Articles | Volume 9, issue 1
https://doi.org/10.5194/esd-9-135-2018
https://doi.org/10.5194/esd-9-135-2018
Research article
 | 
21 Feb 2018
Research article |  | 21 Feb 2018

Selecting a climate model subset to optimise key ensemble properties

Nadja Herger, Gab Abramowitz, Reto Knutti, Oliver Angélil, Karsten Lehmann, and Benjamin M. Sanderson

Related authors

Change in negative emission burden between an overshoot versus peak-shaved stratospheric aerosol injection pathway
Susanne Baur, Benjamin M. Sanderson, Roland Séférian, and Laurent Terray
Earth Syst. Dynam., 16, 667–681, https://doi.org/10.5194/esd-16-667-2025,https://doi.org/10.5194/esd-16-667-2025, 2025
Short summary
Normalizing the permafrost carbon feedback contribution to TCRE and ZEC
Norman J. Steinert and Benjamin M. Sanderson
EGUsphere, https://doi.org/10.5194/egusphere-2025-1714,https://doi.org/10.5194/egusphere-2025-1714, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
METEORv1.0.1: A novel framework for emulating multi-timescale regional climate responses
Marit Sandstad, Norman Julius Steinert, Susanne Baur, and Benjamin Mark Sanderson
EGUsphere, https://doi.org/10.5194/egusphere-2025-1038,https://doi.org/10.5194/egusphere-2025-1038, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Estimating return periods for extreme events in climate models through Ensemble Boosting
Luna Bloin-Wibe, Robin Noyelle, Vincent Humphrey, Urs Beyerle, Reto Knutti, and Erich Fischer
EGUsphere, https://doi.org/10.5194/egusphere-2025-525,https://doi.org/10.5194/egusphere-2025-525, 2025
Short summary
The Detection and Attribution Model Intercomparison Project (DAMIP v2.0) contribution to CMIP7
Nathan P. Gillett, Isla R. Simpson, Gabi Hegerl, Reto Knutti, Dann Mitchell, Aurélien Ribes, Hideo Shiogama, Dáithí Stone, Claudia Tebaldi, Piotr Wolski, Wenxia Zhang, and Vivek K. Arora
EGUsphere, https://doi.org/10.5194/egusphere-2024-4086,https://doi.org/10.5194/egusphere-2024-4086, 2025
Short summary

Related subject area

Earth system change: climate prediction
Past and future response of the North Atlantic warming hole to anthropogenic forcing
Saïd Qasmi
Earth Syst. Dynam., 14, 685–695, https://doi.org/10.5194/esd-14-685-2023,https://doi.org/10.5194/esd-14-685-2023, 2023
Short summary
Performance-based sub-selection of CMIP6 models for impact assessments in Europe
Tamzin E. Palmer, Carol F. McSweeney, Ben B. B. Booth, Matthew D. K. Priestley, Paolo Davini, Lukas Brunner, Leonard Borchert, and Matthew B. Menary
Earth Syst. Dynam., 14, 457–483, https://doi.org/10.5194/esd-14-457-2023,https://doi.org/10.5194/esd-14-457-2023, 2023
Short summary
Emergent constraints for the climate system as effective parameters of bulk differential equations
Chris Huntingford, Peter M. Cox, Mark S. Williamson, Joseph J. Clarke, and Paul D. L. Ritchie
Earth Syst. Dynam., 14, 433–442, https://doi.org/10.5194/esd-14-433-2023,https://doi.org/10.5194/esd-14-433-2023, 2023
Short summary
Ensemble forecast of an index of the Madden–Julian Oscillation using a stochastic weather generator based on circulation analogs
Meriem Krouma, Riccardo Silini, and Pascal Yiou
Earth Syst. Dynam., 14, 273–290, https://doi.org/10.5194/esd-14-273-2023,https://doi.org/10.5194/esd-14-273-2023, 2023
Short summary
Reconstructions and predictions of the global carbon budget with an emission-driven Earth system model
Hongmei Li, Tatiana Ilyina, Tammas Loughran, Aaron Spring, and Julia Pongratz
Earth Syst. Dynam., 14, 101–119, https://doi.org/10.5194/esd-14-101-2023,https://doi.org/10.5194/esd-14-101-2023, 2023
Short summary

Cited articles

Abramowitz, G.: Model independence in multi-model ensemble prediction, Aust. Meteorol. Oceanogr. J., 59, 3–6, 2010. a
Abramowitz, G. and Bishop, C. H.: Climate model dependence and the ensemble dependence transformation of CMIP projections, J. Climate, 28, 2332–2348, https://doi.org/10.1175/JCLI-D-14-00364.1, 2015. a, b, c
Abramowitz, G. and Gupta, H.: Toward a model space and model independence metric, Geophys. Res. Lett., 35, L05705, https://doi.org/10.1029/2007GL032834, 2008. a
Annan, J. D. and Hargreaves, J. C.: Understanding the CMIP3 multimodel ensemble, J. Climate, 24, 4529–4538, https://doi.org/10.1175/2011JCLI3873.1, 2011. a, b
Annan, J. D. and Hargreaves, J. C.: On the meaning of independence in climate science, Earth Syst. Dynam., 8, 211–224, https://doi.org/10.5194/esd-8-211-2017, 2017. a
Download
Short summary
Users presented with large multi-model ensembles commonly use the equally weighted model mean as a best estimate, ignoring the issue of near replication of some climate models. We present an efficient and flexible tool that finds a subset of models with improved mean performance compared to the multi-model mean while at the same time maintaining the spread and addressing the problem of model interdependence. Out-of-sample skill and reliability are demonstrated using model-as-truth experiments.
Share
Altmetrics
Final-revised paper
Preprint