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Abstract. If the Paris Agreement targets are to be met, there may be very few years left for policy makers
to start cutting emissions. Here we calculate by what year, at the latest, one has to take action to keep global
warming below the 2 K target (relative to pre-industrial levels) at the year 2100 with a 67 % probability; we call
this the point of no return (PNR). Using a novel, stochastic model of CO2 concentration and global mean surface
temperature derived from the CMIP5 ensemble simulations, we find that cumulative CO2 emissions from 2015
onwards may not exceed 424 GtC and that the PNR is 2035 for the policy scenario where the share of renewable
energy rises by 2 % year−1. Pushing this increase to 5 % year−1 delays the PNR until 2045. For the 1.5 K target,
the carbon budget is only 198 GtC and there is no time left before starting to increase the renewable share by
2 % year−1. If the risk tolerance is tightened to 5 %, the PNR is brought forward to 2022 for the 2 K target and
has been passed already for the 1.5 K target. Including substantial negative emissions towards the end of the
century delays the PNR from 2035 to 2042 for the 2 K target and to 2026 for the 1.5 K target. We thus show how
the PNR is impacted not only by the temperature target and the speed by which emissions are cut but also by risk
tolerance, climate uncertainties and the potential for negative emissions. Sensitivity studies show that the PNR
is robust with uncertainties of at most a few years.

1 Introduction

The Earth system is currently in a state of rapid warming
that is unprecedented even in geological records (Pachauri
et al., 2014). This change is primarily driven by the rapid
increase in atmospheric concentrations of greenhouse gases
(GHGs) due to anthropogenic emissions since the industrial
revolution (Myhre et al., 2013). Changes in natural physical
and biological systems are already being observed (Rosen-
zweig et al., 2008), and efforts are made to determine the “an-
thropogenic impact” on particular (extreme weather) events
(Haustein et al., 2016). Nowadays, the question is not so
much if but by how much and how quickly the climate will
change as a result of human interference, whether this change

will be smooth or bumpy (Lenton et al., 2008) and whether
it will lead to dangerous anthropogenic interference with the
climate (Mann, 2009).

The climate system is characterized by positive feedbacks
causing instabilities, chaos and stochastic dynamics (Dijk-
stra, 2013) and many details of the processes determining
the future behavior of the climate state are unknown. The de-
bate on action on climate change is therefore focused on the
question of risk and how the probability of dangerous climate
change can be reduced. In scientific and political discussions,
targets on “allowable” warming (in terms of change in global
mean surface temperature, GMST, relative to pre-industrial
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conditions1) have turned out to be salient. The 2 K warm-
ing threshold is commonly seen – while gauging consider-
able uncertainties – as a safe threshold to avoid the worst ef-
fects that might occur when positive feedbacks are unleashed
(Pachauri et al., 2014). Indeed, in the Paris COP21 confer-
ence it was agreed to attempt to limit warming below 1.5 K
(United Nations, 2015). It is, however, questionable whether
the commitments made by countries (the so-called nationally
determined contributions, NDCs) are sufficient to keep tem-
peratures below the 1.5 K and possibly even the 2.0 K target
(Rogelj et al., 2016a).

A range of studies has appeared to provide insight into the
safe level of cumulative emissions to stay below either the 1.5
or 2.0 K target at a certain time in the future with a specified
probability, usually taken as the year 2100. The choice of a
particular year is necessarily arbitrary and neglects the possi-
bility of additional future warming. Early studies made use of
Earth System Models of Intermediate Complexity (EMICs;
Zickfeld et al., 2009; Huntingford et al., 2012; Steinacher
et al., 2013) to obtain such estimates. Because it was found
that peak warming depends on cumulative carbon emissions,
E6 , but is independent of the emission pathway (Allen et al.,
2009; Zickfeld et al., 2012), focus has been on the specifica-
tion of a safe level of E6 values corresponding to a certain
temperature target. In more recent papers, also emulators de-
rived from either C4MIP models (Sanderson et al., 2016) or
CMIP5 (Coupled Model Intercomparison Project 5) models
(Millar et al., 2017b), with specified emission scenarios, were
used for this purpose. Such a methodology was recently used
in Millar et al. (2017a) to argue that a post-2015 value of
E6 ≈ 200 GtC would limit post-2015 warming to less than
0.6 ◦C (so meeting the 1.5 K target) with a probability of
66 %.

In this paper we pose the following question: assume
one wants to limit warming to a specific threshold in the
year 2100, while accepting a certain risk tolerance of exceed-
ing it, then when, at the latest, does one have to start to ambi-
tiously reduce fossil fuel emissions? The point in time when
it is “too late” to act in order to stay below the prescribed
threshold is called the point of no return (PNR; van Zalinge
et al., 2017). The value of the PNR will depend on a number
of quantities, such as the climate sensitivity and the means
available to reduce emissions. To determine estimates of the
PNR, a model is required of global climate development that
(a) is accurate enough to give a realistic picture of the behav-
ior of GMST under a wide range of climate change scenarios,
(b) is forced by fossil fuel emissions, (c) is simple enough to
be evaluated for a very large number of different emission
and mitigation scenarios and (d) provides information about
risk, i.e., it cannot be purely deterministic.

The models used in van Zalinge et al. (2017) are clearly
too idealized to determine adequate estimates of the PNR un-

1We define pre-industrial temperature as the 1861–1880 mean
temperature, in accordance with IPCC AR5.

der different conditions. In this paper, we therefore construct
a stochastic state-space model from the CMIP5 results where
many global climate models were subjected to the same forc-
ing for a number of climate change scenarios (Taylor et al.,
2012). This stochastic model – representing all kinds of un-
certainties in the climate model ensemble – is then used to-
gether with a broad range of mitigation scenarios to deter-
mine estimates of the PNR under different risk tolerances.

Stocker (2013) showed that if the Paris Agreement tem-
perature targets are to be met, only a few years are left for
policy makers to take action by cutting emissions: with an
emissions reduction rate of 5 % year−1, the 1.5 K target has
become unachievable and the 2 K target becomes unachiev-
able after 2017. The Stocker (2013) analysis highlights the
crucial concept of the closing door or PNR of climate pol-
icy, but it is deterministic. It does not take account of the
possibility that these targets are not met, and does not al-
low for negative emissions scenarios. We here show how the
considerable climate uncertainties captured by our stochas-
tic state-space model, the degree to which policy makers are
willing to take risk, and the potential of negative emissions
affect the carbon budget and the date at which climate pol-
icy becomes unachievable (the PNR). The climate policy is
here not defined as an exponential emission reduction as in
Stocker (2013) but as a steady increase in the share of renew-
able energy in total energy generation.

2 Methods

We let 1T be the annual-mean area-weighted global mean
surface temperature (GMST) deviation from pre-industrial
conditions of which the 1861–1880 mean is considered to
be representative (Pachauri et al., 2014; Schurer et al., 2017).
From the CMIP5 scenarios we use the simulations of the pre-
industrial control, abrupt quadrupling of atmospheric CO2,
smooth increase of 1 % CO2 year−1 and the RCP (represen-
tative concentration pathway) scenarios 2.6, 4.5, 6.0 and 8.5
(Taylor et al., 2012). The data are obtained from the Ger-
man Climate Computing Center (DKRZ), the ESGF Node
at the DKRZ and KNMI’s Climate Explorer. The CO2 forc-
ings (concentrations, Meinshausen et al., 2011; and emis-
sions, van Vuuren et al., 2007; Clarke et al., 2007; Fujino
et al., 2006; Riahi et al., 2007) are obtained from the RCP
Database (available at http://tntcat.iiasa.ac.at/RcpDb, last ac-
cess: 28 March 2017).

As all CMIP5 models are designed to represent similar
(physical) processes but use different formulations, parame-
terizations, resolutions and implementations, the results from
different models offer a glimpse into the (statistical) prop-
erties of future climate change, including various forms of
uncertainty. We perceive each model simulation as one pos-
sible, equally likely, realization of climate change. Apply-
ing ideas and methods from statistical physics (Ragone et al.,
2016), in particular linear response theory (LRT), a stochas-
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tic model is constructed that represents the CMIP5 ensemble
statistics of GMST.

2.1 Linear response theory

We only use those ensemble members from CMIP5 for which
the control run and at least one perturbation run are avail-
able, leading to 34 members for the abrupt (CO2 quadru-
pling) and 39 for the smooth-forcing experiment. Consider-
ing those members from the RCP runs also available in the
abrupt forcing run, we have 25 members for RCP2.6, 30 for
RCP4.5, 19 for RCP6.0 and 29 for RCP8.5.

The CO2 concentration as a function of time for the abrupt
quadrupling and smooth CO2 increase is prescribed as

CCO2,abrupt(t)= C0(3θ (t)+ 1), (1)

CCO2,smooth(t)=

{
C0 t ≤ 0

C01.01t t > 0
(2)

with time in years from the start of the forcing, pre-industrial
CO2 concentration C0 and Heaviside function θ (t). The ra-
diative forcing1F due to CO2 relative to pre-industrial con-
ditions is given as

1F = αCO2 ln
(
CCO2 (t)
C0

)
(3)

with αCO2 = 5.35 Wm−2 (Myhre et al., 2013). With LRT, the
Green’s function for the temperature response is computed
from the abrupt forcing case as the time derivative of the
mean response (Ragone et al., 2016)

GT (t)=
1

1Fabrupt

d

dt
1Tabrupt, (4)

where 1Fabrupt(t)= ln(4C0/C0)= ln(4). The temperature
deviation from the pre-industrial state for any forcing 1Fany
is then obtained, via the convolution of the Green’s function,
as

1Tany(t)=

t∫
0

GT (t ′)1Fany(t − t ′) dt ′. (5)

Because Eq. (4) is exact, we expect that Eq. (5) with1Fany =

1Fabrupt will exactly reproduce the abrupt CMIP5 response.
In addition, for the LRT to be a useful approximation, the
response has to reasonably reproduce the smooth 1 % year−1

CMIP5 response with 1Fany =1Fsmooth. Figure 1a shows
that LRT applied to the abrupt perturbation perfectly recovers
the abrupt response – as required – and is well able to recover
the response to a smooth forcing. The correspondence is very
good for the mean response and also the variance is captured
quite well.

Beyond finding the temperature change as a result of
CO2 variations, eventually emissions,ECO2 , cause these CO2
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Figure 1. Ensemble mean (a) and variance (b) of temperature re-
sponse from CMIP5 (solid) and LRT reproduction (dashed). Year 0
gives the start of the perturbation. (c) Reconstruction of RCP tem-
perature evolution from concentration pathways using CO2 only.
Blue, orange and green lines gives CMIP5 data for RCP4.5, RCP6.0
and RCP8.5, respectively, with the ensemble mean given in black
solid (RCP4.5), dotted (RCP6.0) and dashed (RCP8.5) black. Re-
construction using CO2 radiative forcing in red (RCP4.5), purple
(RCP6.0) and brown (RCP8.5).

changes and have to be addressed explicitly. A multi-model
study of many carbon models of varying complexity under
different background states and forcing scenarios was re-
cently presented Joos et al. (2013). A fit of a three-timescale
exponential with constant offset was proposed for the en-
semble mean of responses to a 100 GtC emission pulse to
a present-day climate of the form

GCO2 (t)= µ0+

3∑
i=1

µie
−

t
τi . (6)

Coefficients µi, i = 0, . . .,3 and timescales τi, i = 1. . .3 are
determined using least-square fits on the multi-model mean.
The CO2 concentration then follows from

CCO2 (t)=

t∫
0

GCO2 (t ′) ECO2 (t − t ′) dt ′. (7)

In doing so, we use a response function that is independent
of the size of the impulse, i.e., the carbon cycle reacts in the
same way to pulses of all sizes other than 100 GtC. This is of
course a simplification, especially as very large pulses might
unleash positive feedbacks to do with the saturation of natu-
ral sinks such as the oceans (Millar et al., 2017b), but works
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reasonably well in the range of emissions we are primarily
interested in.

The full (temperature and carbon) LRT model is summa-
rized as

CCO2 (t)= CCO2,0+

t∫
0

GCO2 (t ′) ECO2 (t − t ′) dt ′, (8)

1FCO2 (t)= A αCO2 ln(CCO2 (t)/C0), (9)

1T (t)=1T0+

t∫
0

GT (t ′)1FCO2 (t − t ′)dt ′ (10)

and relates fossil CO2 emissions, ECO2 , to mean GMST per-
turbation1T with initial conditionsCCO2,0 for CO2 and1T0
for GMST perturbation. This is quite a simple model with
few “knobs to turn”. The only really free parameter is the
constant A that scales up CO2-radiative forcing to take into
account non-fossil CO2 and non-CO2 GHG emissions (not
present in the idealized scenarios), and matches the carbon
and temperature models (estimated from different model en-
sembles) together.

The constant A= 1.48 was found in order to optimize
the agreement of 1T with CMIP5 RCPs. The resulting re-
construction of temperatures from RCP CO2 concentrations
overlaid with CMIP5 data (Fig. 1c) gives a good agreement.

Internally, emissions need to be converted from
GtC year−1 to ppm year−1 using the respective molar masses
and the mass of the Earth’s atmosphere as ECO2 ppm year−1

= γECO2 GtC year−1 with γ = 0.46969 ppm GtC−1. Our
estimates of the model’s 10 parameters are found in Table 2.

In Fig. 2 we show the results obtained for RCP emis-
sions. For very-high-emission scenarios we underestimate
CO2 concentrations because for such emissions natural sinks
saturate, which is a process the pulse-size independent car-
bon response function cannot adequately capture. However,
the upscaling of radiative forcing is quite successful, yielding
a good temperature reconstruction.

2.2 Stochastic state-space model

The model outlined above still contains a data-based temper-
ature response function and it informs only about the mean
CMIP5 response. However, our main motivation is to obtain
new insights into the possible evolution to a “safe” carbon-
free state and such paths necessarily depend strongly on the
variance of the climate and on the risk one is willing to take.
This variance in temperature is quite substantial, as is evident
from Fig. 1b and c. Therefore we translate our response func-
tion model to a stochastic state-space model and incorporate
the variance via suitable stochastic terms.
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Figure 2. Reconstruction of RCP results using the response func-
tion model. In all panels, solid lines refer to RCP4.5, dotted to
RCP6.0 and dashed lines to RCP8.5. Black lines show RCP data
while colors (blue: RCP4.5, orange: RCP6.0, green: RCP8.5) give
our reconstruction. (a) Fossil CO2 emissions. (b) CO2 concentra-
tions from RCP and reconstructed using GCO2 . (c) Total anthro-
pogenic radiative forcing (black) and radiative forcing from CO2
only (red) (both from RCP) and reconstructed forcing using the re-
lations above. (d) Temperature perturbation from CMIP5 RCP (en-
semble mean) and the our reconstruction.

The response function GT from the 140-year abrupt qua-
drupling ensemble is well approximated by

GT (t)=
2∑
i=0

bie
−

t
τbi . (11)

Although τb0→∞, we require a finite τb0 for temperatures
to stabilize at some level. Hence, we choose a long timescale
τb0 = 400 years that cannot really be determined from the
140-year abrupt forcing (CMIP5) runs. By writing

C = CP+

3∑
i=1

Ci, (12)

1T =

2∑
i=0

1Ti (13)

the LRT model can be transformed into the 7-dimensional
stochastic state-space model (SSSM) shown in Table 1 with
parameters in Table 2. Initial conditions are obtained by run-
ning the noise-free model forward from pre-industrial con-
ditions (CP = C0 and Ci =1Ti = 0, i = 1,2,3) to present-
day, driven by historical emissions2. As these temperatures
are now given relative to the start of emissions, i.e., 1765, we
add the 1961–1990 model mean to the HadCRUT4 dataset
to get observed temperature deviation relative to 1765, and
compute1T relative to 1861–1880 by adding the 1861–1880
mean of this deviation time series.

The major benefit of this formulation is that we can in-
clude stochasticity. We introduce additive noise to the carbon

2These are the fossil fuel and cement production emissions
from Le Quéré et al. (2016), http://www.globalcarbonproject.org/
carbonbudget/archive/2016/Global_Carbon_Budget_2016v1.0.
xlsx, last access: 28 March 2017.
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Table 1. Stochastic state-space model. Carbon model on the left, temperature model on the right. Wt denotes the Wiener process.

dCP = µ0Edt 1F = A α ln(C/C0)
dC1 = (µ1E−

1
τ1
C1)dt d1T0 = (b01F −

1
τb0
1T0)dt + σT 0 dWt

dC2 = (µ2E−
1
τ2
C2)dt + σC2 dWt d1T1 = (b11F −

1
τb1
1T1)dt

dC3 = (µ3E−
1
τ3
C3)dt d1T2 = (b21F −

1
τb2
1T2)dt + σT 21T2 dWt

C = CP+
∑3
i=1Ci 1T =

∑2
i=01Ti

Table 2. Stochastic state-space model parameters. All timescales are in years, the carbon model amplitudes µi are dimensionless for E in
(ppm year−1) and the temperature model amplitudes bi are in (K year−1 W−1m2).

µ0 µ1 µ2 µ3 τ1 (year−1) τ2 (year−1) τ3 (year−1)
0.2173 0.2240 0.2824 0.2763 394.4 36.54 4.304

C0 (ppm) b0 (K year−1 W−1m2) b1 (K year−1 W−1m2) b2 (K year−1 W−1m2) τb0 (year) τb1 (year)
278 0.00115176 0.10967972 0.03361102 400 1.42706247

A αWm−2 σC2 (ppm year−1/2) σT 0 (K year−1/2) σT 2 year−1/2 τb2 (year)
1.48 5.35 0.65 0.015 0.13 8.02118539

model such that the standard deviation of the model response
to an emission pulse as reported by Joos et al. (2013) is recov-
ered. For the temperature model we introduce (small) addi-
tive noise to recover the (small) CMIP5 control run standard
deviation. In the CMIP5 RCP runs the ensemble variance in-
creases with rising ensemble mean. This calls for the intro-
duction of (substantial) multiplicative noise, which we intro-
duce in1T2, letting these random fluctuations decay over an
8-year timescale. The magnitude of these fluctuations is (es-
pecially at high temperatures) likely to be unrealistic when
looking at individual time series. However, the focus here is
on ensemble statistics.

2.3 Transition pathways

The SSSM described in the previous section is forced with
fossil CO2 emissions. We assume that, in the absence of any
mitigation actions, emissions increase from their initial value
E0 at an exponential rate g = 0.01 year−1 due to economic
and population growth. Political decisions cause emissions to
decrease from starting year ts onward as fossil energy gener-
ation is replaced by non-GHG producing forms such as wind,
solar and water (mitigation m) and by an increasing share of
fossil energy sources the emissions of which are not released
but captured and stored away by carbon capture and storage
(abatement m).

In addition, negative emission technologies may be em-
ployed. They cause a direct reduction in atmospheric CO2
concentration and are here modeled as an exponential3

Eneg(t)= Eneg,∞(1− exp(−rt)). We model this in a very
simple way by letting both mitigation and abatement increase

3For long timescales, these (after a transient) constant negative
emissions may not be realistic. However, we are interested in the
period until the year 2100.

linearly until emissions are brought to zero:

m(t)=

{
m0 t ≤ ts

min(m0+m1(t − ts),1) t > ts
(14a)

a(t)=

{
a0 t ≤ ts

min(a0+m1(t − ts),1) t > ts
(14b)

E(t)= E0e
gt (1− a(t))(1−m(t))−Eneg(t) (14c)

with constants m0 and a0 respectively giving the mitiga-
tion and abatement rates at the start of the scenario and m1
the incremental year-to-year increase. The simplified model
(Eq. 14) is very well able (not shown) to reproduce the in-
tegrated assessment model (IAM) pathways that fulfill the
NDCs until 2030 and afterwards reach the 2 K target with
a 50–66 % probability (Rogelj et al., 2016a). These path-
ways are exemplary for those that continue on the low-
commitment path for a while, followed by strong and de-
cisive action. From them we obtain a family of negative
emission scenarios out of which we pick a pathway with
strong negative emissions. Using the starting year 2061, it
is very well approximated by setting Eneg,∞ = 4.21 GtC and
r = 0.0283 year−1.

2.4 Point of no return

With the emission scenarios and the SSSM – returning CO2
concentrations and GMST for any such scenario – one can
now address the issue of transitioning from the present-day
(year 2015) to a carbon-free era such as to avoid catastrophic
climate change. We need to take into account both the target
threshold and the risk one is willing to take to exceed it. The
maximum amount of cumulative CO2 emissions that allows
for reaching the 1.5 and 2 K targets, as a function of the risk
tolerance, is called the safe carbon budget (SCB). It is well

www.earth-syst-dynam.net/9/1085/2018/ Earth Syst. Dynam., 9, 1085–1095, 2018
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established in the literature (Meinshausen et al., 2009; Zick-
feld et al., 2009) but does not contain information on how
these emissions are spread in time. This is where the PNR
comes in: the PNR is the point in time where starting miti-
gating action is insufficient to stay below a specified target
with a chosen risk tolerance.

Concretely, let the temperature target 1Tmax be the maxi-
mum allowable warming and denote the parameter β as the
probability of staying below a given target (a measure of
the risk tolerance). For example, the case 1Tmax = 2 K and
β = 0.9 corresponds to a 90 % probability of staying below
2 K warming, i.e., 90 of 100 realizations of the SSSM, started
in 2015 and integrated until 2100, do not exceed 2 K in the
year 2100.

Then, in the context of Eq. (14), the PNR is the earliest ts
that does not result in reaching the defined “Safe State” (van
Zalinge et al., 2017) in terms of 1Tmax and β. It is deter-
mined from the probability distribution p(1T2100) of GMST
in 2100.

Both SCB and PNR depend on temperature target, climate
uncertainties and risk tolerance, but the PNR also depends on
the aggressiveness of the climate action considered feasible
(here given by the value ofm1). This makes the PNR such an
interesting quantity, since the SCB does not depend on the
time path of emission reductions.

Clearly there is a close connection between the PNR and
the SCB. Indeed, one could define a PNR also in terms of
the ability to reach the SCB. The one-to-one relation between
cumulative emissions and warming gives the PNR in “carbon
space”. Its location in time, however, depends crucially on
how fast a transition to a carbon-neutral economy is feasible.

For details on the scenarios, we refer to Rogelj et al.
(2016a). With carbon budgets rapidly running out and the
PNR approaching fast, negative emissions may have to be-
come an essential part of the policy mix. Such policies are
cheap but may only be a temporary fix and lead to unde-
sirable spillover effects on neighboring countries (e.g., Wag-
ner and Weitzman, 2015). We abstract from these discussions
here since this is beyond the scope of the present paper.

3 Results

To demonstrate the quality of the SSSM we initialize it at pre-
industrial conditions, run it forward and compare the results
with those of CMIP5 models. The SSSM is well able to re-
produce the CMIP5 model behavior under the different RCP
scenarios (Fig. 3, shown for RCP2.6 and RCP4.5). As these
scenarios are very different in terms of rate of change and to-
tal cumulative emissions, this is not a trivial finding. It is ac-
tually remarkable that the SSSM, which is based on a limited
amount of CMIP5 model ensemble members, performs so
well. As an example, the RCP2.6 scenario contains substan-
tial negative emissions, responsible for the downward trend
in GMST, which our SSSM correctly reproduces. The mean
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Figure 3. Stochastic state-space model applied to RCP scenarios.
(a, b) Ensemble mean and 5th and 95th percentile envelopes of
CMIP5 RCPs (blue) and stochastic model (orange). (c) Probability
density functions for 1T in 2100 based on 5000 ensemble mem-
bers, and driven by forcing from RCP2.6 (blue), RCP4.5 (orange),
RCP6.0 (green) and RCP8.5 (red). In black are fitted log-normal
distributions.

response for RCP8.5 is slightly underestimated (not shown)
because the uncertainty in the carbon cycle plays a rather
minor role compared to that in the temperature model. In ad-
dition, for such large emission reductions, positive feedback
loops set in from which our SSSM abstracts. The temperature
perturbation 1T is very closely log-normally distributed,
while for weak forcing scenarios (e.g., RCP2.6 and RCP4.5)
the distribution is approximately Gaussian. The CO2 concen-
tration is found to be Gaussian distributed for all RCP sce-
narios. These findings (log-normal temperature and Gaus-
sian CO2 concentration) result from the multiplicative and
additive noise in temperature and carbon components of the
SSSM, respectively.

To determine the SCB, 6000 emission reduction strategies
(with Eneg(t)= 0) were generated and, using the SSSM, an
8000-member ensemble for each of these emission scenar-
ios starting in 2015 was integrated. Emission scenarios are
generated from Eq. (14) by letting a(t)= 0, a uniform m0 ∈

[0,0.7] andm1 drawn from a beta distribution (with distribu-
tion function p(m)= 1

B(α,δ)m
α(1−m)(δ−1), where B(α,δ) is

the beta function; parameters are chosen as α = 1.2,δ = 3),
with the [0,1] interval scaled such that m= 1 at the latest in
2080. The beta distribution is chosen for practical reasons to
sample (m0,m1) pairs. Asm0 is drawn from a uniform distri-
bution, doing likewise form1 would result in many pathways
with very quick mitigation and low cumulative emissions.
Choosing a beta distribution form1 makes draws of smallm1
much more likely and leads to a better sampling of high cu-
mulative emission scenarios. The choice of distribution has
no consequences on the results.

The temperature anomaly in 2100 (1T2100) as a function
of cumulative CO2 emissions E6 is shown in Fig. 4. The
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Figure 4. The safe carbon budget. 1Tmax in 2100 such that
p(1T2100 ≤1Tmax)= β as a function of cumulative emissions for
different β. The black curve gives the deterministic results with
noise terms in the stochastic model set to zero.

Table 3. Safe Carbon Budget (in GtC since 2015) as a function of
threshold and safety probability β.

β 0.5 0.67 0.9 0.95 Noise-free

Tmax = 1.5 K 247 198 107 69 233
Tmax = 2 K 492 424 298 245 469

same calculation is also shown for the deterministic case
without climate uncertainty (no noise in the SSSM). In Fig. 4,
the SCB is given by the point on the E6 axis where the (col-
ored) line corresponding to a chosen risk tolerance crosses
the (horizontal) line corresponding to a chosen temperature
threshold 1Tmax. The curves 1T2100 = f (E6) (Fig. 4) are
very well described by expressions of the type

f (E6)= a ln
(
E6

b
+ 1

)
+ c (15)

with suitable coefficients a,b and c, each depending on the
tolerance β. For the range of emissions considered here, a
linear fit would be reasonable (Allen et al., 2009). However,
our expression also works for cumulative emissions in the
range of business as usual (when fitting parameters on suit-
able emission trajectories). From Fig. 4 we easily find the
SCB for any combination of 1Tmax and β, as shown in Ta-
ble 3.

Allowable emissions are drastically reduced when enforc-
ing the target with a higher probability (following the hori-
zontal lines from right to left in Fig. 4). These results show
in particular the challenges posed by the 1.5 K compared to
the 2 K target.

From IPCC-AR5 (IPCC, 2013) we find cumulative emis-
sions post-2015 of 377 to 517 GtC in order to “likely” stay
below 2 K while we find an SCB of 424 GtC for1Tmax = 2 K

and β = 0.67 which lies in the same range. Like Millar et al.
(2017a) we find approximately 200 GtC to stay below 1.5 K
with β = 0.67.

To determine the PNR, we resort to three illustrative
choices to model the abatement and mitigation rates with
Eneg(t)= 0.

Following Eq. (14) we construct fast mitigation (FM) and
moderate mitigation (MM) scenarios with m1 = 0.05 and
0.02, respectively. In addition, in an extreme mitigation (EM)
scenario m= 1 can be reached instantaneously. This corre-
sponds to the most extreme physically possible scenario and
serves as an upper bound.

When varying ts to find the PNR for the three scenarios,
we always keepm0 = 0.14 and a0 = 0 at 2015 values (World
Energy Council, 2016).

As an example, ts = 2025 leads to total cumulative emis-
sions from 2015 onward of 109, 183 and 335 GtC for the
mitigation scenarios EM, FM and MM, respectively. MM is
the most modest scenario, but it is actually quite ambitious,
considering that with m= 0.1355 in 2005 and m= 0.14 in
2015 (World Energy Council, 2016) the current year-to-year
increases in the share of renewable energies are very small.

Figure 5 shows the probabilities for staying below the 1.5
and 2 K thresholds in 2100 as a function of ts for different
policies, including FM (m1 = 0.05) and MM (m1 = 0.02),
while the EM policy bounds the unachievable region. It is
clear that this region is larger for the 1.5 K than for the
2.0 K target, and shrinks when including negative emissions.
From the plot we can directly see the consequences of delay-
ing action until a given year. For example, if policy mak-
ers should choose to implement the MM strategy only in
2040, the chances of reaching the 1.5 K (2.0 K) target are
only 2 % (47 %). We conclude that the remaining “window
of action” may be small, but a window still exists for both
targets. For example, the 2 K target is reached with a proba-
bility of 67% even when starting MM is delayed until 2035.
However, reaching the 1.5 K target appears unlikely as MM
would be required to start in 2018 for a probability of 67 %.
When requiring a high (≥ 0.9) probability, it is impossible
to reach with the MM scenario. The PNR for the different
targets and probabilities is shown in Table 4 and Fig. 5.

Including strong negative emissions delays the PNR by 6–
10 years, which may be very valuable especially for ambi-
tious targets. For example, one can then reach 1.5 K with a
probability of up to 66 % in the MM scenario when acting
before 2026, 8 years later than without.

The PNR varies substantially for slightly different tem-
perature targets. This also illustrates the importance of the
temperature baseline relative to which 1T is defined, as has
been found previously (Schurer et al., 2017). Switching to
a (lower) 18th century baseline increases current levels of
warming by 0.13 K (Schurer et al., 2017) and thereby brings
forward the PNR. For example, for a maximum temperature
threshold of 1.5 K, the PNR moves from 2022 to 2016 in the
MM scenario and from 2038 to 2033 for the EM scenario.
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Table 4. Point of no return as a function of threshold and safety probability β without and with strong negative emissions.

β 0.5 0.67 0.9 0.95 noise-free

Eneg none strong none strong none strong none strong none strong

EM Tmax = 1.5 K 2038 2046 2034 2042 2026 2035 2022 2032 2037 2045
Tmax = 2 K 2056 2062 2051 2058 2042 2049 2038 2046 2055 2061

FM Tmax = 1.5 K 2032 2039 2027 2036 2020 2028 2016 2025 2030 2038
Tmax = 2 K 2050 2056 2045 2052 2036 2043 2032 2039 2048 2055

MM Tmax = 1.5 K 2022 2029 2018 2026 – 2019 – – 2021 2029
Tmax = 2 K 2040 2046 2035 2042 2026 2033 2022 2030 2038 2045
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Figure 5. The point of no return. Probability of staying below the
1.5 K (a, c) or 2.0 K (b, d) threshold when starting emission reduc-
tions in a given year, for different policies as described by Eq. (14)
with different choices for m1, the rate of mitigation increase per
year. Top and bottom panels show the cases without and with strong
negative emissions, respectively. The point of no return for a given
policy is given by the point in time where the probability drops
below a chosen threshold. The default threshold of two-thirds is
dashed. The unachievable region is bounded by the extreme miti-
gation scenario.

It is clear that an energy transition more ambitious than
RCP2.6 is required to stay below 1.5 K with some accept-
able probability, and whether that is feasible is doubtful. For
all other RCP scenarios, exceeding 2 K is very likely in this
century (Fig. 6).

The parameter sensitivities of SCB and PNR were deter-
mined by varying each parameter by ±5%. Table 5 shows
the results for selected parameters for a small (Tmax = 1.5 K,
β = 0.95), intermediate (Tmax = 1.5 K, β = 0.5) and large
(Tmax = 2 K, β = 0.5) SCB, corresponding to a close, inter-
mediate and far PNR.

The biggest sensitivities are found for the radiative forcing
parameter A. The parameters of the carbon model (µi,τi) do
not have big impacts on the found SCB, on the order of 0–
17 GtC, with larger numbers found for larger absolute values

0
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Figure 6. (a, b) Instantaneous probability to exceed 1.5 K (a) and
2.0 K (b) for different emission scenarios. RCP scenarios are shown
as dashed lines while solid lines give MM scenario results starting in
2025 (red) and 2040 (brown). Dashed horizontal lines give p = 0.1
and 0.67, respectively. (c) Fossil fuel emissions in GtC for the same
scenarios.

of SCB. The temperature-model parameters are more impor-
tant, changing the SCB by up to around 10 % for large and
50 % for small values. The model is particularly sensitive
to changes in the intermediate timescale (b2,τb2). The PNR
sensitivities are generally small. We find the most relevant,
yet small, sensitivities in the temperature model parameters.
For example, a 10 % error in τb2 can move the PNR by 3–
4 years.

The sensitivity of SCB and PNR to the noise amplitudes is
small, with largest values found for the multiplicative noise
amplitude σT 2 that is responsible for most of the spread of
the temperature distribution. Increasing noise amplitudes de-
creases the SCB, in accordance with the expectation that
larger climate uncertainty leads to tighter constraints.

It is useful to remember that the stochastic formulation
of our model is designed with the explicit purpose to incor-
porate parameter uncertainty in a natural way via the noise
term, without having to make specific assumptions on the
uncertainties of individual parameters.
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Table 5. Sensitivity of the safe carbon budget (SCB) and point of no return (PNR) to selected parameter variations. Values as difference
in GtC (SCB) and number of years (PNR) relative to the undisturbed value (top row). The PNR values all refer to the EM scenario. First and
second numbers give 10% parameter decrease and increase, respectively.

SCB PNR

Tmax,β 1.5 K, 0.95 1.5 K, 0.67 2.0 K, 0.67 1.5 K, 0.95 1.5 K, 0.67 2.0 K, 0.67

undisturbed 69 198 424 2022 2034 2051

µ1 3, −3 8, −8 16, −17 1, 0 0, −1 2, −1
µ2 1, −1 2, −3 5, −8 0, 0 0, 0 1, 0
τ1 4, −3 4, −4 4, −6 1, 0 0, −1 1, 0
τ2 4, −4 6, −6 8, −11 1, 0 0, −1 1, 0
A 56, −45 73, −59 104, −86 5, −4 6, −5 8, −6
b1 12, −12 19, −19 27, −28 1, −1 1, −2 2, −2
b2 32, −28 37, −33 54, −49 3, −3 3, −3 4, −3
τb1 12, −12 19, −18 27, −28 2, −1 1, −2 3, −1
τb2 38, −33 38, −34 55, −50 4, −3 3, −3 4, −3
σT 2 10, −10 0, 0 −1, −2 2, −1 0, 0 0, 0

4 Summary, discussion and conclusions

We have developed a novel stochastic state-space model
(SSSM) to accurately capture the basic statistical properties
(mean and variance) of the CMIP5 RCP ensemble, allow-
ing us to study warming probabilities as a function of emis-
sions. It represents an alternative to the approach that con-
tains stochasticity in the parameters rather than the state. Al-
though the model is highly idealized, it captures simulations
of both temperature and carbon responses to RCP emission
scenarios quite well.

A weakness of the SSSM is the simulation of tempera-
ture trajectories beyond 2100 and for high-emission scenar-
ios. The large multiplicative noise factor leads – especially at
high mean warmings – to immensely volatile trajectories that
in all likelihood are not physical (on the individual level, the
distribution is still well-behaved). It might be worthwhile to
investigate how this could be improved. Another weakness
in the carbon component of the SSSM is that the real carbon
cycle is not pulse-size independent. Hence, using a single
constant response function has inherent problems, in partic-
ular when running very high-emission scenarios. This is be-
cause the efficiency of the natural carbon sinks to the ocean
and land reservoirs is a function of both temperature and the
reservoir sizes. The SSSM therefore has slight problems re-
producing CO2 concentration pathways (Fig. 2), a price we
accept to pay as we focus on the CMIP5 temperature repro-
duction.

Taking account of non-CO2 emissions more fully beyond
our simple scaling and also avoiding temporary overshoots of
the temperature caps would reduce the carbon budgets (Ro-
gelj et al., 2016b) and thus lead to earlier PNRs than given
here. Therefore the values might be a little too optimistic.

In Millar et al. (2017b), the authors draw a different con-
clusion from studying a similar problem. They introduce, in

their FAIR model, response functions that dynamically ad-
just parameters based on warming to represent sink satura-
tion. Consequently, their model gives much better results in
terms of CO2 concentrations. It would be an interesting lead
for future research to conduct our analysis (in terms of SCB
and PNR) with other simple models (such as FAIR or MAG-
ICC) to discover similarities and differences. However, only
rather low-emission scenarios are consistent with the 1.5 or
2 K targets, so we do not expect such nonlinearities to play a
major role, and indeed our carbon budgets are very similar to
Millar et al. (2017a).

The concept of a point of no return introduces a novel per-
spective into the discussion of carbon budgets that is often
centered on the question of when the remaining budget will
have “run out” at current emissions. In contrast, the PNR
concept recognizes the fact that emissions will not stay con-
stant and can decay faster or slower depending on political
decisions.

With these caveats in mind, we conclude that, first, the
PNR is still relatively far away for the 2 K target: with the
MM scenario and β = 67% we have 17 years left to start.
When allowing for setting all emissions to zero instanta-
neously, the PNR is even delayed to the 2050s. Considering
the slow speed of large-scale political and economic trans-
formations, decisive action is still warranted, as the MM sce-
nario is a large change compared to current rates. Second, the
PNR is very close or passed for the 1.5 K target. Here more
radical action is required – 9 years remain to start the FM pol-
icy to avoid a 1.5 K increase with a 67 % chance, and strong
negative emissions give us 8 years under the MM policy.

Third, we can clearly show the effects of changing
1Tmax,β and the mitigation scenario. Switching from 1.5
to 2 K buys an additional ∼ 16 years. Allowing a one-third,
instead of a one-tenth, exceedance risk buys an additional
7–9 years. Allowing for the more aggressive FM policy in-
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stead of MM buys an additional 10 years. This allows us to
assess trade-offs, for example, between tolerating higher ex-
ceedance risks and implementing more radical policies.

Fourth, negative emissions can offer a brief respite but
only delay the PNR by a few years, not taking into account
the possible decrease in effectiveness of these measures in
the long term (Tokarska and Zickfeld, 2015).

In this work a large ensemble of simulations was used in
order to average over stochastic internal variability. This al-
lows us to determine the point in time where a threshold is
crossed at a chosen probability level. Such an ensemble is
not possible for more realistic models, nor do GCMs agree
on details of internal variability. Therefore, in practice, the
crossing of a threshold will likely be determined with hind-
sight and using long temporal means. This fact should lead
us to be more cautious in choosing mitigation pathways.

We have shown the constraints put on future emissions by
restricting GMST increase below 1.5 or 2 K, and the crucial
importance of the safety probability. Further (scientific and
political) debate is essential on what are the right values for
both temperature threshold and probability. Our findings are
sobering in light of the bold ambition in the Paris Agreement,
and add to the sense of urgency to act quickly before the PNR
has been crossed.

Data availability. The study is based on publicly available data
sets as described in the Methods section. Model and analysis scripts
and outputs are available on request from the corresponding author.

Author contributions. MA and HAD developed the research
idea, MA developed the model and performed the analysis. All au-
thors discussed the results and contributed to the writing of the pa-
per.

Competing interests. The authors declare that they have no con-
flict of interest.

Acknowledgements. We thank the focus area “Foundations
of Complex Systems” of Utrecht University for providing the
finances for the visit of Frederick van der Ploeg to Utrecht in 2016.
Matthias Aengenheyster is thankful for support by the German
Academic Scholarship Foundation. Henk A. Dijkstra acknowledges
support by the Netherlands Earth System Science Centre (NESSC),
financially supported by the Ministry of Education, Culture and
Science (OCW), Grant no. 024.002.001.

Edited by: Christian Franzke
Reviewed by: two anonymous referees

References

Allen, M. R., Frame, D. J., Huntingford, C., Jones, C. D., Lowe,
J. A., Meinshausen, M., and Meinshausen, N.: Warming caused
by cumulative carbon emissions towards the trillionth tonne,
Nature, 458, 1163–1166, https://doi.org/10.1038/nature08019,
2009.

Clarke, L. E., Edmonds, J. A., Jacoby, H. D., Pitcher, H. M., Reily,
J. M., and Richels, R. G.: Scenarios of Greenhouse Gas Emis-
sions and Atmospheric Concentrations Synthesis, Tech. rep., De-
partment of Energy, Office of Biological & Environmental Re-
search, Washington, DC, 2007.

Dijkstra, H. A.: Nonlinear Clim. Dynam., Cambridge University
Press, Cambridge, https://doi.org/10.1017/CBO9781139034135,
2013.

Fujino, J., Nair, R., Kainuma, M., Masui, T., and Matsuoka,
Y.: Multi-gas Mitigation Analysis on Stabilization Scenar-
ios Using Aim Global Model, Energ. J., 2006, 343–354,
https://doi.org/10.5547/ISSN0195-6574-EJ-VolSI2006-NoSI3-
17, 2006.

Haustein, K., Otto, F. E. L., Uhe, P., Schaller, N., Allen, M. R., Her-
manson, L., Christidis, N., McLean, P., and Cullen, H.: Real-time
extreme weather event attribution with forecast seasonal SSTs,
Environ. Res. Lett., 11, 064006, https://doi.org/10.1088/1748-
9326/11/6/064006, 2016.

Huntingford, C., Lowe, J. A., Gohar, L. K., Bowerman, N. H. A.,
Allen, M. R., Raper, S. C. B., and Smith, S. M.: The link between
a global 2◦C warming threshold and emissions in years 2020,
2050 and beyond, Environ. Res. Lett., 7, 014039, 2012.

IPCC: Climate Change 2013 – The Physical Science Basis. Con-
tribution of Working Group I to the Fifth Assessment Report
of the Intergovernmental Panel on Climate Change, Cambridge
University Press, Cambridge, United Kingdom and New York,
NY, USA, https://doi.org/10.1017/CBO9781107415324, 2013.

Joos, F., Roth, R., Fuglestvedt, J. S., Peters, G. P., Enting, I. G.,
von Bloh, W., Brovkin, V., Burke, E. J., Eby, M., Edwards, N.
R., Friedrich, T., Frölicher, T. L., Halloran, P. R., Holden, P.
B., Jones, C., Kleinen, T., Mackenzie, F. T., Matsumoto, K.,
Meinshausen, M., Plattner, G.-K., Reisinger, A., Segschneider,
J., Shaffer, G., Steinacher, M., Strassmann, K., Tanaka, K., Tim-
mermann, A., and Weaver, A. J.: Carbon dioxide and climate im-
pulse response functions for the computation of greenhouse gas
metrics: a multi-model analysis, Atmos. Chem. Phys., 13, 2793–
2825, https://doi.org/10.5194/acp-13-2793-2013, 2013.

Le Quéré, C., Andrew, R. M., Canadell, J. G., Sitch, S., Kors-
bakken, J. I., Peters, G. P., Manning, A. C., Boden, T. A., Tans,
P. P., Houghton, R. A., Keeling, R. F., Alin, S., Andrews, O. D.,
Anthoni, P., Barbero, L., Bopp, L., Chevallier, F., Chini, L. P.,
Ciais, P., Currie, K., Delire, C., Doney, S. C., Friedlingstein, P.,
Gkritzalis, T., Harris, I., Hauck, J., Haverd, V., Hoppema, M.,
Klein Goldewijk, K., Jain, A. K., Kato, E., Körtzinger, A., Land-
schützer, P., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi,
D., Melton, J. R., Metzl, N., Millero, F., Monteiro, P. M. S.,
Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., O’Brien, K.,
Olsen, A., Omar, A. M., Ono, T., Pierrot, D., Poulter, B., Röden-
beck, C., Salisbury, J., Schuster, U., Schwinger, J., Séférian, R.,
Skjelvan, I., Stocker, B. D., Sutton, A. J., Takahashi, T., Tian,
H., Tilbrook, B., van der Laan-Luijkx, I. T., van der Werf, G.
R., Viovy, N., Walker, A. P., Wiltshire, A. J., and Zaehle, S.:

Earth Syst. Dynam., 9, 1085–1095, 2018 www.earth-syst-dynam.net/9/1085/2018/

https://doi.org/10.1038/nature08019
https://doi.org/10.1017/CBO9781139034135
https://doi.org/10.5547/ISSN0195-6574-EJ-VolSI2006-NoSI3-17
https://doi.org/10.5547/ISSN0195-6574-EJ-VolSI2006-NoSI3-17
https://doi.org/10.1088/1748-9326/11/6/064006
https://doi.org/10.1088/1748-9326/11/6/064006
https://doi.org/10.1017/CBO9781107415324
https://doi.org/10.5194/acp-13-2793-2013


M. Aengenheyster et al.: The point of no return for climate action 1095

Global Carbon Budget 2016, Earth Syst. Sci. Data, 8, 605–649,
https://doi.org/10.5194/essd-8-605-2016, 2016.

Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W.,
Rahmstorf, S., and Schellnhuber, H. J.: Tipping elements in the
Earth’s climate system, P. Natl. Acad. Sci. USA, 105, 1786–
1793, https://doi.org/10.1073/pnas.0705414105, 2008.

Mann, M. E.: Defining dangerous anthropogenic inter-
ference., P. Natl. Acad. Sci. USA, 106, 4065–4066,
https://doi.org/10.1073/pnas.0901303106, 2009.

Meinshausen, M., Meinshausen, N., Hare, W., Raper,
S. C. B., Frieler, K., Knutti, R., Frame, D. J., and
Allen, M. R.: Greenhouse-gas emission targets for lim-
iting global warming to 2 ◦C, Nature, 458, 1158–1162,
https://doi.org/10.1038/nature08017, 2009.

Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma,
M. L. T., Lamarque, J.-F., Matsumoto, K., Montzka, S. A., Raper,
S. C. B., Riahi, K., Thomson, A., Velders, G. J. M., and van Vu-
uren, D. P.: The RCP greenhouse gas concentrations and their
extensions from 1765 to 2300, Climatic Change, 109, 213–241,
https://doi.org/10.1007/s10584-011-0156-z, 2011.

Millar, R. J., Fuglestvedt, J. S., Friedlingstein, P., Rogelj, J., Grubb,
M. J., Matthews, H. D., Skeie, R. B., Forster, P. M., Frame,
D. J., and Allen, M. R.: Emission budgets and pathways consis-
tent with limiting warming to 1.5 ◦C, Nat. Geosci., 10, 741–747,
2017a.

Millar, R. J., Nicholls, Z. R., Friedlingstein, P., and Allen, M. R.:
A modified impulse-response representation of the global near-
surface air temperature and atmospheric concentration response
to carbon dioxide emissions, Atmos. Chem. Phys., 17, 7213–
7228, https://doi.org/10.5194/acp-17-7213-2017, 2017b.

Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt,
J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza,
B., Nakajima, T., Robock, A., Stephens, T., Takemura, T.,
and Zhang, H.: Anthropogenic and Natural Radiative Forc-
ing, in: Climate Change 2013 - The Physical Science Ba-
sis, edited by: Intergovernmental Panel on Climate Change,
chap. 8, 659–740, Cambridge University Press, Cambridge,
https://doi.org/10.1017/CBO9781107415324.018, 2013.

Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer,
W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., Dasgupta, P.,
Dubash, N. K., Edenhofer, O., Elgizouli, I., Field, C. B., Forster,
P., Friedlingstein, P., Fuglestvedt, J., Gomez-Echeverri, L., Hal-
legatte, S., Hegerl, G., Howden, M., Jiang, K., Cisneroz, B. J.,
Kattsov, V., Lee, H., Mach, K. J., Marotzke, J., Mastrandrea,
M. D., Meyer, L., Minx, J., Mulugetta, Y., O’Brien, K., Oppen-
heimer, M., Pereira, J. J., Pichs-Madruga, R., Plattner, G.-K.,
Pörtner, H.-O., Power, S. B., Preston, B., Ravindranath, N. H.,
Reisinger, A., Riahi, K., Rusticucci, M., Scholes, R., Seyboth,
K., Sokona, Y., Stavins, R., Stocker, T. F., Tschakert, P., van Vu-
uren, D., and van Ypserle, J.-P.: Climate Change 2014: Synthesis
Report. Contribution of Working Groups I, II and III to the Fifth
Assessment Report of the Intergovernmental Panel on Climate
Change, IPCC, Geneva, Switzerland, 2014.

Ragone, F., Lucarini, V., and Lunkeit, F.: A new framework
for climate sensitivity and prediction: a modelling perspective,
Clim. Dynam., 46, 1459–1471, https://doi.org/10.1007/s00382-
015-2657-3, 2016.

Riahi, K., Grubler, A., and Nakicenovic, N.: Scenarios of long-
term socio-economic and environmental development under

climate stabilization, Technol. Forecast. Soc., 74, 887–935,
https://doi.org/10.1016/j.techfore.2006.05.026, 2007.

Rogelj, J., den Elzen, M., Höhne, N., Fransen, T., Fekete, H.,
Winkler, H., Schaeffer, R., Sha, F., Riahi, K., and Mein-
shausen, M.: Paris Agreement climate proposals need a boost
to keep warming well below 2 ◦C, Nature, 534, 631–639,
https://doi.org/10.1038/nature18307, 2016a.

Rogelj, J., Schaeffer, M., Friedlingstein, P., Gillett, N. P., van Vu-
uren, D. P., Riahi, K., Allen, M., and Knutti, R.: Differences be-
tween carbon budget estimates unravelled, Nat. Clim. Change, 6,
245–252, https://doi.org/10.1038/nclimate2868, 2016b.

Rosenzweig, C., Karoly, D., Vicarelli, M., Neofotis, P., Wu, Q.,
Casassa, G., Menzel, A., Root, T. L., Estrella, N., Seguin, B.,
Tryjanowski, P., Liu, C., Rawlins, S., and Imeson, A.: Attributing
physical and biological impacts to anthropogenic climate change,
Nature, 453, 353–357, https://doi.org/10.1038/nature06937,
2008.

Sanderson, B. M., O’Neill, B. C., and Tebaldi, C.: What would it
take to achieve the Paris temperature targets?, Geophys. Res.
Lett., 43, 7133–7142, https://doi.org/10.1002/2016GL069563,
2016.

Schurer, A. P., Mann, M. E., Hawkins, E., Tett, S. F. B., and Hegerl,
G. C.: Importance of the pre-industrial baseline for likelihood of
exceeding Paris goals, Nat. Clim. Change, 7, 563–567, 2017.

Steinacher, M., Joos, F., and Stocker, T. F.: Allowable carbon emis-
sions lowered by multiple climate targets, Nature, 499, 197–201,
2013.

Stocker, T. F.: The Closing Door of Climate Targets, Science, 339,
280–282, https://doi.org/10.1126/science.1232468, 2013.

Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of
CMIP5 and the Experiment Design, B. Am. Meteorol. Soc., 93,
485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.

Tokarska, K. B. and Zickfeld, K.: The effectiveness of net nega-
tive carbon dioxide emissions in reversing anthropogenic climate
change, P. Natl. Acad. Sci. USA, 10, 1–11, 2015.

United Nations: Adoption of the Paris Agreement, Framework Con-
vention on Climate Change, 21st Conference of the Parties, Paris,
2015.

van Vuuren, D. P., den Elzen, M. G. J., Lucas, P. L., Eickhout, B.,
Strengers, B. J., van Ruijven, B., Wonink, S., and van Houdt,
R.: Stabilizing greenhouse gas concentrations at low levels: an
assessment of reduction strategies and costs, Climatic Change,
81, 119–159, https://doi.org/10.1007/s10584-006-9172-9, 2007.

van Zalinge, B. C., Feng, Q. Y., Aengenheyster, M., and Dijkstra,
H. A.: On determining the point of no return in climate change,
Earth Syst. Dynam., 8, 707–717, https://doi.org/10.5194/esd-8-
707-2017, 2017.

Wagner, G. and Weitzman, M. L.: Climate Shock: the Economic
Consequences of a Hotter Planet, Princeton University Press,
Princeton, New Jersey, 2015.

World Energy Council: World Energy Resources 2016, Tech. rep.,
World Energy Council, London, 2016.

Zickfeld, K., Eby, M., Matthews, H. D., and Weaver, A. J.: Set-
ting cumulative emissions targets to reduce the risk of danger-
ous climate change, P. Natl. Acad. Sci. USA, 106, 16129–16134,
https://doi.org/10.1073/pnas.0805800106, 2009.

Zickfeld, K., Arora, V. K., and Gillett, N. P.: Is the climate re-
sponse to CO2 emissions path dependent?, Geophys. Res. Lett.,
39, https://doi.org/10.1029/2011GL050205, 2012.

www.earth-syst-dynam.net/9/1085/2018/ Earth Syst. Dynam., 9, 1085–1095, 2018

https://doi.org/10.5194/essd-8-605-2016
https://doi.org/10.1073/pnas.0705414105
https://doi.org/10.1073/pnas.0901303106
https://doi.org/10.1038/nature08017
https://doi.org/10.1007/s10584-011-0156-z
https://doi.org/10.5194/acp-17-7213-2017
https://doi.org/10.1017/CBO9781107415324.018
https://doi.org/10.1007/s00382-015-2657-3
https://doi.org/10.1007/s00382-015-2657-3
https://doi.org/10.1016/j.techfore.2006.05.026
https://doi.org/10.1038/nature18307
https://doi.org/10.1038/nclimate2868
https://doi.org/10.1038/nature06937
https://doi.org/10.1002/2016GL069563
https://doi.org/10.1126/science.1232468
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.1007/s10584-006-9172-9
https://doi.org/10.5194/esd-8-707-2017
https://doi.org/10.5194/esd-8-707-2017
https://doi.org/10.1073/pnas.0805800106
https://doi.org/10.1029/2011GL050205

	Abstract
	Introduction
	Methods
	Linear response theory
	Stochastic state-space model
	Transition pathways
	Point of no return

	Results
	Summary, discussion and conclusions
	Data availability
	Author contributions
	Competing interests
	Acknowledgements
	References

