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Abstract. End users studying impacts and risks caused by human-induced climate change are often presented
with large multi-model ensembles of climate projections whose composition and size are arbitrarily determined.
An efficient and versatile method that finds a subset which maintains certain key properties from the full ensem-
ble is needed, but very little work has been done in this area. Therefore, users typically make their own somewhat
subjective subset choices and commonly use the equally weighted model mean as a best estimate. However, dif-
ferent climate model simulations cannot necessarily be regarded as independent estimates due to the presence of
duplicated code and shared development history.

Here, we present an efficient and flexible tool that makes better use of the ensemble as a whole by finding a
subset with improved mean performance compared to the multi-model mean while at the same time maintaining
the spread and addressing the problem of model interdependence. Out-of-sample skill and reliability are demon-
strated using model-as-truth experiments. This approach is illustrated with one set of optimisation criteria but we
also highlight the flexibility of cost functions, depending on the focus of different users. The technique is useful
for a range of applications that, for example, minimise present-day bias to obtain an accurate ensemble mean,
reduce dependence in ensemble spread, maximise future spread, ensure good performance of individual mod-
els in an ensemble, reduce the ensemble size while maintaining important ensemble characteristics, or optimise
several of these at the same time. As in any calibration exercise, the final ensemble is sensitive to the metric,
observational product, and pre-processing steps used.

1 Introduction

Multi-model ensembles are an indispensable tool for future
climate projection and the quantification of its uncertainty.
However, due to a paucity of guidelines in this area, it is un-
clear how best to utilise the information from climate model
ensembles consisting of multiple imperfect models with a
varying number of ensemble members from each model.
Heuristically, we understand that the aim is to optimise the
ensemble performance and reduce the presence of duplicated
information. For such an optimisation approach to be suc-

cessful, metrics that quantify performance and duplication
have to be defined. While there are examples of attempts to
do this (see below), there is little understanding of the sensi-
tivity of the result of optimisation to the subjective choices a
researcher needs to make when optimising.

As an example, the equally weighted multi-model
mean (MMM) is most often used as a “best” estimate for
variable averages (Knutti et al., 2010a), as evidenced by its
ubiquity in the Fifth Assessment Report of the United Na-
tions Intergovernmental Panel on Climate Change (IPCC,
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2014). In most cases, the MMM – which can be regarded
as an estimate of the forced climate response – performs bet-
ter than individual simulations. It has increased skill, con-
sistency and reliability (Reichler and Kim, 2008; Gleckler
et al., 2008) as errors tend to cancel (Knutti et al., 2010b),
although part of that effect is the simple geometric argu-
ment of averaging (Annan and Hargreaves, 2011). However,
model democracy (“one model, one vote”) (Knutti, 2010)
does not come without limitations. A lack of independence in
contributions to the Coupled Model Intercomparison Project
Phase 5 (CMIP5) (Taylor et al., 2012) archive (Masson and
Knutti, 2011; Knutti et al., 2013), where research organisa-
tions simply submit as many simulations as they are able to
(thus often referred to as “ensemble of opportunity”; Tebaldi
and Knutti, 2007), means that it is extremely unlikely that the
MMM is in any way optimal. Different research groups are
known to share sections of code (Pincus et al., 2008), litera-
ture, parameterisations in their models, or even whole model
components so that at least heuristically we understand that
individual model runs do not necessarily represent indepen-
dent projection estimates (Abramowitz, 2010; Abramowitz
and Bishop, 2015; Sanderson et al., 2015a). Ignoring the de-
pendence of models might lead to a false model consensus,
poor accuracy, and poor estimation of uncertainty.

Instead of accounting for this dependence problem, most
studies use whatever models and ensembles they can get and
solely focus on selecting ensemble members with high in-
dividual performance (e.g. Grose et al., 2014). They assume
that if individual members of an ensemble perform well, then
the mean of this ensemble will also have high skill. As we
demonstrate later, this is not always the case and can poten-
tially be highly problematic.

Given that climate models developed within a research
group are prone to share code and structural similarities, hav-
ing more than one of those models in an ensemble will likely
lead to duplication of information. Institutional democracy
as proposed by Leduc et al. (2016) can be regarded as a first
proxy to obtain an independent subset. However, in this case
dependence essentially reflects an a priori definition of de-
pendence that may not be optimal for the particular use case
(e.g. variable, region, metric, observational product). There
are also a few cases in which a model is shared across insti-
tutes, and thus this approach would fail (e.g. NorESM is built
with key elements of CESM1) or at least need to evolve over
time.

Only a few studies have been published that attempt
to account for dependence in climate model ensembles. A
distinction can be made between approaches that select a
discrete ensemble subset and those that assign continuous
weights to the ensemble members. For example, Bishop and
Abramowitz (2013) proposed a technique in which climate
model simulations undergo a linear transformation process to
better approximate internal climate system variability so that
models and observations were samples from a common dis-
tribution. This weighting and transformation approach was

based on a mean square difference adherence to an observed
product over time and space within the observational period,
with ensemble spread at an instant in time calibrated to esti-
mate internal variability. The same process was also used for
future projections, with the danger of overfitting mitigated
through out-of-sample performance in model-as-truth exper-
iments (Abramowitz and Bishop, 2015). In their approach,
they solely focus on variance by looking at time series.

Another method also using continuous weights but con-
sidering climatologies rather than time series was proposed
by Sanderson et al. (2015a). It is based on dimension re-
duction of the spatial variability of a range of climatologies
of different variables. This resulted in a metric to measure
the distance between models, as well as models and obser-
vational products, in a projected model space (Abramowitz
et al., 2008, is another example of an attempt to do this).
Knutti et al. (2017a) aim to simplify the approach by Sander-
son et al. (2015a), in which models which poorly agree with
observations are down-weighted, as are very similar models
that exist in the ensemble, based on RMSE distance. Projec-
tions of the Arctic sea ice and temperatures are provided as
a case study. Perhaps not surprisingly, the effect of weight-
ing the projections is substantial and more pronounced on the
model spread than its best estimate.

Sanderson et al. (2015b) propose a method that finds a di-
verse and skillful subset of model runs that maximises inter-
model distances using a stepwise model elimination proce-
dure. Similar to Sanderson et al. (2015a), this is done based
on uniqueness and model quality weights.

Sanderson et al. (2017) applied a similar continuous
weighting scheme to climatological mean state variables and
weather extremes in order to constrain climate model projec-
tions. Only a moderate influence of model skill and unique-
ness weighting on the projected temperature and precipi-
tation changes over North America was found. As under-
dispersion of projected future climate is undesirable, only a
small reduction in uncertainty was achieved.

In the previous paragraph we discussed approaches that
assign continuous weights to model runs. Regional dynami-
cal downscaling presents a slightly different problem to the
one stated above, as the goal of regional climate models is
to obtain high-resolution climate simulations based on lat-
eral boundary conditions taken from global climate mod-
els (GCMs) or reanalyses (Laprise et al., 2008). One might
therefore attempt to find a small subset of GCMs that repro-
duces certain statistical characteristics of the full ensemble.
In this case the issue of dependence is critical, and binary
weights are needed, since computational resources are lim-
ited. Many research groups can only afford to dynamically
downscale a few GCM simulations. With binary we refer to
the weights being either zero or one, and thus a model run
is either discarded or part of the subset. Such an approach is
presented in Evans et al. (2013), in which independence was
identified to be central for creating smaller ensembles.

Earth Syst. Dynam., 9, 135–151, 2018 www.earth-syst-dynam.net/9/135/2018/



N. Herger et al.: Selecting a climate model subset 137

The problem of defining and accounting for dependence
is made more challenging by the fact that there is no uni-
formly agreed definition of dependence. A canonical statisti-
cal definition of independence is that two events A and B are
considered to be independent if the occurrence of B does not
affect the probability of A, P (A), so that P (A|B)=P (A).
As discussed by Annan and Hargreaves (2017), there could,
however, be many approaches to applying this definition to
the problem of ensemble projection that could potentially
yield very different results. An appropriate course of action
regarding what to do if two models are identified to be co-
dependent does not follow directly from this usual definition
of independence.

One disadvantage of many of these studies is that they are
technically challenging to implement and therefore discour-
age frequent use. Further, the sensitivity of each approach
to the choice of metrics used, variables included, and uncer-
tainties in observational products is largely unexplored. This
leads to a lack of clarity and consensus on how best to cali-
brate an ensemble for a given purpose. Often, out-of-sample
performance has not been tested, which we consider essential
when looking at ensemble projections.

The aim of this study is to present a novel and flexible
approach that selects an optimal subset from a larger ensem-
ble archive in a computationally feasible way. Flexibility is
introduced by an adjustable cost function which allows this
approach to be applied to a wide range of problems. The
meaning of “optimal” varies depending on the aim of the
study. As an example, we will choose a subset of the CMIP5
archive that minimises regional biases in present-day clima-
tology based on RMSE over space using a single observa-
tional product. The resulting ensemble subset will be optimal
in the sense that its ensemble mean will give the lowest possi-
ble RMSE against this observational product of any possible
combination of model runs in the archive. The more indepen-
dent estimates we have, the more errors tend to cancel. This
results in smaller biases in the present day, which reduces the
need for bias correction. Such an approach with binary (0/1)
rather than continuous weights is desired to obtain a smaller
subset that can drive regional models for impact studies, as
this is otherwise a computationally expensive task. More pre-
cisely, it is the number of zero weight that leads to some
models being discarded from the ensemble. Out-of-sample
skill of the optimal subset mean and spread is tested using
model-as-truth experiments. The distribution of projections
using model runs in the optimal subset is then assessed.

We then examine the sensitivity of this type of result to
choices of the cost function (by adding additional terms),
variable, and constraining dataset. We argue that optimally
selecting ensemble members for a set of criteria of known
importance to a given problem is likely to lead to more ro-
bust projections for use in impact assessments, adaptation,
and mitigation of climate change.

This approach is not meant to replace or supersede any of
the existing approaches in the literature. Just as there is no

single best climate model, there is no universally best model
weighting approach. Whether an approach is useful depends
on the criteria that are relevant for the application in ques-
tion. Only once the various ensemble selection approaches
have been tailored to a specific use case can a fair compari-
son be made. Flexibility in ensemble calibration by defining
an appropriate cost function that is being minimised and met-
ric used is key for this process.

In the following section, we introduce the model data and
observational products used throughout this study. Section 3
contains a description of the method used, which includes the
pre-processing steps of the data and three ensemble subsam-
pling strategies, one of which is the novel approach of find-
ing an optimal ensemble. In Sect. 4 we examine the results
by first giving the most basic example of the optimisation
problem. We then expand on this example by examining the
sensitivity of those results to different choices of the user and
highlight the method’s flexibility in Sect. 4.1. Out-of-sample
skill is tested in Sect. 4.2.1 using model-as-truth experiments
to ensure that our approach is not overfitting on the current
present-day state. Once that has been ensured, we present fu-
ture projections based on this novel approach (Sect. 4.2.2).
Finally, Sect. 5 contains the discussions and conclusions.

2 Data

We use 81 CMIP5 model runs from 38 different models
and 21 institutes which are available in the historical pe-
riod (1956–2013; RCP4.5 after 2005) and the RCP4.5 and
RCP8.5 period (2006–2100); see Table S1 in the Supple-
ment. We examine gridded monthly surface air temperature
(variable: tas) and total monthly precipitation (variable: pr).
Results shown here are based on raw model data (absolute
values), although repeat experiments using anomalies (by
subtracting the global mean climatological value from each
grid cell) were also performed (not shown here).

Multiple gridded observation products for each variable
were considered with each having different regions of data
availability (see Table S2 and additional results in the Sup-
plement). Model and observation data were remapped using a
first-order conservative remapping procedure (Jones, 1999),
to either 2.5 or 5◦ spatial resolution, depending on the res-
olution of the observational product (see Table S2). For the
projections, the model data were remapped to a resolution
of 2.5◦. For observational products whose data availability at
any grid cell changes with time, a minimal two-dimensional
mask (which does not change over time) was used. The re-
maining regions were masked out for both the observational
product and the model output.

3 Method

We first illustrate the technique by considering absolute sur-
face air temperature and total precipitation climatologies
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(time means at each grid cell) based on 1956–2013. The
land-only observational product, CRUTS version 3.23 (Har-
ris et al., 2014), is used for both variables and model data are
remapped to the same spatial resolution and masked based
on data availability in this product.

Next, we select an ensemble subset of size K from the
complete pool of 81 CMIP5 simulations using three different
approaches.

– Random ensemble. As the name implies, the random se-
lection consists of randomly selected model runs from
the pool of 81 without repetition. This procedure is re-
peated 100 times for each ensemble size in order to
gauge sampling uncertainty. The uncertainty range was
found not to be very sensitive to the number of itera-
tions.

– Performance ranking ensemble. This ensemble consists
of the “best” performing model runs from the ensemble
in terms of their RMSE (based on climatology – time
means at each grid cell). Individual model runs are then
ranked according to their performance and only the best
K model runs are chosen to be part of the subset.

– Optimal ensemble. In this case we find the ensemble
subset whose mean minimises RMSE out of all possi-
ble K-member subsets. This is non-trivial – there are
2.12× 1023 possible ensembles of size 40, for exam-
ple, so that a “brute-force” approach is simply not possi-
ble. Instead, we use a state-of-the-art mathematical pro-
gramming solver (Gurobi Optimization, 2015). It min-
imises the MSE between the mean ofK model runs and
the given observational product by selecting the appro-
priate K model runs. Hereinafter we refer to the en-
sembles (one obtained for each K) derived from this
approach as “optimal ensembles” and the optimal en-
semble with the overall lowest RMSE as the “optimal
subset”. Note that optimal refers to the specific question
at hand that the ensemble is calibrated to. The ensemble
would no longer be optimal if the specific application
changes. The problem itself is a mixed integer quadratic
programming problem because the decisions are binary
(that is, the model run is in the set or not), the cost func-
tion is quadratic (see Eq. 1), and the constraint is linear.
Such a problem is solved using a branch-and-cut algo-
rithm (Mitchell, 2002).

In the following section, we compare these three subsam-
pling strategies with the benchmark, which is the simple un-
weighted multi-model mean (MMM) of all 81 runs. We then
examine the sensitivity of results to the observational prod-
uct, the cost function (to demonstrate flexibility by optimis-
ing more than just the ensemble mean), and other experimen-
tal choices.

4 Results

Figure 1 displays the area-weighted root mean square er-
ror (RMSE) of the subset mean and RMSE improvement rel-
ative to the MMM of all 81 model runs (solid horizontal line)
as a function of ensemble size for the three different methods
used to select subsets. The RMSE is calculated based on the
climatological fields of pre-processed model output and ob-
servations. Results based on CRUTS3.23 as the observational
product are shown for both surface air temperature (Fig. 1a)
and precipitation (Fig. 1b). We focus on Fig. 1a for now.
Each marker represents the RMSE of an ensemble mean, ex-
cept for ensemble size one, which refers to the single best
performing model run in terms of RMSE. Blue markers are
used for the random ensemble, with the error bar indicating
the 90 % confidence interval (from 100 repetitions). The per-
formance ranking ensemble is shown in green. For ensem-
ble sizes one to four, the RMSE of the performance ranking
ensemble increases. This is because multiple initial condi-
tion ensemble members of the same model (MPI-ESM) are
ranked high, and averaging across those leads to higher de-
pendence within the subset and thus less effective cancelling
out of regional biases. Interestingly, the performance-based
ensemble sometimes even performs worse than the mean of
the random ensemble, which can be observed across multi-
ple observational products and across the two variables (see
Supplement). This is a clear example of the potential cost of
ignoring the dependence between ensemble simulations. Se-
lecting skillful but similar simulations can actively degrade
the present-day climatology of the ensemble mean.

For the optimal ensemble (black circles), RMSE is ini-
tially large, the value representative of the single best per-
forming model run (black dot being behind the green one).
The RMSE of the ensemble mean rapidly decreases when
more model runs are included until it reaches a minimum
(red circle indicates the optimal subset over all possible en-
semble sizes). That is, the RMSE improvement relative to
the MMM (solid horizontal line) is largest at this ensemble
size. One could investigate defining the effective number of
independent models for a given application based on the op-
timal ensemble size (Annan and Hargreaves, 2011; Bishop
and Abramowitz, 2013; Sanderson et al., 2015b; Jun et al.,
2008; Pennell and Reichler, 2011), but we have not explored
this idea in any detail. As more model runs are included in
the ensemble, the RMSE increases again. This is expected as
worse performing and more dependent model runs are forced
to be included. The MMM generally outperforms every indi-
vidual model run (green, black, and blue dots at subset size
one being above the solid horizontal line). The optimal en-
semble curve in the vicinity of the lowest RMSE is often
rather flat, so different ensembles with similarly low RMSE
could be chosen instead if, for example, a given model is
required to be part of the subset. A flat curve is also of ad-
vantage in the case when computational resources are lim-
ited and thus a small ensemble size has to be chosen (for
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Figure 1. Size of the CMIP5 subset on the horizontal axis and the resulting RMSE of the ensemble mean and its improvement relative to the
multi-model mean (MMM) on the vertical axes for surface air temperature (a), total precipitation (b), and three different types of ensembles.
The RMSE was calculated based on the 1956–2013 climatology of the ensemble mean and the observational product CRUTS3.23. Black dots
indicate the values for the optimal ensemble, green dots the ensemble based on performance ranking of individual members, and randomly
selected ensembles in blue. For the random ensemble, the dot represents the mean of 100 samples and the error bar is the 90 % confidence
interval. The red circle indicates the optimal subset size with the overall smallest RMSE compared to the observational product. The model
simulations which are part of this optimal subset are listed in red font next to the circle. The black triangles represent the optimal ensembles
for a cost function that consists of three terms (see Eq. 2). The corresponding red triangle is the optimal subset of the black triangle cases.
The map shows CRUTS3.23 coverage. The solid horizontal line indicates the RMSE value for the MMM of all 81 simulations. For the
dashed line, we first average over the members of one model and then average over all 38 models. The RMSE of the mean of 21 simulations
(one simulation per institute) is represented with the dotted line.

example, when global model boundary conditions are being
chosen for a downscaling experiment). Here, however, we al-
ways consider the ensemble with the overall smallest RMSE
(red circle) as our optimal subset even if ensembles of similar
sizes are not much worse. We will discuss the black triangle
markers and other horizontal lines in a later section.

Note that as the selection of one ensemble member de-
pends on the remaining members in the ensemble, the opti-
mal subset is sensitive to the original set of model runs that
we start out with. So, if members are added to or removed
from the original ensemble, then the optimal subset is likely
going to change. Any subset selection approach that does not
make use of the available information about the original en-
semble is most likely not optimal.

Another characteristic of the optimal ensemble is that there
is not necessarily any ensemble member consistency (with
increasing subset size). There are other methods which do
maintain this consistency (e.g. Sanderson et al., 2015b), but
such an ensemble is no longer optimal from an ensemble
mean point of view.

Of the three subsampling approaches, it is evident that the
optimal ensemble mean is the best performing one for all en-
semble sizes if the bias of the model subset average should
be minimised – essentially indicating that the solver is work-
ing as anticipated. Regional biases in different models cancel
out most effectively using this approach. Across different ob-
servational products, we observe an improvement in RMSE
relative to the MMM of between 10 and 20 % for surface
air temperature and around 12 % for total precipitation (see
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Figs. S1 and S2 in the Supplement). The size of the optimal
subset is significantly smaller than the total number of model
runs considered in this study (see red text in Fig. 1). For sur-
face air temperature we obtain an optimal ensemble range be-
tween 6 to 10 members and for precipitation around 12 mem-
bers. This suggests that many model runs in the archive are
very similar.

We achieve similar RMSE improvement if we exclude
closely related model runs a priori and start off with a more
independent set of model runs (one model run per institute;
see Fig. S3).

Figure 1 solely looks at the performance of the ensem-
ble mean. A characterisation of the relationship between
model simulation similarity and performance in these ensem-
bles is shown in Fig. 2. Simulation performance (in terms
of RMSE) is plotted against the simulation dependence (ex-
pressed as average pairwise error correlation across all possi-
ble model pairs in the ensemble) for the three sampling tech-
niques (three colours). As before, CRUTS3.23 was used as
the observational product, but this figure looks very similar
across different variables and observational products. Circu-
lar markers are used for the average of individual members
of the subset ensemble of any given size and diamond mark-
ers are used for ensemble mean. The darker the colour, the
larger the ensemble size. Members of the optimal ensemble
(black markers) are more independent than members of other
ensembles, at least in terms of pairwise error correlation.
Members of the performance ranking ensemble (green mark-
ers), however, show high error correlations as closely related
model runs are likely to be part of the ensemble. We thus
conclude that the optimal ensemble has favourable proper-
ties in terms of low ensemble mean RMSE and low pairwise
error correlation of their members. We will therefore focus
on the ability of this sampling technique for the remainder of
the paper.

4.1 Sensitivity of results

We now develop this optimisation example to highlight the
flexibility of the method. In doing so, it should become clear
that calibration for performance and dependence is necessar-
ily problem dependent. A graphical representation of the ex-
perimental choices we explore is shown in Fig. 3. We explore
different aspects of this flowchart below.

4.1.1 Choice of observational product

The ensembles in the previous subsection were calibrated on
a single observational product (depicted in green in Fig. 3).
Observational uncertainty can be quite large depending on
the variable and can thus result in a different optimal sub-
set. Figure 1 for different observational products (and vary-
ing observational data availability) can be found in the Sup-
plement (Figs. S1 and S2). HadCRUT4, for example, is the
same as CRUTEM4 over land, but additionally has data over

Figure 2. The dependence (in terms of average pairwise error cor-
relation across all possible model pairs in the ensemble) is plot-
ted against the performance (in terms of RMSE) for three differ-
ent sampling techniques. It is based on surface air temperature and
CRUTS3.23 is used as observational product. For the circular mark-
ers, the mean of model–observation distances within the ensemble
is plotted against the mean of pairwise error correlations for the in-
dividual members within an ensemble for a certain ensemble size.
The diamonds are used to show the RMSE of the ensemble mean
(rather than the mean RMSE of the individual members) compared
to the observational product. The values on the vertical axis are the
same as for the circular markers. The larger the ensemble size, the
darker the fill colour. The red dotted line indicates the lowest RMSE
for the optimal ensemble (based on the ensemble mean).

the ocean. The optimal subsets derived from calibrating on
those two observational products separately are quite differ-
ent, which highlights the sensitivity of the calibration exer-
cise to the chosen spatial domain. This is particularly impor-
tant for impact assessments and regional climate modelling,
for which ensemble selection is done based on a specific re-
gion. Moreover, observational uncertainty within one obser-
vational product (instead of across the products) should also
be considered to test the stability of the optimal subset. This
has not been done here, but could certainly be investigated
in future studies. Lastly, if multiple observational products
per variable are available and all equally credible, finding a
subset that is optimal using all of them is also a possibility.
This could be done by putting multiple observational prod-
ucts into a single cost function. However, when using ensem-
bles for inference, a lot can be learned from the spread across
observational products. This additional uncertainty added by
observations is ignored if all the products are combined in a
single cost function.

Earth Syst. Dynam., 9, 135–151, 2018 www.earth-syst-dynam.net/9/135/2018/



N. Herger et al.: Selecting a climate model subset 141

Figure 3. Graphical representation of the method for this study and its flexibility. The different colours are used for three sections in this
publication: Data, Method, and Results.

Here, we only optimise our ensemble to one observational
product at a time and investigate how sensitive the optimal
subset is to that choice.

4.1.2 Variable choice

The selection of the variable has a profound influence on the
resulting optimal subset. This was already briefly highlighted
in Fig. 1, in which the optimal subsets for surface air tem-
perature (Fig. 1a) and total precipitation (Fig. 1b) consist of
rather different ensemble members. Generally, the optimal
ensemble size for precipitation tends to be larger. Similar
to the discussion above for the sensitivity to observational
products, one might consider optimising the subset across
multiple variables. This is particularly important if physical
consistency across variables needs to be ensured. This could
most simply be done using a single cost function that consists
of a sum of standardised terms for different variables. This is
similar to what has been done in Sanderson et al. (2015a) (see
their Fig. 1). However, this might conceal the fact that the
optimal subsets for the individual variables potentially look
very different. One might calibrate the ensemble on multi-
ple variables using a Pareto solution set, similar to what has
been done in Gupta et al. (1998) for hydrological models and
Gupta et al. (1999) for land surface schemes. An important
characteristic of such a problem is that it does not have a
unique solution, as there is a trade-off between the different
and non-commensurate variables. When improving the sub-

set for one variable (i.e. RMSE is reduced), we observe a
deterioration of the subset calibrated on the other variable.

The presented approach can obtain an optimal subset for
any given variable, as long as it is available across all model
runs and trustworthy observational products exist. One might
even consider using process-oriented diagnostics to give us
more confidence in selecting a subset for the right physical
reasons.

4.1.3 Absolute values vs. anomalies

Results presented in this study are all based on absolute val-
ues rather than anomalies. Whether or not bias correction is
required depends on the variable and the aim of the study.
To study the Arctic sea ice extent, for example, absolute val-
ues are a natural choice as there is a clear threshold for near
ice-free September conditions. An example for which bias
correction is necessary is in the field of extreme weather.
For example, mean biases between datasets must be removed
before exceedance probabilities beyond some extreme refer-
ence anomaly can be calculated.

4.1.4 Alternatives to climatology

As part of the data pre-processing step, we computed clima-
tologies (time means at each grid cell) for the model output
and observational dataset. In addition to climatologies, we
decided to consider time-varying diagnostics (“trend” and
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“space+ time”), which potentially contain information rel-
evant for projections that is not captured by time means. For
the “trend” diagnostic, we compute a linear trend of the cor-
responding variable at each grid cell and end up with a two-
dimensional array for each simulation and observation. As
a second time-varying diagnostic, we compute 10-year run-
ning means at each grid cell to obtain a three-dimensional
array which is subsequently used for the analysis. This is
hereafter referred to as “space+ time”. Section 4.2.1 shows
(based on a model-as-truth experiment) how sensitive the en-
semble can be to the diagnostics (mean, trend, or variability)
chosen in the pre-processing step.

4.1.5 Defining the benchmark

To assess whether our optimal subset has improved skill, we
need to define a benchmark. In Fig. 1, we used the MMM
of 81 model runs as our benchmark (solid line). However,
other benchmarks could be used. The three horizontal lines
in Fig. 1 refer to three different baselines that could be used
to compare against subset performance. The solid line is the
MMM of all 81 model runs. We would consider this bad
practice as we arbitrarily give more weight to the models rep-
resented by the largest number of members. For the dashed
line, we first averaged across the ensemble members from
each climate model and then averaged across all 38 mod-
els (same is done for the maps in Sect. 4.2.2). The dotted
line is the ensemble mean when only allowing one run per
institute to be part of the ensemble. Interestingly, the dot-
ted line is very often the highest one and the solid line has
the lowest RMSE. One likely explanation is that the original
CMIP5 archive is indirectly already slightly weighted due to
a higher replication of well-performing models (Sanderson
et al., 2015b). By eliminating those duplicates, our ensemble
mean gets worse because regional biases do not cancel out
as effectively. For the model-as-truth experiment described
in Sect. 4.2.1, our benchmark was also obtained by selecting
one model run per institute.

4.1.6 Sensitivity to the underlying cost function

An essential part of the optimisation problem is the cost func-
tion. Comparison of all the sensitivities mentioned above is
made possible only because our subsets are truly optimal
with respect to the prescribed cost function. For the results
above, the cost function f (x) being minimised by the Gurobi
solver was

f (x)= f1(x)=MSE

((
1
|x|

∑
i∈x

mi

)
,y

)
. (1)

Here, x denotes the optimal subset (with |x| being the subset
size), y is the pre-processed observational product, and mi is
model simulation i. MSE stands for the area-weighted mean
squared error function.

Reasons to use ensembles of climate models are mani-
fold, which goes hand in hand with the need for an ensem-
ble selection approach with an adjustable cost function. Note
that we do not consider the MSE of the ensemble mean as
the only appropriate optimisation target for all applications.
Even though it has been shown that the multi-model average
of present-day climate is closer to the observations than any
of the individual model runs (e.g. Gleckler et al., 2008; Re-
ichler and Kim, 2008; Pierce et al., 2009), it has also been
shown that its variance is significantly reduced relative to
observations (e.g. Knutti et al., 2010b). Also, solely focus-
ing on the ensemble mean could potentially lead to poorer-
performing individual models as part of the optimal subset
despite getting the mean closer to observations. Errors are
expected to cancel out in the multi-model average if they
are random or not correlated across models. Finding a sub-
set whose mean cancels out those errors most effectively is
therefore a good proxy for finding an independent subset, at
least with respect to this metric, and is sufficient as a proof
of concept for this novel approach.

Of course this cost function can and should be adjusted
depending on the aim of the study, as long as the expressions
are either linear or quadratic. To illustrate this idea, we add
two new terms to the cost function above that account for
different aspects of model interdependence:

f (x)=
f1(x)−µ1

σ1
+
f2(x)−µ2

σ2
−
f3(x)−µ3

σ3
. (2)

Here, minimising f (x) will involve minimising the first and
second terms in Eq. (2) and maximising the third term (note
the minus sign in front of term 3). To ensure that the three
terms all have a similar magnitude and variability, we sub-
tract the mean (µ) and divide by the standard deviation (σ )
derived from 100 random ensembles of a given ensemble
size.

The function f1(x) is the same as in Eq. (1). It minimises
the MSE between the subset mean of a given size and the
observational product y. The second and third terms can be
written as follows:

f2(x)=
1
|x|

∑
i∈x

MSE(mi,y) , (3)

f3(x)=
2

|x| · (|x| − 1)

∑
i 6=j∈x

MSE
(
mi ,mj

)
1
2

(
MSE(mi ,y)+MSE

(
mj ,y

)) . (4)

The function f2(x) in the second term ensures that the mean
MSE between each ensemble member and the observational
product is minimised. So, this term is related to the per-
formance of the individual ensemble members – we want
to avoid very poorly performing members being in the fi-
nal ensemble. It would of course also be possible to make
an a priori decision on which models should be considered
before starting the optimisation process. The function f3(x)
averages the pairwise MSE distances between all ensemble
members and then divides by the mean performance. This
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should be maximised and helps to avoid clustering by ensur-
ing that the ensemble members are not too close to each other
relative to their distance to the observational product. This
is a way to address dependence in ensemble spread. It also
makes it harder for the algorithm to select multiple mem-
bers from the same model. Sanderson et al. (2017) used a
similar idea of calculating pairwise area-weighted root mean
square differences over the spatial domain to obtain an inter-
model distance matrix. This matrix is then normalised by the
mean inter-model distance to obtain independence weights
as a measure of model similarity.

Based on the climatological metric, Gurobi can solve
Eq. (2) within a few seconds for any given subset size.
Finding an optimal solution without this solver would have
been impossible within a reasonable amount of time. Results
show that the RMSE of the optimal ensemble mean based
on Eq. (2) is almost as low as for Eq. (1); see Fig. 1 (black
circles for Eq. 1 and triangles for Eq. 2). However, the indi-
vidual members of the optimal ensemble based on the cost
function with three terms seem to have a better average per-
formance and are slightly more independent. This might be
of advantage if end users want to avoid having multiple en-
semble members from the same model in the optimal subset.
Term 3 in Eq. (2) will take care of that. Moreover, term 2
will make sure that bad-performing model runs are excluded
from the optimal subset. In other words, explicitly consider-
ing single model performance and eliminating obvious du-
plicates does not significantly penalise the ensemble mean
performance. The magnitude of the three terms in Eq. (2) as
a function of the ensemble size is shown in Figs. S8 and S9.

The cost function presented in this study solely uses MSE
as a performance metric. There are of course many more
metrics available (e.g. Xu et al., 2016; Taylor et al., 2001;
Gleckler et al., 2008; Baker and Taylor, 2016) that we might
choose to implement in this system for different applica-
tions. So as not to confuse this choice with the workings
of the ensemble selection approach, however, we illustrate
it with RMSE alone, as this is what most existing approaches
in this field use to define their performance weights (e.g.
Knutti et al., 2017a; Sanderson et al., 2017; Abramowitz and
Bishop, 2015).

For those concerned about overconfidence of the ensem-
ble projections (due to the “unknown unknowns”), one could
add another term which maximises future spread. This would
result in an ensemble which allows us to explore the full
range of model responses. It is also possible to start weight-
ing the terms of the cost function differently depending on
what seems more important.

4.2 Application to the future

4.2.1 Testing out-of-sample skill

The optimal selection approach is clearly successful at can-
celling out regional biases in the historical period for which

observations are available. We refer to this period as “in-
sample”. Is a model that correctly simulates the present-day
climatology automatically a good model for future climate
projections? To answer this question, we need to investi-
gate if regional biases persist into the future and determine
whether the approach is fitting short-term variability. In other
words, we have to ensure that our subset selection approach
is not overfitting on the available data in-sample, which can
potentially lead to spurious results out-of-sample. This is
done by conducting model-as-truth experiments. This should
give an indication of whether sub-selecting in this way is
likely to improve future predictability or if we are likely to
be overconfident with our subset. Rigid model tuning, for ex-
ample, could cause the ensemble to be heavily calibrated on
the present-day state. An optimal subset derived from such
an ensemble would not necessarily be skillful for future cli-
mate prediction as we are dealing with overfitting and we
are not calibrating to biases that persist into the future. This
is exactly where model-as-truth experiments come into play.
For this purpose, one simulation per institute is considered
to be the “truth” as though it were observations, and then
the optimal subset from the remaining 20 runs (one per in-
stitute) is determined for the in-sample period (1956–2013)
based on the cost function in Eq. (1). The optimal ensemble’s
ability can then be tested in the out-of-sample 21st century,
since we now have “observations” for this period. Results are
then collated over all possible simulations playing the role of
the “truth”. In all our model-as-truth experiments, near rela-
tives were excluded as truth because members from the same
model are likely to be much closer to each other than to the
real observational product. This subscription to institutional
democracy is consistent with what was found by Leduc et al.
(2016) to prevent overconfidence in climate change projec-
tions. Sanderson et al. (2017) also removed immediate neigh-
bours of the truth model from the perfect model test when
deriving the parameters for their weighting scheme.

Figure 4 shows the results of the model-as-truth experi-
ment for surface air temperature for the climatological field,
the linear trend, and space+ time, as described in Sect. 4.1
(Sect. 4.1.4). Figure 4a shows global absolute mean tempera-
ture time series for the in- and out-of-sample periods. The in-
sample period, in which the optimal subset is found for each
model as truth, is 1956–2013. For the climatological metric
and the space+ time metric, the same subset was tested out-
of-sample in 2071–2100 using the same truth as in the in-
sample period. The out-of-sample period for the trend metric
is 2006–2100, as 30 years is not long enough to calculate a
linear trend at each grid cell without internal variability po-
tentially playing a big role. Both in- and out-of-sample data
undergo the same pre-processing steps. The mask which was
used for those calculations is shown in the lower right corner
of Fig. 4a.

Figure 4b–d show the RMSE improvement of the optimal
subset for a given size relative to the mean of all remain-
ing 20 simulations for each simulation as truth. The black
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Figure 4. Results of the model-as-truth experiment based on three different metrics (b–d) and 21 model simulations (one simulation per
institute). (a) Time series of surface air temperature averaged over the areas where CRUTS3.23 has data availability (see map in lower right
corner). The time series of the 21 model simulations which are used for the experiment are plotted slightly thicker; 1956–2013 was used as
in-sample period, in which the optimal subset is derived, and 2006–2100 was used as out-of-sample period for the trend metric and 2071–
2100 for the remaining two metrics. (b) The RMSE improvement of the optimal subset relative to the MMM is plotted as a function of the
subset size for each model simulation as truth. The subset for each given ensemble size was derived in the in-sample period based on the
climatological metric. The curve is the mean improvement across all the 21 model simulations as “truth” and the shading around it represents
the spread. Black was used for the historical period and dark blue for RCP8.5; (c) and (d) show the same as (b) but for different metrics.

curve is the in-sample improvement and the blue curve is the
out-of-sample improvement for RCP8.5 averaged across all
truths. The shading represents the spread around the mean.
Results for RCP4.5 look very similar and are therefore not
shown here.

It is evident that both the climatological metric and the
space+ time metric have improved skill out-of-sample com-
pared to simply taking the mean of all 20 runs. We observe
an RMSE improvement almost as big as in-sample, which we
used to conduct the optimisation. This primarily shows the
persistence of the climatological bias. Climate models which
are biased high (in terms of temperature, for example) in the

present day are often at the higher end of the distribution in
the projections. This is related to climate sensitivity and our
approach is able to make use of this persistent bias.

The trend metric is different, however. To be clear, here we
obtain the optimal subset based on a two-dimensional field
with linear (58-year) trends at each grid cell in the in-sample
period. We then use this subset trained on trend values to
predict the out-of-sample trend field (using the same simu-
lation as “truth” as in the in-sample period). The RMSE im-
provement presented in Fig. 4d is calculated from the “true”
RCP8.5 trend field and the predicted trend derived from the
optimal subset. We see a large in-sample improvement, but
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Figure 5. The number of times the “model-as-truth” is within the 10th–90th percentile of ensemble spread (defined by the optimal subset for
a given size) averaged across all “truths” is plotted against the subset size. (a) Schematic explaining how the fraction of “truth” lying in the
predicted range is obtained. (b)–(d) In-sample (black) and out-of-sample (blue) curves for three different metrics. Surface air temperature is
used as the variable. The horizontal lines refer to the percentage obtained by using all 21 model simulations.

out-of-sample this skill quickly disappears. We thus conclude
that the magnitude and nature of trends within individual
models do not persist into the future and a subset based on
this metric will not have any improved skill out-of-sample.
Figure S5 shows the very weak correlation between the in-
and out-of-sample trend very clearly. This highlights the dif-
ficulty of finding an appropriate metric which constrains fu-
ture projections. Results for precipitation can be found in the
Supplement (Fig. S6).

Figure 4 sheds light on the increased skill of the opti-
mal ensemble compared to the simple MMM, at least for
the mean signal. We have not yet investigated the spread of
the ensemble, which is as least as important, especially for
impact- and risk-related fields. As an example, the potential
danger of having a too-narrow ensemble spread (overcon-

fident projections) by neglecting important uncertainties is
highlighted in Keller and Nicholas (2015).

Results for the ensemble spread are shown in Fig. 5 for
surface air temperature. Figure 5a explains how the spread of
the ensemble is quantified. We calculate how often the truth
lies within the 10th to 90th percentile of the optimal ensem-
ble for a given ensemble size. We derive the percentiles from
a normal distribution, whose mean and standard deviation
were calculated from the optimal ensemble (for a given truth
and ensemble size) during the in-sample, or training period.
This is done for every grid cell and each model as truth. The
curves shown in Fig. 5b–d are the average of the fractions of
“truth” values that lie within this range across all grid cells
and truths plotted against the subset size for the climatologi-
cal field (Fig. 5b), the space+ time (Fig. 5c), and linear trend
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(Fig. 5d). We would expect the truth to lie within the 10th to
90th percentile of the ensemble at least 80 % of the time to
avoid overconfidence. Black is used for the in-sample frac-
tion and the two shades of blue for RCP4.5 (light blue) and
RCP8.5 (dark blue). The fraction for an ensemble consisting
of all 20 model runs – the benchmark in this case – is shown
with a horizontal line. The ensembles obtained based on the
climatological metric and the space+ time metric are slightly
over-dispersive both in- and out-of-sample, which suggests
the optimal ensemble should not result in overconfidence in
ensemble spread relative to the entire ensemble. An ensem-
ble that is overconfident can lead to projections whose un-
certainty range is too narrow and thus misleading. This is the
case for the trend metric, at least for smaller ensemble sizes.

Such a model-as-truth experiment can also assist with the
choice of an optimal subset size for the application to pro-
jections. It does not necessarily have to be the same as the
in-sample ensemble size, as aspects like mean skill improve-
ment and reduction of the risk of underdispersion have to be
considered.

Can a subset calibrated on absolute historical temperature
constrain temperature changes in the future as opposed to
just minimising bias in the ensemble mean? This anomaly
skill in the out-of-sample test is depicted in Fig. 6. The set-
up is similar to Fig. 4, but here we are predicting regional
temperature change from mean values in 2006–2035 to those
in 2071–2100. The optimal subset is still derived using either
the climatological (Fig. 4b), space+ time (Fig. 4c), or trend
diagnostic (Fig. 4d). The only aspect that has changed is what
is being predicted is now out-of-sample. The curves are the
RMSE improvement relative to the MMM of 20 model runs
averaged across all truths for RCP4.5 (light blue) and RCP8.5
(dark blue). Shading indicates the spread (1 standard devia-
tion) across the different truths. Results for regional precip-
itation change are shown in Fig. S7. Figure 4b shows that
there is very little to be gained by constraining the climatol-
ogy in terms of out-of-sample skill. Across all metrics and
variables, the subsets show hardly any RMSE improvement
compared to the MMM of the 20 model runs, which is con-
sistent with Sanderson et al. (2017). They found only small
changes in projected climate change in the US when weight-
ing models with performance on present-day mean climate,
and it is consistent with the fact that our field has not man-
aged to significantly reduce uncertainties in transient (Knutti
and Sedlàček, 2013) or equilibrium warming (Knutti et al.,
2017b). Those findings are also consistent with Knutti et al.
(2010b), who found that there is only a weak relationship
between model skill in simulating present-day climate con-
ditions and the magnitude of predicted change. So, a skillful
subset under present-day conditions does not guarantee more
confidence in future projections. But even if the uncertainties
in future projections are not strongly reduced, there is a clear
advantage in reducing biases in the present-day climate when
using those models to drive impact models, as it reduces the
need for complex bias correction methods. Ultimately, when

models improve further and the observed trends get stronger,
we would expect such methods to improve the skill of pro-
jections.

This result is partly about the discrepancy between the
metric used to derive the optimal ensemble and that used to
evaluate it and reinforces how sensitive this type of calibra-
tion exercise is to the somewhat subjective choices faced by a
researcher trying to post-process climate projections. It is an
important limitation that should be kept in mind when using
this sampling strategy to constrain future projections.

4.2.2 Projections

In earlier sections we presented results based on a single ob-
servational product per variable. However, the importance of
the choice of product should not be neglected. The influence
of obtaining an optimal subset based on different observa-
tional products can be visualised with maps. To create Fig. 7,
the temperature change between the 2081–2100 and 1986–
2005 climatologies was calculated for the RCP8.5 scenario
using all 81 model runs by first averaging across initial con-
dition members before averaging the 38 models. Then, the
temperature change of the optimal subset (based on a given
observational product), calculated in the same way, was sub-
tracted. The result is a map that shows the difference that the
optimal sampling makes to projected temperature changes.
Maps are shown for the optimal subsets derived from dif-
ferent observations, with grey contours highlighting the area
used to derive the subset. The number in brackets refers to
the size of the optimal subset. Despite the maps looking
quite different, we can identify some regions with consistent
changes. The Southern Ocean is consistently warmer in the
optimal subset and the Arctic is colder than the MMM (ex-
cept for BEST, global). Generally, the optimal subset results
in a cooler land surface. Figure 8 shows the same as Fig. 7
but for precipitation change based on three different obser-
vational products. They all show an increase in precipitation
in the equatorial Pacific and the western Indian Ocean and a
decrease over South America.

5 Discussion and conclusions

We presented a method that selects a CMIP5 model subset
which minimises a given cost function in a computationally
efficient way. Such a calibrated smaller ensemble has impor-
tant advantages compared to the full ensemble of opportu-
nity, in particular reduced computational cost when driving
regional models, smaller biases in the present day, which re-
duce the need for bias correction, reduced dependence be-
tween the members, and sufficient spread in projections. The
cost function can be varied depending on the application. The
simplest cost function presented here simply minimises bi-
ases of the ensemble mean. We have shown that this method
accounts to some degree for the model dependence in the
ensemble by the way it optimises the ensemble mean, but
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Figure 6. Similar to Fig. 4, but here we are trying to predict the (2071–2100)–(2006–2035) temperature change (a) based on the optimal
subsets obtained with different metrics. For (b)–(d) the optimal ensembles obtained in-sample (1956–2013) are used to predict the surface
air temperature change and compared to the “true” temperature change. The same is done with the MMM and then the RMSE improvement
of the optimal subset relative to the one of the MMM is calculated for both RCP4.5 and RCP8.5. The curve is the mean across all models as
truth and the shading is the spread around it.

closely related models or even initial condition ensemble
models of the same models are not penalised and can still
occur. This optimal subset performs significantly better than
a random ensemble or an ensemble that is solely based on
performance. The performance ranking ensemble sometimes
even performs worse than the random ensemble in its mean,
even though of course the individual models perform better.
Depending on the application, one or the other will matter
more.

We also illustrated the expansion of the cost function to
optimise additional criteria, enabling an optimal subset that
minimises the ensemble mean bias, the individual model
biases, the clustering of the members, or any combination
thereof. One could also, for example, add a term that max-
imises the ensemble projection spread to avoid overconfi-

dence. The choice of what is constrained by the cost func-
tion clearly depends on the aim of the study (e.g. present-day
bias, dependence issue, future spread). We highlight the im-
portance of testing the sensitivity to the metric and observa-
tional product used (including varying data availability), as
they can lead to quite different results.

The lasso regression analysis method (Tibshirani, 2011)
often used in the field of machine learning tries to select a
subset of features (in our case, model simulations) to improve
prediction accuracy. It is similar to the presented approach in
that it also selects a subset of models by applying weights of
zero. However, contrary to the method presented here, it is
to our knowledge not possible to customise the cost function
that is being minimised (by default, RMSE).
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Figure 7. The difference between the multi-model mean (81 runs; first averaged across initial condition members and then averaged across
38 models) and the optimal subset is shown for the RCP8.5 surface air temperature change between (2081–2100) and (1986–2005). The
optimal subset is different depending on which observational product is used. The grey contours outline the region which was used to obtain
the optimal subset in the historical period. The optimal ensemble size for each observational product is given in the title of each map.

Model-as-truth experiments were used to investigate the
potential for overconfidence, estimate the ensemble spread,
and test the robustness of emergent constraints. Based on
those experiments we learned that absolute present-day val-
ues constrain absolute values in the future (due to a persistent
bias). However, absolute present-day values do not constrain
projected changes relative to a present-day state.

There were other pertinent questions we did not address,
of course. These include the question of how best to create an
optimal subset across multiple variables and gridded obser-
vational products. This seems especially important if physi-
cal consistency across variables should be maintained. Hav-

ing a Pareto set of ensembles (by optimising each variable
separately) rather than a single optimal subset is a potential
solution, but is clearly more difficult to work with.

Using model-as-truth experiments, we observed that the
skill of the optimal subset relative to the unweighted ensem-
ble mean decreases the further out-of-sample we were testing
it. This breakdown of predictability is not unexpected as the
climate system reached a state it has never experienced be-
fore. This is certainly an interesting aspect which should be
investigated in more depth in a future study.

Many of the points raised here are also clearly not re-
stricted to GCMs. The same holds for regional climate mod-
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Figure 8. Same as Fig. 7, but for precipitation change.

els, hydrological models, and perhaps ecological models. We
encourage others to apply the same approach to different
kinds of physically based models.

Critically, we wish to reinforce that accounting for depen-
dence is essentially a calibration exercise, whether through
continuous or discrete weights, as was the case here. De-
pending on the cost function, the data pre-processing, and
the observational product, one can end up with a differently
calibrated ensemble. Depending on the application, bias cor-
rection of the model output might be appropriate before exe-
cuting the calibration exercise. We suggest that the approach
introduced in this study is an effective and flexible way to
obtain an optimal ensemble for a given specified use case.

Future research will help to provide confidence in this
method and enable researchers to go beyond model democ-
racy or arbitrary weighting. This is especially important as
replication and the use of very large initial condition ensem-
bles will likely become a larger problem in future global en-
semble creation exercises. An approach that attempts to re-
duce regional biases (and therefore indirectly dependence)
offers a more plausible and justifiable projection tool than an
approach that simply includes all available ensemble mem-
bers.
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