Articles | Volume 9, issue 3
https://doi.org/10.5194/esd-9-1085-2018
https://doi.org/10.5194/esd-9-1085-2018
Research article
 | Highlight paper
 | 
30 Aug 2018
Research article | Highlight paper |  | 30 Aug 2018

The point of no return for climate action: effects of climate uncertainty and risk tolerance

Matthias Aengenheyster, Qing Yi Feng, Frederick van der Ploeg, and Henk A. Dijkstra

Related authors

Dynamics of salt intrusion in complex estuarine networks; an idealised model applied to the Rhine-Meuse Delta
Bouke Biemond, Wouter Kranenburg, Ymkje Huismans, Huib E. de Swart, and Henk A. Dijkstra
EGUsphere, https://doi.org/10.5194/egusphere-2024-2322,https://doi.org/10.5194/egusphere-2024-2322, 2024
Short summary
Similar North Pacific variability despite suppressed El Niño variability in the warm mid-Pliocene climate
Arthur Merlijn Oldeman, Michiel L. J. Baatsen, Anna S. von der Heydt, Frank M. Selten, and Henk A. Dijkstra
Earth Syst. Dynam., 15, 1037–1054, https://doi.org/10.5194/esd-15-1037-2024,https://doi.org/10.5194/esd-15-1037-2024, 2024
Short summary
Observation based temperature and freshwater noise over the Atlantic Ocean
Amber A. Boot and Henk A. Dijkstra
EGUsphere, https://doi.org/10.5194/egusphere-2024-2431,https://doi.org/10.5194/egusphere-2024-2431, 2024
Short summary
AMOC stability amid tipping ice sheets: the crucial role of rate and noise
Sacha Sinet, Peter Ashwin, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 15, 859–873, https://doi.org/10.5194/esd-15-859-2024,https://doi.org/10.5194/esd-15-859-2024, 2024
Short summary
Highly stratified mid-Pliocene Southern Ocean in PlioMIP2
Julia E. Weiffenbach, Henk A. Dijkstra, Anna S. von der Heydt, Ayako Abe-Ouchi, Wing-Le Chan, Deepak Chandan, Ran Feng, Alan M. Haywood, Stephen J. Hunter, Xiangyu Li, Bette L. Otto-Bliesner, W. Richard Peltier, Christian Stepanek, Ning Tan, Julia C. Tindall, and Zhongshi Zhang
Clim. Past, 20, 1067–1086, https://doi.org/10.5194/cp-20-1067-2024,https://doi.org/10.5194/cp-20-1067-2024, 2024
Short summary

Related subject area

Earth system change: climate scenarios
Countries most exposed to individual and concurrent extremes and near-permanent extreme conditions at different global warming levels
Fulden Batibeniz, Mathias Hauser, and Sonia Isabelle Seneviratne
Earth Syst. Dynam., 14, 485–505, https://doi.org/10.5194/esd-14-485-2023,https://doi.org/10.5194/esd-14-485-2023, 2023
Short summary
Direct and indirect application of univariate and multivariate bias corrections on heat-stress indices based on multiple regional-climate-model simulations
Liying Qiu, Eun-Soon Im, Seung-Ki Min, Yeon-Hee Kim, Dong-Hyun Cha, Seok-Woo Shin, Joong-Bae Ahn, Eun-Chul Chang, and Young-Hwa Byun
Earth Syst. Dynam., 14, 507–517, https://doi.org/10.5194/esd-14-507-2023,https://doi.org/10.5194/esd-14-507-2023, 2023
Short summary
Overview: The Baltic Earth Assessment Reports (BEAR)
H. E. Markus Meier, Marcus Reckermann, Joakim Langner, Ben Smith, and Ira Didenkulova
Earth Syst. Dynam., 14, 519–531, https://doi.org/10.5194/esd-14-519-2023,https://doi.org/10.5194/esd-14-519-2023, 2023
Short summary
The implications of maintaining Earth's hemispheric albedo symmetry for shortwave radiative feedbacks
Aiden R. Jönsson and Frida A.-M. Bender
Earth Syst. Dynam., 14, 345–365, https://doi.org/10.5194/esd-14-345-2023,https://doi.org/10.5194/esd-14-345-2023, 2023
Short summary
Robust global detection of forced changes in mean and extreme precipitation despite observational disagreement on the magnitude of change
Iris Elisabeth de Vries, Sebastian Sippel, Angeline Greene Pendergrass, and Reto Knutti
Earth Syst. Dynam., 14, 81–100, https://doi.org/10.5194/esd-14-81-2023,https://doi.org/10.5194/esd-14-81-2023, 2023
Short summary

Cited articles

Allen, M. R., Frame, D. J., Huntingford, C., Jones, C. D., Lowe, J. A., Meinshausen, M., and Meinshausen, N.: Warming caused by cumulative carbon emissions towards the trillionth tonne, Nature, 458, 1163–1166, https://doi.org/10.1038/nature08019, 2009. a, b
Clarke, L. E., Edmonds, J. A., Jacoby, H. D., Pitcher, H. M., Reily, J. M., and Richels, R. G.: Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations Synthesis, Tech. rep., Department of Energy, Office of Biological & Environmental Research, Washington, DC, 2007. a
Dijkstra, H. A.: Nonlinear Clim. Dynam., Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9781139034135, 2013. a
Fujino, J., Nair, R., Kainuma, M., Masui, T., and Matsuoka, Y.: Multi-gas Mitigation Analysis on Stabilization Scenarios Using Aim Global Model, Energ. J., 2006, 343–354, https://doi.org/10.5547/ISSN0195-6574-EJ-VolSI2006-NoSI3-17, 2006. a
Haustein, K., Otto, F. E. L., Uhe, P., Schaller, N., Allen, M. R., Hermanson, L., Christidis, N., McLean, P., and Cullen, H.: Real-time extreme weather event attribution with forecast seasonal SSTs, Environ. Res. Lett., 11, 064006, https://doi.org/10.1088/1748-9326/11/6/064006, 2016. a
Download
Short summary
We determine the point of no return (PNR) for climate change, which is the latest year to take action to reduce greenhouse gases to stay, with a certain probability, within thresholds set by the Paris Agreement. For a 67 % probability and a 2 K threshold, the PNR is the year 2035 when the share of renewable energy rises by 2 % per year. We show the impact on the PNR of the speed by which emissions are cut, the risk tolerance, climate uncertainties and the potential for negative emissions.
Altmetrics
Final-revised paper
Preprint