Articles | Volume 13, issue 4
https://doi.org/10.5194/esd-13-1667-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-13-1667-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evidence of localised Amazon rainforest dieback in CMIP6 models
Department of Mathematics and Statistics, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4QE, UK
Paul D. L. Ritchie
Department of Mathematics and Statistics, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4QE, UK
Peter M. Cox
Department of Mathematics and Statistics, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4QE, UK
Related authors
Vasilis Dakos, Chris A. Boulton, Joshua E. Buxton, Jesse F. Abrams, Beatriz Arellano-Nava, David I. Armstrong McKay, Sebastian Bathiany, Lana Blaschke, Niklas Boers, Daniel Dylewsky, Carlos López-Martínez, Isobel Parry, Paul Ritchie, Bregje van der Bolt, Larissa van der Laan, Els Weinans, and Sonia Kéfi
Earth Syst. Dynam., 15, 1117–1135, https://doi.org/10.5194/esd-15-1117-2024, https://doi.org/10.5194/esd-15-1117-2024, 2024
Short summary
Short summary
Tipping points are abrupt, rapid, and sometimes irreversible changes, and numerous approaches have been proposed to detect them in advance. Such approaches have been termed early warning signals and represent a set of methods for identifying changes in the underlying behaviour of a system across time or space that might indicate an approaching tipping point. Here, we review the literature to explore where, how, and which early warnings have been used in real-world case studies so far.
Paul D. L. Ritchie, Chris Huntingford, and Peter M. Cox
Earth Syst. Dynam., 16, 1523–1526, https://doi.org/10.5194/esd-16-1523-2025, https://doi.org/10.5194/esd-16-1523-2025, 2025
Short summary
Short summary
Climate tipping points are not committed upon crossing critical thresholds in global warming, as is often assumed. Instead, it is possible to temporarily overshoot a threshold without causing tipping, provided the duration of the overshoot is short. In this Idea, we demonstrate that restricting the time over 1.5 °C would considerably reduce tipping point risks.
Joseph Clarke, Chris Huntingford, Paul David Longden Ritchie, Rebecca Varney, Mark Williamson, and Peter Cox
EGUsphere, https://doi.org/10.5194/egusphere-2025-3703, https://doi.org/10.5194/egusphere-2025-3703, 2025
Short summary
Short summary
An increase in CO2 in the atmosphere warms the climate through the greenhouse effect, but also leads to uptake of CO2 by the land and ocean. However, the warming is also expected to suppress carbon uptake. If this suppression were strong enough, it could overwhelm the uptake of carbon, leading to a runaway feedback loop causing severe global warming. We find it is possible that this runaway could be relevant in complex climate models and even at the end of the last ice age.
Kerstin Lux-Gottschalk and Paul D. L. Ritchie
Earth Syst. Dynam., 16, 1153–1168, https://doi.org/10.5194/esd-16-1153-2025, https://doi.org/10.5194/esd-16-1153-2025, 2025
Short summary
Short summary
For tipping points at low levels of global warming, overshoots of the threshold are becoming increasingly likely. Importantly, for some systems, tipping can still be avoided provided the forcing is reversed sufficiently quickly. Conditions for a mitigation window, which would avoid tipping, depend on system uncertainties. We highlight the need to account for uncertainty in the threshold location and other system features when designing climate mitigation strategies that avoid tipping.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Vasilis Dakos, Chris A. Boulton, Joshua E. Buxton, Jesse F. Abrams, Beatriz Arellano-Nava, David I. Armstrong McKay, Sebastian Bathiany, Lana Blaschke, Niklas Boers, Daniel Dylewsky, Carlos López-Martínez, Isobel Parry, Paul Ritchie, Bregje van der Bolt, Larissa van der Laan, Els Weinans, and Sonia Kéfi
Earth Syst. Dynam., 15, 1117–1135, https://doi.org/10.5194/esd-15-1117-2024, https://doi.org/10.5194/esd-15-1117-2024, 2024
Short summary
Short summary
Tipping points are abrupt, rapid, and sometimes irreversible changes, and numerous approaches have been proposed to detect them in advance. Such approaches have been termed early warning signals and represent a set of methods for identifying changes in the underlying behaviour of a system across time or space that might indicate an approaching tipping point. Here, we review the literature to explore where, how, and which early warnings have been used in real-world case studies so far.
Mark S. Williamson, Peter M. Cox, Chris Huntingford, and Femke J. M. M. Nijsse
Earth Syst. Dynam., 15, 829–852, https://doi.org/10.5194/esd-15-829-2024, https://doi.org/10.5194/esd-15-829-2024, 2024
Short summary
Short summary
Emergent constraints on equilibrium climate sensitivity (ECS) have generally got statistically weaker in the latest set of state-of-the-art climate models (CMIP6) compared to past sets (CMIP5). We look at why this weakening happened for one particular study (Cox et al, 2018) and attribute it to an assumption made in the theory that when corrected for restores there is a stronger relationship between predictor and ECS.
Rebecca M. Varney, Pierre Friedlingstein, Sarah E. Chadburn, Eleanor J. Burke, and Peter M. Cox
Biogeosciences, 21, 2759–2776, https://doi.org/10.5194/bg-21-2759-2024, https://doi.org/10.5194/bg-21-2759-2024, 2024
Short summary
Short summary
Soil carbon is the largest store of carbon on the land surface of Earth and is known to be particularly sensitive to climate change. Understanding this future response is vital to successfully meeting Paris Agreement targets, which rely heavily on carbon uptake by the land surface. In this study, the individual responses of soil carbon are quantified and compared amongst CMIP6 Earth system models used within the most recent IPCC report, and the role of soils in the land response is highlighted.
Rebecca M. Varney, Sarah E. Chadburn, Eleanor J. Burke, Simon Jones, Andy J. Wiltshire, and Peter M. Cox
Biogeosciences, 20, 3767–3790, https://doi.org/10.5194/bg-20-3767-2023, https://doi.org/10.5194/bg-20-3767-2023, 2023
Short summary
Short summary
This study evaluates soil carbon projections during the 21st century in CMIP6 Earth system models. In general, we find a reduced spread of changes in global soil carbon in CMIP6 compared to the previous CMIP5 generation. The reduced CMIP6 spread arises from an emergent relationship between soil carbon changes due to change in plant productivity and soil carbon changes due to changes in turnover time. We show that this relationship is consistent with false priming under transient climate change.
Nina Raoult, Tim Jupp, Ben Booth, and Peter Cox
Earth Syst. Dynam., 14, 723–731, https://doi.org/10.5194/esd-14-723-2023, https://doi.org/10.5194/esd-14-723-2023, 2023
Short summary
Short summary
Climate models are used to predict the impact of climate change. However, poorly constrained parameters used in the physics of the models mean that we simulate a large spread of possible future outcomes. We can use real-world observations to reduce the uncertainty of parameter values, but we do not have observations to reduce the spread of possible future outcomes directly. We present a method for translating the reduction in parameter uncertainty into a reduction in possible model projections.
Paul D. L. Ritchie, Hassan Alkhayuon, Peter M. Cox, and Sebastian Wieczorek
Earth Syst. Dynam., 14, 669–683, https://doi.org/10.5194/esd-14-669-2023, https://doi.org/10.5194/esd-14-669-2023, 2023
Short summary
Short summary
Complex systems can undergo abrupt changes or tipping points when external forcing crosses a critical level and are of increasing concern because of their severe impacts. However, tipping points can also occur when the external forcing changes too quickly without crossing any critical levels, which is very relevant for Earth’s systems and contemporary climate. We give an intuitive explanation of such rate-induced tipping and provide illustrative examples from natural and human systems.
Chris Huntingford, Peter M. Cox, Mark S. Williamson, Joseph J. Clarke, and Paul D. L. Ritchie
Earth Syst. Dynam., 14, 433–442, https://doi.org/10.5194/esd-14-433-2023, https://doi.org/10.5194/esd-14-433-2023, 2023
Short summary
Short summary
Emergent constraints (ECs) reduce the spread of projections between climate models. ECs estimate changes to climate features impacting adaptation policy, and with this high profile, the method is under scrutiny. Asking
What is an EC?, we suggest they are often the discovery of parameters that characterise hidden large-scale equations that climate models solve implicitly. We present this conceptually via two examples. Our analysis implies possible new paths to link ECs and physical processes.
Morgan Sparey, Peter Cox, and Mark S. Williamson
Biogeosciences, 20, 451–488, https://doi.org/10.5194/bg-20-451-2023, https://doi.org/10.5194/bg-20-451-2023, 2023
Short summary
Short summary
Accurate climate models are vital for mitigating climate change; however, projections often disagree. Using Köppen–Geiger bioclimate classifications we show that CMIP6 climate models agree well on the fraction of global land surface that will change classification per degree of global warming. We find that 13 % of land will change climate per degree of warming from 1 to 3 K; thus, stabilising warming at 1.5 rather than 2 K would save over 7.5 million square kilometres from bioclimatic change.
Rebecca M. Varney, Sarah E. Chadburn, Eleanor J. Burke, and Peter M. Cox
Biogeosciences, 19, 4671–4704, https://doi.org/10.5194/bg-19-4671-2022, https://doi.org/10.5194/bg-19-4671-2022, 2022
Short summary
Short summary
Soil carbon is the Earth’s largest terrestrial carbon store, and the response to climate change represents one of the key uncertainties in obtaining accurate global carbon budgets required to successfully militate against climate change. The ability of climate models to simulate present-day soil carbon is therefore vital. This study assesses soil carbon simulation in the latest ensemble of models which allows key areas for future model development to be identified.
Garry D. Hayman, Edward Comyn-Platt, Chris Huntingford, Anna B. Harper, Tom Powell, Peter M. Cox, William Collins, Christopher Webber, Jason Lowe, Stephen Sitch, Joanna I. House, Jonathan C. Doelman, Detlef P. van Vuuren, Sarah E. Chadburn, Eleanor Burke, and Nicola Gedney
Earth Syst. Dynam., 12, 513–544, https://doi.org/10.5194/esd-12-513-2021, https://doi.org/10.5194/esd-12-513-2021, 2021
Short summary
Short summary
We model greenhouse gas emission scenarios consistent with limiting global warming to either 1.5 or 2 °C above pre-industrial levels. We quantify the effectiveness of methane emission control and land-based mitigation options regionally. Our results highlight the importance of reducing methane emissions for realistic emission pathways that meet the global warming targets. For land-based mitigation, growing bioenergy crops on existing agricultural land is preferable to replacing forests.
Andrew J. Wiltshire, Eleanor J. Burke, Sarah E. Chadburn, Chris D. Jones, Peter M. Cox, Taraka Davies-Barnard, Pierre Friedlingstein, Anna B. Harper, Spencer Liddicoat, Stephen Sitch, and Sönke Zaehle
Geosci. Model Dev., 14, 2161–2186, https://doi.org/10.5194/gmd-14-2161-2021, https://doi.org/10.5194/gmd-14-2161-2021, 2021
Short summary
Short summary
Limited nitrogen availbility can restrict the growth of plants and their ability to assimilate carbon. It is important to include the impact of this process on the global land carbon cycle. This paper presents a model of the coupled land carbon and nitrogen cycle, which is included within the UK Earth System model to improve projections of climate change and impacts on ecosystems.
Bettina K. Gier, Michael Buchwitz, Maximilian Reuter, Peter M. Cox, Pierre Friedlingstein, and Veronika Eyring
Biogeosciences, 17, 6115–6144, https://doi.org/10.5194/bg-17-6115-2020, https://doi.org/10.5194/bg-17-6115-2020, 2020
Short summary
Short summary
Models from Coupled Model Intercomparison Project (CMIP) phases 5 and 6 are compared to a satellite data product of column-averaged CO2 mole fractions (XCO2). The previously believed discrepancy of the negative trend in seasonal cycle amplitude in the satellite product, which is not seen in in situ data nor in the models, is attributed to a sampling characteristic. Furthermore, CMIP6 models are shown to have made progress in reproducing the observed XCO2 time series compared to CMIP5.
Cited articles
Aragão, L., Anderson, L., Fonseca, M., Rosan, T. M., Vedovato, L., Wagner, F., Silva, C., Silva-Junior, C., Arai, E., Aguiar, A. P., Barlow, J., Berenguer, E., Deeter, M., Domingues, L., Gatti, L., Gloor, M., Malhi, Y., Marengo, J., Miller, J., and Saatchi, S.: 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions, Nat. Commun., 9, 536, https://doi.org/10.1038/s41467-017-02771-y, 2018. a
Arora, V. K., Katavouta, A., Williams, R. G., Jones, C. D., Brovkin, V.,
Friedlingstein, P., Schwinger, J., Bopp, L., Boucher, O., Cadule, P.,
Chamberlain, M. A., Christian, J. R., Delire, C., Rosie, A. F., Hajima, T.,
Ilyina, T., Joetzjer, E., Kawamiya, M., Koven, C. D., Krasting, J. P., Law, R. M., Lawrence, D. M., Lenton, A., Lindsay, K., Pongratz, J., Raddatz, T.,
Séférian, R., Tachiiri, K., Tjiputra, J. F., Wiltshire, A., Wu, T., and Ziehn, T.: Carbon–concentration and carbon–climate feedbacks in CMIP6
models and their comparison to CMIP5 models, Biogeosciences, 17, 4173–4222,
https://doi.org/10.5194/bg-17-4173-2020, 2020. a
Bethke, I., Wang, Y., Counillon, F., Kimmritz, M., Fransner, F., Samuelsen, A., Langehaug, H. R., Chiu, P.-G., Bentsen, M., Guo, C., Kirkevåg, A., Oliviè, D. J. L., Seland, Ø., Fan, Y., Lawrence, P., Eldevik, T., and Keenlyside, N.: NCC NorCPM1 model output prepared for CMIP6 CMIP 1pctCO2,
Earth System Grid Federation [code],
https://doi.org/10.22033/ESGF/CMIP6.10861, 2019. a
Betts, R. A., Cox, P. M., Collins, M., Harris, P. P., Huntingford, C., and
Jones, C. D.: The role of ecosystem-atmosphere interactions in simulated
Amazonian precipitation decrease and forest dieback under global climate
warming, Theor. Appl. Climatol., 78, 157–175, https://doi.org/10.1007/s00704-004-0050-y, 2004. a
Booth, B., Jones, C., Collins, M., Totterdell, I., Cox, P., Sitch, S.,
Huntingford, C., Betts, R., Harris, G., and Lloyd, J.: High sensitivity of
future global warming to land carbon cycle processes, Environ. Res. Lett., 7, 024002, https://doi.org/10.1088/1748-9326/7/2/024002, 2012. a
Boulton, C., Good, P., and Lenton, T.: Early warning signals of simulated
Amazon rainforest dieback, Theor. Ecol., 6, 273–384, https://doi.org/10.13140/RG.2.2.20894.33601, 2013. a
Boulton, C. A., Lenton, T. M., and Boers, N.: Pronounced loss of Amazon
rainforest resilience since the early 2000s, Nat. Clim. Change, 12, 271–278, https://doi.org/10.1038/s41558-022-01287-8, 2022. a, b
Chai, Y., Martins, G., Nobre, C., von Randow, C., Chen, T., and Dolman, H.:
Constraining Amazonian land surface temperature sensitivity to precipitation
and the probability of forest dieback, npj Clim. Atmos. Sci., 4, 6, https://doi.org/10.1038/s41612-021-00162-1, 2021. a
Cox, P., Betts, R., Jones, C., Spall, S., and Totterdell, I.: Acceleration of
global warming due to carbon-cycle feedbacks in a coupled climate model,
Nature, 408, 184–187, https://doi.org/10.1038/35041539, 2000. a
Cox, P., Betts, R., Collins, M., Harris, P., Huntingford, C., and Jones, C.:
Amazonian forest dieback under climate-carbon cycle projections for the 21st century, Theor. Appl. Climatol., 78, 137–156, https://doi.org/10.1007/s00704-004-0049-4, 2004. a, b, c
Cox, P., Pearson, D., Booth, B., Friedlingstein, P., Huntingford, C., Jones,
C., and Luke, C.: Sensitivity of tropical carbon to climate change
constrained by carbon dioxide variability, Nature, 494, 341–344, https://doi.org/10.1038/nature11882, 2013. a
Dakos, V., Scheffer, M., van Nes, E. H., Brovkin, V., Petoukhov, V., and Held, H.: Slowing down as an early warning signal for abrupt climate change,
P. Natl. Acad. Sci. USA, 105, 14308–14312, https://doi.org/10.1073/pnas.0802430105, 2008. a, b
Döscher, R., Acosta, M., Alessandri, A., Anthoni, P., Arsouze, T., Bergman, T., Bernardello, R., Boussetta, S., Caron, L.-P., Carver, G., Castrillo, M., Catalano, F., Cvijanovic, I., Davini, P., Dekker, E., Doblas-Reyes, F. J., Docquier, D., Echevarria, P., Fladrich, U., Fuentes-Franco, R., Gröger, M., v. Hardenberg, J., Hieronymus, J., Karami, M. P., Keskinen, J.-P., Koenigk, T., Makkonen, R., Massonnet, F., Ménégoz, M., Miller, P. A., Moreno-Chamarro, E., Nieradzik, L., van Noije, T., Nolan, P., O'Donnell, D., Ollinaho, P., van den Oord, G., Ortega, P., Prims, O. T., Ramos, A., Reerink, T., Rousset, C., Ruprich-Robert, Y., Le Sager, P., Schmith, T., Schrödner, R., Serva, F., Sicardi, V., Sloth Madsen, M., Smith, B., Tian, T., Tourigny, E., Uotila, P., Vancoppenolle, M., Wang, S., Wårlind, D., Willén, U., Wyser, K., Yang, S., Yepes-Arbós, X., and Zhang, Q.: The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6, Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, 2022. a
Drijfhout, S., Bathiany, S., Beaulieu, C., Brovkin, V., Claussen, M.,
Huntingford, C., Scheffer, M., Sgubin, G., and Swingedouw, D.: Catalogue of
abrupt shifts in Intergovernmental Panel on Climate Change climate models, P. Natla. Acad. Sci. USA, 112, E5777–E5786, https://doi.org/10.1073/pnas.1511451112, 2015. a
EC-Earth Consortium: EC-Earth-Consortium EC-Earth3-Veg model output prepared for CMIP6 CMIP 1pctCO2, Earth System Grid Federation [code], https://doi.org/10.22033/ESGF/CMIP6.4507, 2019. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Hirota, M., Holmgren, M., Van Nes, E. H., and Scheffer, M.: Global resilience
of tropical forest and savanna to critical transitions, Science, 334, 232–235, https://doi.org/10.1126/science.1210657, 2011. a
Hirota, M., Flores, B., Betts, R., Borma, L., Esquivel Muelbert, A., Jakovac,
C., Lapola, D., Montoya, E., Oliveira, R., and Sakschewski, B.: Amazon
Assessment Report 2021, in: chap. 24 Resilience of the Amazon forest to global changes: Assessing the risk of tipping points,United Nations
Sustainable Development Solutions Network, 1–32, https://doi.org/10.55161/QPYS9758, 2021. a
Huntingford, C., Zelazowski, P., Galbraith, D., Mercado, L., Sitch, S., Fisher, R., Lomas, M., Walker, A., Jones, C., Booth, B., Malhi, Y., Hemming, D., Kay, G., Good, P., Lewis, S., Phillips, O., Atkin, O., Lloyd, J., Gloor, M., and Cox, P.: Simulated resilience of tropical rainforests to CO2-induced climate change, Nat. Geosci., 6, 268–273, https://doi.org/10.1038/ngeo1741, 2013. a
Jørgensen, S. V., Hauschild, M. Z., and Nielsen, P. H.: Assessment of urgent impacts of greenhouse gas emissions – the climate tipping potential (CTP), Int. J. Life Cy. Assess., 19, 919–930, https://doi.org/10.1007/s11367-013-0693-y, 2014. a
Krasting, J. P., John, J. G., Blanton, C., McHugh, C., Nikonov, S., Radhakrishnan, A., Rand, K., Zadeh, N. T., Balaji, V., Durachta, J., Dupuis, C., Menzel, R., Robinson, T., Underwood, S., Vahlenkamp, H., Dunne, K. A., Gauthier, P. P. G., Ginoux, P., Griffies, S. M., Hallberg, R., Harrison, M., Hurlin, W., Malyshev, S., Naik, V., Paulot, F., Paynter, D. J., Ploshay, J., Reichl, B. G., Schwarzkopf, D. M., Seman, C. J., Silvers, L., Wyman, B., Zeng, Y., Adcroft, A., Dunne, J. P., Dussin, R., Guo, H., He, J., Held, I. M., Horowitz, L. W., Lin, P., Milly, P. C. D., Shevliakova, E., Stock, C., Winton, M., Wittenberg, A. T., Xie, Y., and Zhao, M.: NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 CMIP 1pctCO2, Earth System Grid Federation [code], https://doi.org/10.22033/ESGF/CMIP6.8473, 2018. a
Lee, W.-L. and Liang, H.-C.: AS-RCEC TaiESM1.0 model output prepared for CMIP6 CMIP 1pctCO2, Earth System Grid Federation [code], https://doi.org/10.22033/ESGF/CMIP6.9702, 2020. a
Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S.,
and Schellnhuber, H. J.: Tipping elements in the Earth's climate system, P. Natl. Acad. Sci. USA, 105, 1786–1793, https://doi.org/10.1073/pnas.0705414105, 2008. a
Lenton, T. M., Rockström, J., Gaffney, O., Rahmstorf, S., Richardson, K.,
Steffen, W., and Schellnhuber, H. J.: Environmental Tipping Points, Annu.
Rev. Environ. Resour., 38, 1–29, https://doi.org/10.1038/d41586-019-03595-0, 2013. a, b
Lenton, T. M., Rockström, J., Gaffney, O., Rahmstorf, S., Richardson, K.,
Steffen, W., and Schellnhuber, H. J.: Climate tipping points – too risky to
bet against, Nature, 575, 592–595, https://doi.org/10.1038/d41586-019-03595-0, 2019. a
Luo, X. and Keenan, T.: Tropical extreme droughts drive long-term increase in
atmospheric CO2 growth rate variability, Nat. Commun., 13, 1193, https://doi.org/10.1038/s41467-022-28824-5, 2022. a, b
Malhi, Y., Aragão, L. E. O. C., Galbraith, D., Huntingford, C., Fisher, R., Zelazowski, P., Sitch, S., McSweeney, C., and Meir, P.: Exploring the
likelihood and mechanism of a climate-change-induced dieback of the Amazon
rainforest, P. Natl. Acad. Sci. USA, 106, 20610–20615, https://doi.org/10.1073/pnas.0804619106, 2009. a, b, c, d
Meehl, G. A., Moss, R., Taylor, K. E., Eyring, V., Stouffer, R. J., Bony, S.,
and Stevens, B.: Climate Model Intercomparisons: Preparing for the Next Phase, EOS Trans. Am. Geophys. Union, 95, 77–78, https://doi.org/10.1002/2014eo090001, 2014. a
Nijsse, F. J. M. M., Cox, P. M., and Williamson, M. S.: Emergent constraints on transient climate response (TCR) and equilibrium climate sensitivity (ECS)
from historical warming in CMIP5 and CMIP6 models, Earth Syst. Dynam., 11,
737–750, https://doi.org/10.5194/esd-11-737-2020, 2020. a
Park, S. and Shin, J.: SNU SAM0-UNICON model output prepared for CMIP6 CMIP 1pctCO2, Earth System Grid Federation [code], https://doi.org/10.22033/ESGF/CMIP6.7782, 2019. a
Parry, I., Ritchie, P, and Cox, P.: Evidence-of-localised-Amazon-rainforest-dieback-in-CMIP6-models-code, Zenodo [code], https://doi.org/10.5281/zenodo.7038389, 2022. a
Parsons, L. A.: Implications of CMIP6 Projected Drying Trends for 21st Century Amazonian Drought Risk, Earth's Future, 8, e2020EF001608, https://doi.org/10.1029/2020ef001608, 2020. a
Phillips, O. L., Aragão, L. E. O. C., Lewis, S. L., Fisher, J. B., Lloyd, J., López-González, G., Malhi, Y., Monteagudo, A., Peacock, J., Quesada, C. A., van der Heijden, G., Almeida, S., Amaral, I., Arroyo, L., Aymard, G., Baker, T. R., Bánki, O., Blanc, L., Bonal, D., Brando, P., Chave, J., Átila Cristina Alves de Oliveira, Cardozo, N. D., Czimczik, C. I., Feldpausch, T. R., Freitas, M. A., Gloor, E., Higuchi, N., Jiménez, E., Lloyd, G., Meir, P., Mendoza, C., Morel, A., Neill, D. A., Nepstad, D., Patiño, S., Peñuela, M. C., Prieto, A., Ramírez, F., Schwarz, M., Silva, J., Silveira, M., Thomas, A. S., ter Steege, H., Stropp, J., Vásquez, R., Zelazowski, P., Dávila, E. A., Andelman, S., Andrade, A., Chao, K.-J., Erwin, T., Fiore, A. D., Eurídice Honorio, C., Keeling, H., Killeen, T. J., Laurance, W. F., Cruz, A. P., Pitman, N. C. A., Vargas, P. N., Ramírez-Angulo, H., Rudas, A., Salamão, R., Silva, N., Terborgh, J., and Torres-Lezama, A.: Drought Sensitivity of the Amazon Rainforest, Science, 323, 1344–1347,
https://doi.org/10.1126/science.1164033, 2009. a
Rammig, A., Jupp, T., Thonicke, K., Tietjen, B., Heinke, J., Ostberg, S.,
Lucht, W., Cramer, W., and Cox, P.: Estimating the risk of Amazonian forest
dieback, New Phytol., 187, 694–706, https://doi.org/10.1111/j.1469-8137.2010.03318.x, 2010. a, b
Ritchie, P. D., Clarke, J. J., Cox, P. M., and Huntingford, C.: Overshooting
tipping point thresholds in a changing climate, Nature, 592, 517–523,
https://doi.org/10.1038/s41586-021-03263-2, 2021. a
Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R.,
Dakos, V., Held, H., van Nes, E. H., Rietkerk, M., and Sugihara, G.: Early-warning signals for critical transitions, Nature, 461, 53–59,
https://doi.org/10.1038/nature08227, 2009. a, b, c
Tang, Y., Rumbold, S., Ellis, R., Kelley, D., Mulcahy, J., Sellar, A., Walton, J., and Jones, C.: MOHC UKESM1.0-LL model output prepared for CMIP6 CMIP 1pctCO2, Earth System Grid Federation [code], https://doi.org/10.22033/ESGF/CMIP6.5792, 2019. a
Tokarska, K. B., Stolpe, M. B., Sippel, S., Fischer, E. M., Smith, C. J.,
Lehner, F., and Knutti, R.: Past warming trend constrains future warming in
CMIP6 models, Sci. Adv., 6, eaaz9549, https://doi.org/10.1126/sciadv.aaz9549, 2020. a
UNFCCC: Adoption of the Paris Agreement, FCCC/CP/2015/L.9/Rev.1,
http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf (last access: 17 March 2022), 2015. a
Vogel, M., Hauser, M., and Seneviratne, S.: Projected changes in hot, dry and
wet extreme events' clusters in CMIP6 multi-model ensemble, Environ. Res. Lett., 15, 094021, https://doi.org/10.1088/1748-9326/ab90a7, 2020. a, b
Wang, J. A., Baccini, A., Farina, M., Randerson, J. T., and Friedl, M. A.:
Supplementary information: Disturbance suppresses the aboveground carbon sink
in North American boreal forests, Nat. Clim. Change, 11, 435–441,
https://doi.org/10.1038/s41558-021-01027-4, 2021. a
Wang, X., Piao, S., Ciais, P., Friedlingstein, P., Myneni, R. B., Cox, P.,
Heimann, M., Miller, J., Peng, S., Wang, T., Yang, H., and Chen, A.: A two-fold increase of carbon cycle sensitivity to tropical temperature variations variability, Nature, 506, 212–215, https://doi.org/10.1038/nature12915, 2014. a
Wenzel, S., Cox, P. M., Eyring, V., and Friedlingstein, P.: Emergent
constraints on climate-carbon cycle feedbacks in the CMIP5 Earth system
models, J. Geophys. Res.-Biogeo., 119, 794–807, https://doi.org/10.1002/2013JG002591, 2014. a
Wenzel, S., Cox, P. M., Eyring, V., and Friedlingstein, P.: Projected land
photosynthesis constrained by changes in the seasonal cycle of atmospheric
CO2, Nature, 538, 499–501, https://doi.org/10.1038/nature19772, 2016. a
Wieners, K.-H., Giorgetta, M., Jungclaus, J., Reick, C., Esch, M., Bittner, M., Legutke, S., Schupfner, M., Wachsmann, F., Gayler, V., Haak, H., de Vrese, P., Raddatz, T., Mauritsen, T., von Storch, J.-S., Behrens, J., Brovkin, V., Claussen, M., Crueger, T., Fast, I., Fiedler, S., Hagemann, S., Hohenegger, C., Jahns, T., Kloster, S., Kinne, S., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Müller, W., Nabel, J., Notz, D., Peters-von Gehlen, K., Pincus, R., Pohlmann, H., Pongratz, J., Rast, S., Schmidt, H., Schnur, R., Schulzweida, U., Six, K., Stevens, B., Voigt, A., and Roeckner, E.: MPI-M MPI-ESM1.2-LR model output prepared for CMIP6 CMIP 1pctCO2, Earth System Grid Federation [code], https://doi.org/10.22033/ESGF/CMIP6.6435, 2019. a
Zemp, D., Schleussner, C.-F., Barbosa, H., and Rammig, A.: Deforestation
effects on Amazon forest resilience, Geophys. Res. Lett., 44, 6182–6190, https://doi.org/10.1002/2017GL072955, 2017. a
Chief editor
The health of the amazon ecosystem is a key indicator of the health of our planet. Hence, the editor feels that this paper will attract the attention of a broad audience and the media.
The health of the amazon ecosystem is a key indicator of the health of our planet. Hence, the...
Short summary
Despite little evidence of regional Amazon rainforest dieback, many localised abrupt dieback events are observed in the latest state-of-the-art global climate models under anthropogenic climate change. The detected dieback events would still cause severe consequences for local communities and ecosystems. This study suggests that 7 ± 5 % of the northern South America region would experience abrupt downward shifts in vegetation carbon for every degree of global warming past 1.5 °C.
Despite little evidence of regional Amazon rainforest dieback, many localised abrupt dieback...
Altmetrics
Final-revised paper
Preprint