven EURO-CORDEX RCMs, Clim.
Dynam., 52, 3291–3306, https://doi.org/10.1007/s00382-018-4335-8, 2019. a
Kerr, R. A.: Vital Details of Global Warming Are Eluding Forecasters, Science,
334, 173–174, https://doi.org/10.1126/science.334.6053.173, 2011. a
Lin, C.: ahheo/climi: Python package for CLIMate Indices (v0.1.0), Zenodo [code], https://doi.org/10.5281/zenodo.7007414, 2022. a
Liu, X., He, B., Guo, L., Huang, L., and Chen, D.: Similarities and differences
in the mechanisms causing the European summer heatwaves in 2003, 2010, and
2018, Earth's Future, 8, e2019EF001386, https://doi.org/10.1029/2019EF001386, 2020. a
Luo, Z., Yang, J., Gao, M., and Chen, D.: Extreme hot days over three global
mega-regions: Historical fidelity and future projection, Atmos. Sci.
Lett., 21, e1003, https://doi.org/10.1002/asl.1003, 2020. a
Masato, G., Hoskins, B. J., and Woollings, T.: Winter and Summer Northern
Hemisphere Blocking in CMIP5 Models, J. Climate, 26, 7044–7059,
https://doi.org/10.1175/JCLI-D-12-00466.1, 2013. a, b
Molina, M., Sánchez, E., and Gutiérrez, C.: Future heat waves over the
Mediterranean from an Euro-CORDEX regional climate model ensemble,
Scientific Reports, 10, 8801, https://doi.org/10.1038/s41598-020-65663-0, 2020. a, b
Perkins, S. E. and Alexander, L. V.: On the measurement of heat waves, J. Climate, 26, 4500–4517, https://doi.org/10.1175/JCLI-D-12-00383.1, 2013. a
Prein, A. F., Gobiet, A., Truhetz, H., Keuler, K., Goergen, K., Teichmann, C.,
Fox Maule, C., van Meijgaard, E., Déqué, M., Nikulin, G., Vautard,
R., Colette, A., Kjellström, E., and Jacob, D.: Precipitation in the
EURO-CORDEX 0.11 ∘C and 0.44 ∘C simulations: high
resolution, high benefits?, Clim. Dynam., 46, 383–412,
https://doi.org/10.1007/s00382-015-2589-y, 2016. a
Rennie, S., Goergen, K., Wohner, C., Apweiler, S., Peterseil, J., and Watkins, J.: A climate service for ecologists: sharing pre-processed EURO-CORDEX regional climate scenario data using the eLTER Information System, Earth Syst. Sci. Data, 13, 631–644, https://doi.org/10.5194/essd-13-631-2021, 2021. a
Robine, J.-M., Cheung, S. L. K., Le Roy, S., Van Oyen, H., Griffiths, C.,
Michel, J.-P., and Herrmann, F. R.: Death toll exceeded 70,000 in Europe
during the summer of 2003, C. R. Biol., 331, 171–178,
https://doi.org/10.1016/j.crvi.2007.12.001, 2008. a
Rummukainen, M.: Added value in regional climate modeling, WIRES Clim. Change, 7, 145–159,
https://doi.org/10.1002/wcc.378, 2016. a, b, c
Russo, S., Marchese, A. F., Sillmann, J., and Immé, G.: When will unusual
heat waves become normal in a warming Africa?, Environ. Res.
Lett., 11, 054016, https://doi.org/10.1088/1748-9326/11/5/054016, 2016. a
Russo, S., Sillmann, J., and Sterl, A.: Humid heat waves at different warming
levels, Scientific Reports, 7, 7477, https://doi.org/10.1038/s41598-017-07536-7, 2017. a
Schaller, N., Sillmann, J., Anstey, J., Fischer, E. M., Grams, C. M., and
Russo, S.: Influence of blocking on Northern European and Western
Russian heatwaves in large climate model ensembles, Environ. Res.
Lett., 13, 054015, https://doi.org/10.1088/1748-9326/aaba55, 2018. a
Schiermeier, Q.: The real holes in climate science, Nature, 463, 284–288,
https://doi.org/10.1038/463284a, 2010. a
Schwingshackl, C., Davin, E. L., Hirschi, M., Sørland, S. L., Wartenburger,
R., and Seneviratne, S. I.: Regional climate model projections underestimate
future warming due to missing plant physiological CO2
response, Environ. Res. Lett., 14, 114019,
https://doi.org/10.1088/1748-9326/ab4949, 2019. a, b
Seneviratne, S. I., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Di Luca,
A., Ghosh, S., Iskandar, I., Kossin, J., Lewis, S., Otto, F., Pinto, I.,
Satoh, M., Vicente-Serrano, S. M., Wehner, M., and Zhou, B.: Weather and
climate extreme events in a changing climate, in: Climate change 2021: the
physical science basis. Contribution of Working Group I to the
Sixth Assessment Report of the Intergovernmental Panel on Climate
Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors,
S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis,
M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock,
T. K., Waterfield, T., Yelekç, O., Yu, R., and Zhou, B.,
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p. 345,
2021. a
Soares, P. M. M., Maraun, D., Brands, S., Jury, M. W., Gutiérrez, J. M.,
San-Martín, D., Hertig, E., Huth, R., Belušić Vozila, A.,
Cardoso, R. M., Kotlarski, S., Drobinski, P., and Obermann-Hellhund, A.:
Process-based evaluation of the VALUE perfect predictor experiment of
statistical downscaling methods, Int. J. Climatol., 39,
3868–3893, 2019. a
Sørland, S. L., Schär, C., Lüthi, D., and Kjellström, E.: Bias
patterns and climate change signals in GCM-RCM model chains, Environ.
Res. Lett., 13, 074017, https://doi.org/10.1088/1748-9326/aacc77, 2018. a, b, c, d
Sørland, S. L., Fischer, A. M., Kotlarski, S., Künsch, H. R., Liniger,
M. A., Rajczak, J., Schär, C., Spirig, C., Strassmann, K., and Knutti,
R.: CH2018 – National climate scenarios for Switzerland: How to
construct consistent multi-model projections from ensembles of opportunity,
Climate Services, 20, 100196, https://doi.org/10.1016/j.cliser.2020.100196, 2020. a
Strandberg, G. and Lind, P.: The importance of horizontal model resolution on simulated precipitation in Europe – from global to regional models, Weather Clim. Dynam., 2, 181–204, https://doi.org/10.5194/wcd-2-181-2021, 2021. a, b, c
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and
the experiment design, B. Am. Meteorol. Soc., 93,
485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012. a
Torma, C., Giorgi, F., and Coppola, E.: Added value of regional climate
modeling over areas characterized by complex terrain – Precipitation over
the Alps, J. Geophys. Res.-Atmos., 120, 3957–3972,
https://doi.org/10.1002/2014JD022781, 2015.
a, b, c
Vautard, R., Kadygrov, N., Iles, C., Boberg, F., Buonomo, E., Bülow, K.,
Coppola, E., Corre, L., van Meijgaard, E., Nogherotto, R., Sandstad, M.,
Schwingshackl, C., Somot, S., Aalbers, E., Christensen, O. B., Ciarlò,
J. M., Demory, M.-E., Giorgi, F., Jacob, D., Jones, R. G., Keuler, K.,
Kjellström, E., Lenderink, G., Levavasseur, G., Nikulin, G., Sillmann,
J., Solidoro, C., Sørland, S. L., Steger, C., Teichmann, C., Warrach-Sagi,
K., and Wulfmeyer, V.: Evaluation of the large EURO-CORDEX regional climate
model ensemble, J. Geophys. Res.-Atmos., 126,
e2019JD032344, https://doi.org/10.1029/2019JD032344, 2020. a
Wilby, R. L. and Dessai, S.: Robust adaptation to climate change, Weather, 65,
180–185, https://doi.org/10.1002/wea.543, 2010. a
Wilcke, R. A. I., Kjellström, E., Lin, C., Matei, D., Moberg, A., and Tyrlis, E.: The extremely warm summer of 2018 in Sweden – set in a historical context, Earth Syst. Dynam., 11, 1107–1121, https://doi.org/10.5194/esd-11-1107-2020, 2020. a
Zampieri, M., Russo, S., di Sabatino, S., Michetti, M., Scoccimarro, E., and
Gualdi, S.: Global assessment of heat wave magnitudes from 1901 to 2010 and
implications for the river discharge of the Alps, Sci. Total
Environ., 571, 1330–1339, https://doi.org/10.1016/j.scitotenv.2016.07.008, 2016. a
Zhang, P., Jeong, J.-H., Yoon, J.-H., Kim, H., Wang, S.-Y. S., Linderholm,
H. W., Fang, K., Wu, X., and Chen, D.: Abrupt shift to hotter and drier
climate over inner East Asia beyond the tipping point, Science, 370,
1095–1099, https://doi.org/10.1126/science.abb3368, 2020. a
Short summary
This study endorses RCMs' added value on the driving GCMs in representing observed heat wave magnitudes. The future increase of heat wave magnitudes projected by GCMs is attenuated when downscaled by RCMs. Within the downscaling, uncertainties can be attributed almost equally to choice of RCMs and to the driving data associated with different GCMs. Uncertainties of GCMs in simulating heat wave magnitudes are transformed by RCMs in a complex manner rather than simply inherited.
This study endorses RCMs' added value on the driving GCMs in representing observed heat wave...
Altmetrics
Final-revised paper
Preprint