Articles | Volume 13, issue 4
https://doi.org/10.5194/esd-13-1437-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-13-1437-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Constraining low-frequency variability in climate projections to predict climate on decadal to multi-decadal timescales – a poor man's initialized prediction system
Barcelona Supercomputing Center, Barcelona, Spain
Department of Geography, University of Montreal, Montreal, Canada
Markus G. Donat
Barcelona Supercomputing Center, Barcelona, Spain
Institució Catalana de Recerca i Estudis Avançats (ICREA),
Barcelona, Spain
Pablo Ortega
Barcelona Supercomputing Center, Barcelona, Spain
Francisco J. Doblas-Reyes
Barcelona Supercomputing Center, Barcelona, Spain
Institució Catalana de Recerca i Estudis Avançats (ICREA),
Barcelona, Spain
Carlos Delgado-Torres
Barcelona Supercomputing Center, Barcelona, Spain
Margarida Samsó
Barcelona Supercomputing Center, Barcelona, Spain
Pierre-Antoine Bretonnière
Barcelona Supercomputing Center, Barcelona, Spain
Related authors
Cynthia H. Whaley, Rashed Mahmood, Knut von Salzen, Barbara Winter, Sabine Eckhardt, Stephen Arnold, Stephen Beagley, Silvia Becagli, Rong-You Chien, Jesper Christensen, Sujay Manish Damani, Xinyi Dong, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Fabio Giardi, Wanmin Gong, Jens Liengaard Hjorth, Lin Huang, Ulas Im, Yugo Kanaya, Srinath Krishnan, Zbigniew Klimont, Thomas Kühn, Joakim Langner, Kathy S. Law, Louis Marelle, Andreas Massling, Dirk Olivié, Tatsuo Onishi, Naga Oshima, Yiran Peng, David A. Plummer, Olga Popovicheva, Luca Pozzoli, Jean-Christophe Raut, Maria Sand, Laura N. Saunders, Julia Schmale, Sangeeta Sharma, Ragnhild Bieltvedt Skeie, Henrik Skov, Fumikazu Taketani, Manu A. Thomas, Rita Traversi, Kostas Tsigaridis, Svetlana Tsyro, Steven Turnock, Vito Vitale, Kaley A. Walker, Minqi Wang, Duncan Watson-Parris, and Tahya Weiss-Gibbons
Atmos. Chem. Phys., 22, 5775–5828, https://doi.org/10.5194/acp-22-5775-2022, https://doi.org/10.5194/acp-22-5775-2022, 2022
Short summary
Short summary
Air pollutants, like ozone and soot, play a role in both global warming and air quality. Atmospheric models are often used to provide information to policy makers about current and future conditions under different emissions scenarios. In order to have confidence in those simulations, in this study we compare simulated air pollution from 18 state-of-the-art atmospheric models to measured air pollution in order to assess how well the models perform.
Ulas Im, Kostas Tsigaridis, Gregory Faluvegi, Peter L. Langen, Joshua P. French, Rashed Mahmood, Manu A. Thomas, Knut von Salzen, Daniel C. Thomas, Cynthia H. Whaley, Zbigniew Klimont, Henrik Skov, and Jørgen Brandt
Atmos. Chem. Phys., 21, 10413–10438, https://doi.org/10.5194/acp-21-10413-2021, https://doi.org/10.5194/acp-21-10413-2021, 2021
Short summary
Short summary
Future (2015–2050) simulations of the aerosol burdens and their radiative forcing and climate impacts over the Arctic under various emission projections show that although the Arctic aerosol burdens are projected to decrease significantly by 10 to 60 %, regardless of the magnitude of aerosol reductions, surface air temperatures will continue to increase by 1.9–2.6 ℃, while sea-ice extent will continue to decrease, implying reductions of greenhouse gases are necessary to mitigate climate change.
Eneko Martin-Martinez, Amanda Frigola, Eduardo Moreno-Chamarro, Daria Kuznetsova, Saskia Loosveldt-Tomas, Margarida Samsó Cabré, Pierre-Antoine Bretonnière, and Pablo Ortega
Earth Syst. Dynam., 16, 1343–1364, https://doi.org/10.5194/esd-16-1343-2025, https://doi.org/10.5194/esd-16-1343-2025, 2025
Short summary
Short summary
We investigate the impact of model resolution on different processes in the North Atlantic using three different resolutions of the same climate model. The higher resolutions allow for the explicit simulation of smaller-scale processes. We found differences across resolutions in how denser waters are formed and transported southward, impacting the large-scale circulation of the Atlantic Ocean.
Florian Sauerland, Pierre-Vincent Huot, Sylvain Marchi, Thierry Fichefet, Hugues Goosse, Konstanze Haubner, François Klein, François Massonnet, Bianca Mezzina, Eduardo Moreno-Chamarro, Pablo Ortega, Frank Pattyn, Charles Pelletier, Deborah Verfaillie, Lars Zipf, and Nicole van Lipzig
EGUsphere, https://doi.org/10.5194/egusphere-2025-2889, https://doi.org/10.5194/egusphere-2025-2889, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
We simulated the Antarctic climate from 1985 to 2014. Our model is driven using the ERA-5 reanalysis for one simulation and the EC-Earth global climate model for three others. Most of the simulated trends, such as sea ice extent and precipitation over land, have opposite signs for the two drivers, but agree between the three EC-Earth driven simulations. We conclude that these opposing trends must be due to the different drivers, and that the climate over land is less predictable than over sea.
Francisco J. Doblas-Reyes, Jenni Kontkanen, Irina Sandu, Mario Acosta, Mohammed Hussam Al Turjmam, Ivan Alsina-Ferrer, Miguel Andrés-Martínez, Leo Arriola, Marvin Axness, Marc Batlle Martín, Peter Bauer, Tobias Becker, Daniel Beltrán, Sebastian Beyer, Hendryk Bockelmann, Pierre-Antoine Bretonnière, Sebastien Cabaniols, Silvia Caprioli, Miguel Castrillo, Aparna Chandrasekar, Suvarchal Cheedela, Victor Correal, Emanuele Danovaro, Paolo Davini, Jussi Enkovaara, Claudia Frauen, Barbara Früh, Aina Gaya Àvila, Paolo Ghinassi, Rohit Ghosh, Supriyo Ghosh, Iker González, Katherine Grayson, Matthew Griffith, Ioan Hadade, Christopher Haine, Carl Hartick, Utz-Uwe Haus, Shane Hearne, Heikki Järvinen, Bernat Jiménez, Amal John, Marlin Juchem, Thomas Jung, Jessica Kegel, Matthias Kelbling, Kai Keller, Bruno Kinoshita, Theresa Kiszler, Daniel Klocke, Lukas Kluft, Nikolay Koldunov, Tobias Kölling, Joonas Kolstela, Luis Kornblueh, Sergey Kosukhin, Aleksander Lacima-Nadolnik, Jeisson Javier Leal Rojas, Jonni Lehtiranta, Tuomas Lunttila, Anna Luoma, Pekka Manninen, Alexey Medvedev, Sebastian Milinski, Ali Omar Abdelazim Mohammed, Sebastian Müller, Devaraju Naryanappa, Natalia Nazarova, Sami Niemelä, Bimochan Niraula, Henrik Nortamo, Aleksi Nummelin, Matteo Nurisso, Pablo Ortega, Stella Paronuzzi, Xabier Pedruzo Bagazgoitia, Charles Pelletier, Carlos Peña, Suraj Polade, Himansu Pradhan, Rommel Quintanilla, Tiago Quintino, Thomas Rackow, Jouni Räisänen, Maqsood Mubarak Rajput, René Redler, Balthasar Reuter, Nuno Rocha Monteiro, Francesc Roura-Adserias, Silva Ruppert, Susan Sayed, Reiner Schnur, Tanvi Sharma, Dmitry Sidorenko, Outi Sievi-Korte, Albert Soret, Christian Steger, Bjorn Stevens, Jan Streffing, Jaleena Sunny, Luiggi Tenorio, Stephan Thober, Ulf Tigerstedt, Oriol Tinto, Juha Tonttila, Heikki Tuomenvirta, Lauri Tuppi, Ginka Van Thielen, Emanuele Vitali, Jost von Hardenberg, Ingo Wagner, Nils Wedi, Jan Wehner, Sven Willner, Xavier Yepes-Arbós, Florian Ziemen, and Janos Zimmermann
EGUsphere, https://doi.org/10.5194/egusphere-2025-2198, https://doi.org/10.5194/egusphere-2025-2198, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Climate Change Adaptation Digital Twin (Climate DT) pioneers the operationalisation of climate projections. The system produces global simulations with local granularity for adaptation decision-making. Applications are embedded to generate tailored indicators. A unified workflow orchestrates all components in several supercomputers. Data management ensures consistency and streaming enables real-time use. It is a complementary innovation to initiatives like CMIP, CORDEX, and climate services.
Carlos Delgado-Torres, Markus G. Donat, Núria Pérez-Zanón, Verónica Torralba, Roberto Bilbao, Pierre-Antoine Bretonnière, Margarida Samsó-Cabré, Albert Soret, and Francisco J. Doblas-Reyes
EGUsphere, https://doi.org/10.5194/egusphere-2025-3674, https://doi.org/10.5194/egusphere-2025-3674, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
We explored how to provide consistent climate forecasts from months to years ahead. Our approach combines short-term forecasts with long-term climate information to create more reliable and regular predictions. We found that this method performs almost as well as more complex forecasts but is easier and cheaper to produce. This can help climate services deliver better guidance for planning in agriculture, water, and disaster risk.
Teresa Carmo-Costa, Roberto Bilbao, Jon Robson, Ana Teles-Machado, and Pablo Ortega
Earth Syst. Dynam., 16, 1001–1028, https://doi.org/10.5194/esd-16-1001-2025, https://doi.org/10.5194/esd-16-1001-2025, 2025
Short summary
Short summary
Climate models can be used to skilfully predict decadal changes in North Atlantic ocean heat content. However, significant regional differences among these models reveal large uncertainties in the influence of external forcings. This study examines eight climate models to understand the differences in their predictive capacity for the North Atlantic, investigating the importance of external forcings and key model characteristics such as ocean stratification and the local atmospheric forcing.
M. Andrea Orihuela-García, Yohan Ruprich-Robert, Vladimir Lapin, Saskia Loosveldt Tomas, Raffaele Bernardello, Margarida Samsó-Cabré, Pierre-Antoine Bretonnière, Miguel Castrillo, and Marti Gali
EGUsphere, https://doi.org/10.22541/essoar.174481514.42345660/v1, https://doi.org/10.22541/essoar.174481514.42345660/v1, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Tiny oceanic algae absorb carbon using sunlight. When they die, some sink as "detritus" that oceanic creatures eat or bacteria decompose. This "biological carbon pump" stores carbon in the deep ocean. Our study found that in warm southern waters, particles decompose quickly but more survive deeper trips. In cold northern waters, creatures eat more particles. Winter water mixing moves carbon down before spring algae bloom. Understanding these processes helps predict future ocean carbon storage.
Mehdi Pasha Karami, Torben Koenigk, Shiyu Wang, René Navarro Labastida, Tim Kruschke, Aude Carreric, Pablo Ortega, Klaus Wyser, Ramon Fuentes Franco, Agatha M. de Boer, Marie Sicard, and Aitor Aldama Campino
EGUsphere, https://doi.org/10.5194/egusphere-2025-2653, https://doi.org/10.5194/egusphere-2025-2653, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
This study uses a high-resolution global climate model to simulate future climate, focusing on the Arctic and North Atlantic. The model captures observed sea ice loss and Atlantic circulation trends, projecting a nearly ice-free Arctic by 2040. It introduces a new method to quantify deep water formation, revealing how different ocean regions contribute to the weakening of overturning circulation in a warming climate.
Pep Cos, Matias Olmo, Diego Campos, Raül Marcos-Matamoros, Lluís Palma, Ángel G. Muñoz, and Francisco J. Doblas-Reyes
Weather Clim. Dynam., 6, 609–626, https://doi.org/10.5194/wcd-6-609-2025, https://doi.org/10.5194/wcd-6-609-2025, 2025
Short summary
Short summary
This work presents the identification of Saharan warm-air intrusions in the western Mediterranean, which are the displacement of air masses formed over the Sahara toward the west of the Mediterranean region. We focus on the recent past and obtain a catalogue of intrusion days. The results show the existence of different types of intrusions, important impacts on extremely high temperatures in the Mediterranean and Europe, and the dynamic mechanisms that can cause the onset of these events.
Manuel G. Marciani, Miguel Castrillo, Gladys Utrera, Mario C. Acosta, Bruno P. Kinoshita, and Francisco Doblas-Reyes
EGUsphere, https://doi.org/10.5194/egusphere-2025-1104, https://doi.org/10.5194/egusphere-2025-1104, 2025
Short summary
Short summary
Earth System Model simulations are executed with workflows in congested HPC resources. These workflows could be made of thousands of tasks, which, if naively submitted to be executed, might add overheads due to queueing for resources. In this paper we explored a technique of aggregating tasks into a single submission. We related it to a key factor used by the software in charge of the scheduling. We find that this simple technique can reduce up to 7 % of the time spent in queue.
Pedro José Roldán-Gómez, Pablo Ortega, and Markus G. Donat
EGUsphere, https://doi.org/10.5194/egusphere-2025-1784, https://doi.org/10.5194/egusphere-2025-1784, 2025
Short summary
Short summary
The overshoot scenarios, in which temperatures exceed the targets of the Paris Agreement and are brought back afterwards with a net-negative emission strategy, are known to activate irreversible processes in the climate system. This work analyses in detail the impact of some of these mechanisms, with a particular focus on those associated with ocean circulation and sea ice changes.
Alba Santos-Espeso, María Gonçalves Ageitos, Pablo Ortega, Carlos Pérez García-Pando, Markus G. Donat, Margarida Samso Cabré, and Saskia Loosveldt Tomas
EGUsphere, https://doi.org/10.5194/egusphere-2025-1286, https://doi.org/10.5194/egusphere-2025-1286, 2025
Short summary
Short summary
Short-lived air pollutants (e.g., aerosols and ozone) affect climate differently than greenhouse gases. Using climate models, we found that during 1950–2014, these pollutants caused global cooling, stronger in the Arctic, increased vertical mixing in the Labrador Sea, and southward displacement of the tropical rain belt. These regional impacts oppose those of greenhouse gases. Hence, future reductions in pollution for better air quality must be accompanied by stricter greenhouse gas mitigation.
Rashed Mahmood, Markus G. Donat, Roberto Bilbao, Pablo Ortega, Vladimir Lapin, Etienne Tourigny, and Francisco Doblas-Reyes
EGUsphere, https://doi.org/10.5194/egusphere-2025-1208, https://doi.org/10.5194/egusphere-2025-1208, 2025
Short summary
Short summary
We present 30 year long initialized climate predictions run with the EC-Earth3 model. The predictions show high skill in most regions for near-surface temperatures, with some added skill from initialization for the first decade, but only very limited added skill beyond. The predictions exhibit drift associated with a persistent slowdown in Atlantic Meridonial Overturning Circulation , leaving the initialised predictions in a different climate state than the historical climate simulations.
Alvise Aranyossy, Paolo De Luca, Carlos Delgado-Torres, Balakrishnan Solaraju-Murali, Margarida Samso Cabre, and Markus Gabriel Donat
EGUsphere, https://doi.org/10.5194/egusphere-2025-940, https://doi.org/10.5194/egusphere-2025-940, 2025
Short summary
Short summary
We investigate multi-year predictability of hot-dry compound events, and their univariate hot and dry contributions, using the CMIP6 multi-model decadal hindcast experiments, focusing on the forecast years 2–5. We find that hot-dry compound extremes and hot extremes are skillfully predicted in many regions, but lower skill is found for dry extremes. The skill is largely due to long-term trends in response to external forcing, while the added skill from initialisation is limited to a few regions.
Roberto Bilbao, Thomas J. Aubry, Matthew Toohey, and Pablo Ortega
EGUsphere, https://doi.org/10.5194/egusphere-2025-609, https://doi.org/10.5194/egusphere-2025-609, 2025
Short summary
Short summary
Large volcanic eruptions are unpredictable and can have significant climatic impacts. If one occurs, operational decadal forecasts will become invalid and must be rerun including the volcanic forcing. By analyzing the climate response in EC-Earth3 retrospective predictions, we show that idealised forcings produced with two simple models could be used in operational decadal forecasts to account for the radiative impacts of the next major volcanic eruption.
Malcolm J. Roberts, Kevin A. Reed, Qing Bao, Joseph J. Barsugli, Suzana J. Camargo, Louis-Philippe Caron, Ping Chang, Cheng-Ta Chen, Hannah M. Christensen, Gokhan Danabasoglu, Ivy Frenger, Neven S. Fučkar, Shabeh ul Hasson, Helene T. Hewitt, Huanping Huang, Daehyun Kim, Chihiro Kodama, Michael Lai, Lai-Yung Ruby Leung, Ryo Mizuta, Paulo Nobre, Pablo Ortega, Dominique Paquin, Christopher D. Roberts, Enrico Scoccimarro, Jon Seddon, Anne Marie Treguier, Chia-Ying Tu, Paul A. Ullrich, Pier Luigi Vidale, Michael F. Wehner, Colin M. Zarzycki, Bosong Zhang, Wei Zhang, and Ming Zhao
Geosci. Model Dev., 18, 1307–1332, https://doi.org/10.5194/gmd-18-1307-2025, https://doi.org/10.5194/gmd-18-1307-2025, 2025
Short summary
Short summary
HighResMIP2 is a model intercomparison project focusing on high-resolution global climate models, that is, those with grid spacings of 25 km or less in the atmosphere and ocean, using simulations of decades to a century in length. We are proposing an update of our simulation protocol to make the models more applicable to key questions for climate variability and hazard in present-day and future projections and to build links with other communities to provide more robust climate information.
Amanda Frigola, Eneko Martin-Martinez, Eduardo Moreno-Chamarro, Margarida Samsó, Saskia Loosvelt-Tomas, Pierre-Antoine Bretonnière, Daria Kuznetsova, Xia Lin, and Pablo Ortega
EGUsphere, https://doi.org/10.5194/egusphere-2025-547, https://doi.org/10.5194/egusphere-2025-547, 2025
Short summary
Short summary
We examine the performance of coupled climate models at unprecedented resolutions, capable of resolving ocean eddies in extensive areas of the North Atlantic. Eddy-resolving models present more realistic density profiles and stronger deep water convection in the subpolar North Atlantic. The strength and structure of the Gulf Stream, North Atlantic Current, and subpolar gyre are also improved at high resolution, and so is the Atlantic Meridional Overturning Circulation.
Juan C. Acosta Navarro, Alvise Aranyossy, Paolo De Luca, Markus G. Donat, Arthur Hrast Essenfelder, Rashed Mahmood, Andrea Toreti, and Danila Volpi
EGUsphere, https://doi.org/10.5194/egusphere-2025-319, https://doi.org/10.5194/egusphere-2025-319, 2025
Short summary
Short summary
A computationally inexpensive climate model analog method yields skillful climate predictions across timescales, from seasons to multiple years, complementing existing climate prediction systems and potentially providing valuable information for sectors like agriculture and energy.
Katherine Grayson, Stephan Thober, Aleksander Lacima-Nadolnik, Ehsan Sharifi, Llorenç Lledó, and Francisco Doblas-Reyes
EGUsphere, https://doi.org/10.5194/egusphere-2025-28, https://doi.org/10.5194/egusphere-2025-28, 2025
Short summary
Short summary
To provide the most accurate climate adaptation information, climate models are being run with finer grid resolution, resulting in larger data output. This paper presents intelligent data reduction algorithms that act on streamed data, a novel way of processing climate data as soon as it is produced. Using these algorithms to calculate statistics, we show that the accuracy provided is well within acceptable bounds while still providing memory savings that bypass unfeasible storage requirements.
Eduardo Moreno-Chamarro, Thomas Arsouze, Mario Acosta, Pierre-Antoine Bretonnière, Miguel Castrillo, Eric Ferrer, Amanda Frigola, Daria Kuznetsova, Eneko Martin-Martinez, Pablo Ortega, and Sergi Palomas
Geosci. Model Dev., 18, 461–482, https://doi.org/10.5194/gmd-18-461-2025, https://doi.org/10.5194/gmd-18-461-2025, 2025
Short summary
Short summary
We present the high-resolution model version of the EC-Earth global climate model to contribute to HighResMIP. The combined model resolution is about 10–15 km in both the ocean and atmosphere, which makes it one of the finest ever used to complete historical and scenario simulations. This model is compared with two lower-resolution versions, with a 100 km and a 25 km grid. The three models are compared with observations to study the improvements thanks to the increased resolution.
Pedro José Roldán-Gómez, Paolo De Luca, Raffaele Bernardello, and Markus G. Donat
Earth Syst. Dynam., 16, 1–27, https://doi.org/10.5194/esd-16-1-2025, https://doi.org/10.5194/esd-16-1-2025, 2025
Short summary
Short summary
Current trends in CO2 emissions increase the probability of an overshoot scenario in which temperatures exceed the targets of the Paris Agreement and are brought back afterwards with a net-negative emission strategy. This work analyses how the climate after the overshoot would differ from the climate before, linking large scale non-reversibility mechanisms to changes in regional climates and identifying those regions more impacted by changes in temperature and precipitation extremes.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Raffaele Bernardello, Valentina Sicardi, Vladimir Lapin, Pablo Ortega, Yohan Ruprich-Robert, Etienne Tourigny, and Eric Ferrer
Earth Syst. Dynam., 15, 1255–1275, https://doi.org/10.5194/esd-15-1255-2024, https://doi.org/10.5194/esd-15-1255-2024, 2024
Short summary
Short summary
The ocean mitigates climate change by absorbing about 25 % of the carbon that is emitted to the atmosphere. However, ocean CO2 uptake is not constant in time, and improving our understanding of the mechanisms regulating this variability can potentially lead to a better predictive capability of its future behavior. In this study, we compare two ocean modeling practices that are used to reconstruct the historical ocean carbon uptake, demonstrating the abilities of one over the other.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Roberto Bilbao, Pablo Ortega, Didier Swingedouw, Leon Hermanson, Panos Athanasiadis, Rosie Eade, Marion Devilliers, Francisco Doblas-Reyes, Nick Dunstone, An-Chi Ho, William Merryfield, Juliette Mignot, Dario Nicolì, Margarida Samsó, Reinel Sospedra-Alfonso, Xian Wu, and Stephen Yeager
Earth Syst. Dynam., 15, 501–525, https://doi.org/10.5194/esd-15-501-2024, https://doi.org/10.5194/esd-15-501-2024, 2024
Short summary
Short summary
In recent decades three major volcanic eruptions have occurred: Mount Agung in 1963, El Chichón in 1982 and Mount Pinatubo in 1991. In this article we explore the climatic impacts of these volcanic eruptions with a purposefully designed set of simulations from six CMIP6 decadal prediction systems. We analyse the radiative and dynamical responses and show that including the volcanic forcing in these predictions is important to reproduce the observed surface temperature variations.
Mario C. Acosta, Sergi Palomas, Stella V. Paronuzzi Ticco, Gladys Utrera, Joachim Biercamp, Pierre-Antoine Bretonniere, Reinhard Budich, Miguel Castrillo, Arnaud Caubel, Francisco Doblas-Reyes, Italo Epicoco, Uwe Fladrich, Sylvie Joussaume, Alok Kumar Gupta, Bryan Lawrence, Philippe Le Sager, Grenville Lister, Marie-Pierre Moine, Jean-Christophe Rioual, Sophie Valcke, Niki Zadeh, and Venkatramani Balaji
Geosci. Model Dev., 17, 3081–3098, https://doi.org/10.5194/gmd-17-3081-2024, https://doi.org/10.5194/gmd-17-3081-2024, 2024
Short summary
Short summary
We present a collection of performance metrics gathered during the Coupled Model Intercomparison Project Phase 6 (CMIP6), a worldwide initiative to study climate change. We analyse the metrics that resulted from collaboration efforts among many partners and models and describe our findings to demonstrate the utility of our study for the scientific community. The research contributes to understanding climate modelling performance on the current high-performance computing (HPC) architectures.
Elsa Mohino, Paul-Arthur Monerie, Juliette Mignot, Moussa Diakhaté, Markus Donat, Christopher David Roberts, and Francisco Doblas-Reyes
Earth Syst. Dynam., 15, 15–40, https://doi.org/10.5194/esd-15-15-2024, https://doi.org/10.5194/esd-15-15-2024, 2024
Short summary
Short summary
The impact of the Atlantic multidecadal variability (AMV) on the rainfall distribution and timing of the West African monsoon is not well known. Analysing model output, we find that a positive AMV enhances the number of wet days, daily rainfall intensity, and extremes over the Sahel and tends to prolong the monsoon length through later demise. Heavy rainfall events increase all over the Sahel, while moderate ones only occur in the north. Model biases affect the skill in simulating AMV impact.
Hervé Petetin, Marc Guevara, Steven Compernolle, Dene Bowdalo, Pierre-Antoine Bretonnière, Santiago Enciso, Oriol Jorba, Franco Lopez, Albert Soret, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 23, 3905–3935, https://doi.org/10.5194/acp-23-3905-2023, https://doi.org/10.5194/acp-23-3905-2023, 2023
Short summary
Short summary
This study analyses the potential of the TROPOMI space sensor for monitoring the variability of NO2 pollution over the Iberian Peninsula. A reduction of NO2 levels is observed during the weekend and in summer, especially over most urbanized areas, in agreement with surface observations. An enhancement of NO2 is found during summer with TROPOMI over croplands, potentially related to natural soil NO emissions, which illustrates the outstanding value of TROPOMI for complementing surface networks.
Eva Sebok, Hans Jørgen Henriksen, Ernesto Pastén-Zapata, Peter Berg, Guillaume Thirel, Anthony Lemoine, Andrea Lira-Loarca, Christiana Photiadou, Rafael Pimentel, Paul Royer-Gaspard, Erik Kjellström, Jens Hesselbjerg Christensen, Jean Philippe Vidal, Philippe Lucas-Picher, Markus G. Donat, Giovanni Besio, María José Polo, Simon Stisen, Yvan Caballero, Ilias G. Pechlivanidis, Lars Troldborg, and Jens Christian Refsgaard
Hydrol. Earth Syst. Sci., 26, 5605–5625, https://doi.org/10.5194/hess-26-5605-2022, https://doi.org/10.5194/hess-26-5605-2022, 2022
Short summary
Short summary
Hydrological models projecting the impact of changing climate carry a lot of uncertainty. Thus, these models usually have a multitude of simulations using different future climate data. This study used the subjective opinion of experts to assess which climate and hydrological models are the most likely to correctly predict climate impacts, thereby easing the computational burden. The experts could select more likely hydrological models, while the climate models were deemed equally probable.
Hervé Petetin, Dene Bowdalo, Pierre-Antoine Bretonnière, Marc Guevara, Oriol Jorba, Jan Mateu Armengol, Margarida Samso Cabre, Kim Serradell, Albert Soret, and Carlos Pérez Garcia-Pando
Atmos. Chem. Phys., 22, 11603–11630, https://doi.org/10.5194/acp-22-11603-2022, https://doi.org/10.5194/acp-22-11603-2022, 2022
Short summary
Short summary
This study investigates the extent to which ozone forecasts provided by the Copernicus Atmospheric Monitoring Service (CAMS) can be improved using surface observations and state-of-the-art statistical methods. Through a case study over the Iberian Peninsula in 2018–2019, it unambiguously demonstrates the value of these methods for improving the raw CAMS O3 forecasts while at the same time highlighting the complexity of improving the detection of the highest O3 concentrations.
Núria Pérez-Zanón, Louis-Philippe Caron, Silvia Terzago, Bert Van Schaeybroeck, Llorenç Lledó, Nicolau Manubens, Emmanuel Roulin, M. Carmen Alvarez-Castro, Lauriane Batté, Pierre-Antoine Bretonnière, Susana Corti, Carlos Delgado-Torres, Marta Domínguez, Federico Fabiano, Ignazio Giuntoli, Jost von Hardenberg, Eroteida Sánchez-García, Verónica Torralba, and Deborah Verfaillie
Geosci. Model Dev., 15, 6115–6142, https://doi.org/10.5194/gmd-15-6115-2022, https://doi.org/10.5194/gmd-15-6115-2022, 2022
Short summary
Short summary
CSTools (short for Climate Service Tools) is an R package that contains process-based methods for climate forecast calibration, bias correction, statistical and stochastic downscaling, optimal forecast combination, and multivariate verification, as well as basic and advanced tools to obtain tailored products. In addition to describing the structure and methods in the package, we also present three use cases to illustrate the seasonal climate forecast post-processing for specific purposes.
Amélie Simon, Guillaume Gastineau, Claude Frankignoul, Vladimir Lapin, and Pablo Ortega
Weather Clim. Dynam., 3, 845–861, https://doi.org/10.5194/wcd-3-845-2022, https://doi.org/10.5194/wcd-3-845-2022, 2022
Short summary
Short summary
The influence of the Arctic sea-ice loss on atmospheric circulation in midlatitudes depends on persistent sea surface temperatures in the North Pacific. In winter, Arctic sea-ice loss and a warm North Pacific Ocean both induce depressions over the North Pacific and North Atlantic, an anticyclone over Greenland, and a stratospheric anticyclone over the Arctic. However, the effects are not additive as the interaction between both signals is slightly destructive.
Enza Di Tomaso, Jerónimo Escribano, Sara Basart, Paul Ginoux, Francesca Macchia, Francesca Barnaba, Francesco Benincasa, Pierre-Antoine Bretonnière, Arnau Buñuel, Miguel Castrillo, Emilio Cuevas, Paola Formenti, María Gonçalves, Oriol Jorba, Martina Klose, Lucia Mona, Gilbert Montané Pinto, Michail Mytilinaios, Vincenzo Obiso, Miriam Olid, Nick Schutgens, Athanasios Votsis, Ernest Werner, and Carlos Pérez García-Pando
Earth Syst. Sci. Data, 14, 2785–2816, https://doi.org/10.5194/essd-14-2785-2022, https://doi.org/10.5194/essd-14-2785-2022, 2022
Short summary
Short summary
MONARCH reanalysis of desert dust aerosols extends the existing observation-based information for mineral dust monitoring by providing 3-hourly upper-air, surface and total column key geophysical variables of the dust cycle over Northern Africa, the Middle East and Europe, at a 0.1° horizontal resolution in a rotated grid, from 2007 to 2016. This work provides evidence of the high accuracy of this data set and its suitability for air quality and health and climate service applications.
Cynthia H. Whaley, Rashed Mahmood, Knut von Salzen, Barbara Winter, Sabine Eckhardt, Stephen Arnold, Stephen Beagley, Silvia Becagli, Rong-You Chien, Jesper Christensen, Sujay Manish Damani, Xinyi Dong, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Fabio Giardi, Wanmin Gong, Jens Liengaard Hjorth, Lin Huang, Ulas Im, Yugo Kanaya, Srinath Krishnan, Zbigniew Klimont, Thomas Kühn, Joakim Langner, Kathy S. Law, Louis Marelle, Andreas Massling, Dirk Olivié, Tatsuo Onishi, Naga Oshima, Yiran Peng, David A. Plummer, Olga Popovicheva, Luca Pozzoli, Jean-Christophe Raut, Maria Sand, Laura N. Saunders, Julia Schmale, Sangeeta Sharma, Ragnhild Bieltvedt Skeie, Henrik Skov, Fumikazu Taketani, Manu A. Thomas, Rita Traversi, Kostas Tsigaridis, Svetlana Tsyro, Steven Turnock, Vito Vitale, Kaley A. Walker, Minqi Wang, Duncan Watson-Parris, and Tahya Weiss-Gibbons
Atmos. Chem. Phys., 22, 5775–5828, https://doi.org/10.5194/acp-22-5775-2022, https://doi.org/10.5194/acp-22-5775-2022, 2022
Short summary
Short summary
Air pollutants, like ozone and soot, play a role in both global warming and air quality. Atmospheric models are often used to provide information to policy makers about current and future conditions under different emissions scenarios. In order to have confidence in those simulations, in this study we compare simulated air pollution from 18 state-of-the-art atmospheric models to measured air pollution in order to assess how well the models perform.
Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Thomas Arsouze, Tommi Bergman, Raffaele Bernardello, Souhail Boussetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, François Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O'Donnell, Pirkka Ollinaho, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang
Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, https://doi.org/10.5194/gmd-15-2973-2022, 2022
Short summary
Short summary
The Earth system model EC-Earth3 is documented here. Key performance metrics show physical behavior and biases well within the frame known from recent models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
Josep Cos, Francisco Doblas-Reyes, Martin Jury, Raül Marcos, Pierre-Antoine Bretonnière, and Margarida Samsó
Earth Syst. Dynam., 13, 321–340, https://doi.org/10.5194/esd-13-321-2022, https://doi.org/10.5194/esd-13-321-2022, 2022
Short summary
Short summary
The Mediterranean has been identified as being more affected by climate change than other regions. We find that amplified warming during summer and annual precipitation declines are expected for the 21st century and that the magnitude of the changes will mainly depend on greenhouse gas emissions. By applying a method giving more importance to models with greater performance and independence, we find that the differences between the last two community modelling efforts are reduced in the region.
Charles Pelletier, Thierry Fichefet, Hugues Goosse, Konstanze Haubner, Samuel Helsen, Pierre-Vincent Huot, Christoph Kittel, François Klein, Sébastien Le clec'h, Nicole P. M. van Lipzig, Sylvain Marchi, François Massonnet, Pierre Mathiot, Ehsan Moravveji, Eduardo Moreno-Chamarro, Pablo Ortega, Frank Pattyn, Niels Souverijns, Guillian Van Achter, Sam Vanden Broucke, Alexander Vanhulle, Deborah Verfaillie, and Lars Zipf
Geosci. Model Dev., 15, 553–594, https://doi.org/10.5194/gmd-15-553-2022, https://doi.org/10.5194/gmd-15-553-2022, 2022
Short summary
Short summary
We present PARASO, a circumpolar model for simulating the Antarctic climate. PARASO features five distinct models, each covering different Earth system subcomponents (ice sheet, atmosphere, land, sea ice, ocean). In this technical article, we describe how this tool has been developed, with a focus on the
coupling interfacesrepresenting the feedbacks between the distinct models used for contribution. PARASO is stable and ready to use but is still characterized by significant biases.
Ulas Im, Kostas Tsigaridis, Gregory Faluvegi, Peter L. Langen, Joshua P. French, Rashed Mahmood, Manu A. Thomas, Knut von Salzen, Daniel C. Thomas, Cynthia H. Whaley, Zbigniew Klimont, Henrik Skov, and Jørgen Brandt
Atmos. Chem. Phys., 21, 10413–10438, https://doi.org/10.5194/acp-21-10413-2021, https://doi.org/10.5194/acp-21-10413-2021, 2021
Short summary
Short summary
Future (2015–2050) simulations of the aerosol burdens and their radiative forcing and climate impacts over the Arctic under various emission projections show that although the Arctic aerosol burdens are projected to decrease significantly by 10 to 60 %, regardless of the magnitude of aerosol reductions, surface air temperatures will continue to increase by 1.9–2.6 ℃, while sea-ice extent will continue to decrease, implying reductions of greenhouse gases are necessary to mitigate climate change.
Pablo Ortega, Jon I. Robson, Matthew Menary, Rowan T. Sutton, Adam Blaker, Agathe Germe, Jöel J.-M. Hirschi, Bablu Sinha, Leon Hermanson, and Stephen Yeager
Earth Syst. Dynam., 12, 419–438, https://doi.org/10.5194/esd-12-419-2021, https://doi.org/10.5194/esd-12-419-2021, 2021
Short summary
Short summary
Deep Labrador Sea densities are receiving increasing attention because of their link to many of the processes that govern decadal climate oscillations in the North Atlantic and their potential use as a precursor of those changes. This article explores those links and how they are represented in global climate models, documenting the main differences across models. Models are finally compared with observational products to identify the ones that reproduce the links more realistically.
Roberto Bilbao, Simon Wild, Pablo Ortega, Juan Acosta-Navarro, Thomas Arsouze, Pierre-Antoine Bretonnière, Louis-Philippe Caron, Miguel Castrillo, Rubén Cruz-García, Ivana Cvijanovic, Francisco Javier Doblas-Reyes, Markus Donat, Emanuel Dutra, Pablo Echevarría, An-Chi Ho, Saskia Loosveldt-Tomas, Eduardo Moreno-Chamarro, Núria Pérez-Zanon, Arthur Ramos, Yohan Ruprich-Robert, Valentina Sicardi, Etienne Tourigny, and Javier Vegas-Regidor
Earth Syst. Dynam., 12, 173–196, https://doi.org/10.5194/esd-12-173-2021, https://doi.org/10.5194/esd-12-173-2021, 2021
Short summary
Short summary
This paper presents and evaluates a set of retrospective decadal predictions with the EC-Earth3 climate model. These experiments successfully predict past changes in surface air temperature but show poor predictive capacity in the subpolar North Atlantic, a well-known source region of decadal climate variability. The poor predictive capacity is linked to an initial shock affecting the Atlantic Ocean circulation, ultimately due to a suboptimal representation of the Labrador Sea density.
Ruth Petrie, Sébastien Denvil, Sasha Ames, Guillaume Levavasseur, Sandro Fiore, Chris Allen, Fabrizio Antonio, Katharina Berger, Pierre-Antoine Bretonnière, Luca Cinquini, Eli Dart, Prashanth Dwarakanath, Kelsey Druken, Ben Evans, Laurent Franchistéguy, Sébastien Gardoll, Eric Gerbier, Mark Greenslade, David Hassell, Alan Iwi, Martin Juckes, Stephan Kindermann, Lukasz Lacinski, Maria Mirto, Atef Ben Nasser, Paola Nassisi, Eric Nienhouse, Sergey Nikonov, Alessandra Nuzzo, Clare Richards, Syazwan Ridzwan, Michel Rixen, Kim Serradell, Kate Snow, Ag Stephens, Martina Stockhause, Hans Vahlenkamp, and Rick Wagner
Geosci. Model Dev., 14, 629–644, https://doi.org/10.5194/gmd-14-629-2021, https://doi.org/10.5194/gmd-14-629-2021, 2021
Short summary
Short summary
This paper describes the infrastructure that is used to distribute Coupled Model Intercomparison Project Phase 6 (CMIP6) data around the world for analysis by the climate research community. It is expected that there will be ~20 PB (petabytes) of data available for analysis. The operations team performed a series of preparation "data challenges" to ensure all components of the infrastructure were operational for when the data became available for timely data distribution and subsequent analysis.
Cited articles
Befort, D. J., O'Reilly, C. H., and Weisheimer, A.: Constraining Projections
Using Decadal Predictions, Geophys. Res. Lett., 47, e2020GL087900, https://doi.org/10.1029/2020GL087900, 2020.
Bilbao, R., Wild, S., Ortega, P., Acosta-Navarro, J., Arsouze, T., Bretonnière, P.-A., Caron, L.-P., Castrillo, M., Cruz-García, R.,
Cvijanovic, I., Doblas-Reyes, F. J., Donat, M., Dutra, E., Echevarría,
P., Ho, A.-C., Loosveldt-Tomas, S., Moreno-Chamarro, E., Pérez-Zanon, N., Ramos, A., Ruprich-Robert, Y., Sicardi, V., Tourigny, E., and Vegas-Regidor, J.: Assessment of a full-field initialized decadal climate prediction system with the CMIP6 version of EC-Earth, Earth Syst. Dynam., 12, 173–196, https://doi.org/10.5194/esd-12-173-2021, 2021.
Boer, G. J., Smith, D. M., Cassou, C., Doblas-Reyes, F., Danabasoglu, G.,
Kirtman, B., Kushnir, Y., Kimoto, M., Meehl, G. A., Msadek, R., Mueller, W.
A., Taylor, K. E., Zwiers, F., Rixen, M., Ruprich-Robert, Y., and Eade, R.:
The Decadal Climate Prediction Project (DCPP) contribution to CMIP6, Geosci.
Model Dev., 9, 3751–3777, https://doi.org/10.5194/gmd-9-3751-2016, 2016.
Borchert, L. F., Koul, V., Menary, M. B., Befort, D. J., Swingedouw, D., Sgubin, G., and Mignot, J.: Skillful decadal prediction of unforced southern
European summer temperature variations, Environ. Res. Lett., 16, 104017,
https://doi.org/10.1088/1748-9326/ac20f5, 2021.
Climate Research Unit: Temperature, Climate Research Unit [data set], https://crudata.uea.ac.uk/cru/data/temperature/ (last access: October 2022), 2022a.
Climate Research Unit: High-resolution gridded datasets (and derived products), Climate Research Unit [data set], https://crudata.uea.ac.uk/cru/data/hrg/ (last access: October 2022), 2022b.
Cowtan, K. and Way, R. G.: Coverage bias in the HadCRUT4 temperature series
and its impact on recent temperature trends, Q. J. Roy. Meteorol. Soc., 140,
1935–1944, https://doi.org/10.1002/qj.2297, 2014.
DelSole, T. and Tippett, M. K.: Forecast Comparison Based on Random Walks,
Mon. Weather Rev., 144, 615–626, https://doi.org/10.1175/MWR-D-15-0218.1, 2016.
Ding, H., Newman, M., Alexander, M. A., and Wittenberg, A. T.: Skillful
Climate Forecasts of the Tropical Indo-Pacific Ocean Using Model-Analogs, J.
Climate, 31, 5437–5459, https://doi.org/10.1175/JCLI-D-17-0661.1, 2018.
Doblas-Reyes, F. J., Andreu-Burillo, I., Chikamoto, Y., García-Serrano,
J., Guemas, V., Kimoto, M., Mochizuki, T., Rodrigues, L. R. L., and van Oldenborgh, G. J.: Initialized near-term regional climate change prediction, Nat. Commun., 4, 1715, https://doi.org/10.1038/ncomms2704, 2013.
DWD: GPCC, DWD [data set], https://www.dwd.de/EN/ourservices/gpcc/gpcc.html, last access: October 2022.
Easterling, D. R. and Wehner, M. F.: Is the climate warming or cooling?, Geophys. Res. Lett., 36, L08706, https://doi.org/10.1029/2009GL037810, 2009.
ECMWF: ERA5, ECMWF [data set], https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5, last access: October 2022.
England, M. H., McGregor, S., Spence, P., Meehl, G. A., Timmermann, A., Cai,
W., Gupta, A. S., McPhaden, M. J., Purich, A., and Santoso, A.: Recent
intensification of wind-driven circulation in the Pacific and the ongoing
warming hiatus, Nat. Clim. Change, 4, 222–227, https://doi.org/10.1038/nclimate2106, 2014.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R.
J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project
Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9,
1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Fyfe, J. C., Meehl, G. A., England, M. H., Mann, M. E., Santer, B. D., Flato, G. M., Hawkins, E., Gillett, N. P., Xie, S.-P., Kosaka, Y., and Swart, N. C.: Making sense of the early-2000s warming slowdown, Nat. Clim. Change, 6, 224–228, https://doi.org/10.1038/nclimate2938, 2016.
Goddard, L., Kumar, A., Solomon, A., Smith, D., Boer, G., Gonzalez, P.,
Kharin, V., Merryfield, W., Deser, C., Mason, S. J., Kirtman, B. P., Msadek,
R., Sutton, R., Hawkins, E., Fricker, T., Hegerl, G., Ferro, C. A. T.,
Stephenson, D. B., Meehl, G. A., Stockdale, T., Burgman, R., Greene, A. M.,
Kushnir, Y., Newman, M., Carton, J., Fukumori, I., and Delworth, T.: A
verification framework for interannual-to-decadal predictions experiments,
Clim. Dynam., 40, 245–272, https://doi.org/10.1007/s00382-012-1481-2, 2013.
Guemas, V., Auger, L., and Doblas-Reyes, F. J.: Hypothesis Testing for
Autocorrelated Short Climate Time Series, J. Appl. Meteorol. Clim., 53, 637–651, https://doi.org/10.1175/JAMC-D-13-064.1, 2014.
Hausfather, Z., Marvel, K., Schmidt, G. A., Nielsen-Gammon, J. W., and
Zelinka, M.: Climate simulations: recognize the `hot model' problem, Nature,
605, 26–29, https://doi.org/10.1038/d41586-022-01192-2, 2022.
Hawkins, E. and Sutton, R.: The Potential to Narrow Uncertainty in Regional
Climate Predictions, B. Am. Meteorol. Soc., 90, 1095–1108,
https://doi.org/10.1175/2009BAMS2607.1, 2009.
Hawkins, E. and Sutton, R.: The potential to narrow uncertainty in projections of regional precipitation change, Clim. Dynam., 37, 407–418,
https://doi.org/10.1007/s00382-010-0810-6, 2011.
Haywood, J. M., Jones, A., and Jones, G. S.: The impact of volcanic eruptions in the period 2000–2013 on global mean temperature trends evaluated in the HadGEM2-ES climate model: Impact of modest volcanic eruptions on the global warming trends, Atmos. Sci. Lett., 15, 92–96, https://doi.org/10.1002/asl2.471, 2014.
Hazeleger, W., Guemas, V., Wouters, B., Corti, S., Andreu-Burillo, I., Doblas-Reyes, F. J., Wyser, K., and Caian, M.: Multiyear climate predictions
using two initialization strategies, Geophys. Res. Lett., 40, 1794–1798,
https://doi.org/10.1002/grl.50355, 2013.
Hegerl, G. C., Ballinger, A. P., Booth, B. B. B., Borchert, L. F., Brunner,
L., Donat, M. G., Doblas-Reyes, F. J., Harris, G. R., Lowe, J., Mahmood, R.,
Mignot, J., Murphy, J. M., Swingedouw, D., and Weisheimer, A.: Toward
Consistent Observational Constraints in Climate Predictions and Projections,
Front. Clim., 3, 678109, https://doi.org/10.3389/fclim.2021.678109, 2021.
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore,
J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H.-M.: Extended
Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades,
Validations, and Intercomparisons, J. Climate, 30, 8179–8205, https://doi.org/10.1175/JCLI-D-16-0836.1, 2017.
IPCC: Summary for Policymakers, in: Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu,
R., and Zhou, B., Cambridge University Press, Cambridge, UK and New York, NY, USA, 3–32, https://doi.org/10.1017/9781009157896.001, 2021.
JRA project: JRA-55 – the Japanese 55-year Reanalysis, https://jra.kishou.go.jp/JRA-55/index_en.html, last access: October 2022.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi,
K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.:
The JRA-55 Reanalysis: General Specifications and Basic Characteristics,
J. Meteorol. Soc. Jpn., 93, 5–48, https://doi.org/10.2151/jmsj.2015-001, 2015.
Kosaka, Y. and Xie, S.-P.: Recent global-warming hiatus tied to equatorial
Pacific surface cooling, Nature, 501, 403–407, https://doi.org/10.1038/nature12534, 2013.
Kushnir, Y., Scaife, A. A., Arritt, R., Balsamo, G., Boer, G., Doblas-Reyes,
F., Hawkins, E., Kimoto, M., Kolli, R. K., Kumar, A., Matei, D., Matthes,
K., Müller, W. A., O'Kane, T., Perlwitz, J., Power, S., Raphael, M.,
Shimpo, A., Smith, D., Tuma, M., and Wu, B.: Towards operational predictions
of the near-term climate, Nat. Clim. Change, 9, 94–101,
https://doi.org/10.1038/s41558-018-0359-7, 2019.
Lehner, F., Deser, C., Maher, N., Marotzke, J., Fischer, E. M., Brunner, L.,
Knutti, R., and Hawkins, E.: Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6, Earth Syst. Dynam., 11, 491–508,
https://doi.org/10.5194/esd-11-491-2020, 2020.
Mahmood, R., Donat, M. G., Ortega, P., Doblas-Reyes, F. J., and Ruprich-Robert, Y.: Constraining Decadal Variability Yields Skillful Projections of Near-Term Climate Change, Geophys. Res. Lett., 48, e2021GL094915, https://doi.org/10.1029/2021GL094915, 2021.
Meehl, G. A., Richter, J. H., Teng, H., Capotondi, A., Cobb, K., Doblas-Reyes, F., Donat, M. G., England, M. H., Fyfe, J. C., Han, W., Kim, H., Kirtman, B. P., Kushnir, Y., Lovenduski, N. S., Mann, M. E., Merryfield, W. J., Nieves, V., Pegion, K., Rosenbloom, N., Sanchez, S. C., Scaife, A.
A., Smith, D., Subramanian, A. C., Sun, L., Thompson, D., Ummenhofer, C. C.,
and Xie, S.-P.: Initialized Earth System prediction from subseasonal to
decadal timescales, Nat. Rev. Earth Environ., 2, 340–357,
https://doi.org/10.1038/s43017-021-00155-x, 2021.
Menary, M. B., Mignot, J., and Robson, J.: Skilful decadal predictions of
subpolar North Atlantic SSTs using CMIP model-analogues, Environ. Res. Lett., 16, 064090, https://doi.org/10.1088/1748-9326/ac06fb, 2021.
Morice, C. P., Kennedy, J. J., Rayner, N. A., and Jones, P. D.: Quantifying
uncertainties in global and regional temperature change using an ensemble of
observational estimates: The HadCRUT4 data set: The HadCRUT4 data , J.
Geophys. Res., 117, D08101, https://doi.org/10.1029/2011JD017187, 2012.
NOAA: NOAA Extended Reconstructed SST V5, NOAA [data set], https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html (last access: October 2022), 2022a.
NOAA: Gridded Dataset, NOAA [data set],
https://www.ncei.noaa.gov/access/monitoring/global-temperature-anomalies/grid (last access: October 2022), 2022b.
Ridley, D. A., Solomon, S., Barnes, J. E., Burlakov, V. D., Deshler, T.,
Dolgii, S. I., Herber, A. B., Nagai, T., Neely, R. R., Nevzorov, A. V., Ritter, C., Sakai, T., Santer, B. D., Sato, M., Schmidt, A., Uchino, O., and
Vernier, J. P.: Total volcanic stratospheric aerosol optical depths and
implications for global climate change: Uncertainty in volcanic climate forcing, Geophys. Res. Lett., 41, 7763–7769, https://doi.org/10.1002/2014GL061541, 2014.
Risbey, J. S., Lewandowsky, S., Langlais, C., Monselesan, D. P., O'Kane, T.
J., and Oreskes, N.: Well-estimated global surface warming in climate
projections selected for ENSO phase, Nat. Clim. Change, 4, 835–840,
https://doi.org/10.1038/nclimate2310, 2014.
Santer, B. D., Bonfils, C., Painter, J. F., Zelinka, M. D., Mears, C.,
Solomon, S., Schmidt, G. A., Fyfe, J. C., Cole, J. N. S., Nazarenko, L.,
Taylor, K. E., and Wentz, F. J.: Volcanic contribution to decadal changes in
tropospheric temperature, Nat. Geosci., 7, 185–189, https://doi.org/10.1038/ngeo2098, 2014.
Schamm, K., Ziese, M., Becker, A., Finger, P., Meyer-Christoffer, A.,
Schneider, U., Schröder, M., and Stender, P.: Global gridded precipitation over land: a description of the new GPCC First Guess Daily
product, Earth Syst. Sci. Data, 6, 49–60, https://doi.org/10.5194/essd-6-49-2014, 2014.
Smith, D. M., Eade, R., and Pohlmann, H.: A comparison of full-field and
anomaly initialization for seasonal to decadal climate prediction, Clim.
Dynam., 41, 3325–3338, https://doi.org/10.1007/s00382-013-1683-2, 2013.
Smith, D. M., Eade, R., Scaife, A. A., Caron, L.-P., Danabasoglu, G., DelSole, T. M., Delworth, T., Doblas-Reyes, F. J., Dunstone, N. J., Hermanson, L., Kharin, V., Kimoto, M., Merryfield, W. J., Mochizuki, T., Müller, W. A., Pohlmann, H., Yeager, S., and Yang, X.: Robust skill of
decadal climate predictions, npj Clim. Atmos. Sci., 2, 13,
https://doi.org/10.1038/s41612-019-0071-y, 2019.
Smith, D. M., Scaife, A. A., Eade, R., Athanasiadis, P., Bellucci, A., Bethke, I., Bilbao, R., Borchert, L. F., Caron, L.-P., Counillon, F., Danabasoglu, G., Delworth, T., Doblas-Reyes, F. J., Dunstone, N. J.,
Estella-Perez, V., Flavoni, S., Hermanson, L., Keenlyside, N., Kharin, V.,
Kimoto, M., Merryfield, W. J., Mignot, J., Mochizuki, T., Modali, K., Monerie, P.-A., Müller, W. A., Nicolí, D., Ortega, P., Pankatz, K.,
Pohlmann, H., Robson, J., Ruggieri, P., Sospedra-Alfonso, R., Swingedouw,
D., Wang, Y., Wild, S., Yeager, S., Yang, X., and Zhang, L.: North Atlantic
climate far more predictable than models imply, Nature, 583, 796–800,
https://doi.org/10.1038/s41586-020-2525-0, 2020.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and
the Experiment Design, B. Am. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Trenberth, K. E.: Has there been a hiatus?, Science, 349, 691–692,
https://doi.org/10.1126/science.aac9225, 2015.
WCRP: CMIP Phase 6 (CMIP6), https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6, last access: October 2022.
Wilks, D. S.: Statistical methods in the atmospheric sciences, Elsevier,
Amsterdam, the Netherlands, Boston, ISBN 978-0-12-385022-5 978-0-12-385023-2, 2011.
Yeager, S. G., Danabasoglu, G., Rosenbloom, N. A., Strand, W., Bates, S. C.,
Meehl, G. A., Karspeck, A. R., Lindsay, K., Long, M. C., Teng, H., and
Lovenduski, N. S.: Predicting Near-Term Changes in the Earth System: A Large
Ensemble of Initialized Decadal Prediction Simulations Using the Community
Earth System Model, B. Am. Meteorol. Soc., 99, 1867–1886,
https://doi.org/10.1175/BAMS-D-17-0098.1, 2018.
Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M.,
Ceppi, P., Klein, S. A., and Taylor, K. E.: Causes of Higher Climate
Sensitivity in CMIP6 Models, Geophys. Res. Lett., 47, e2019GL085782, https://doi.org/10.1029/2019GL085782, 2020.
Short summary
Near-term climate change projections are strongly affected by the uncertainty from internal climate variability. Here we present a novel approach to reduce such uncertainty by constraining decadal-scale variability in the projections using observations. The constrained ensembles show significant added value over the unconstrained ensemble in predicting global climate 2 decades ahead. We also show the applicability of regional constraints for attributing predictability to certain ocean regions.
Near-term climate change projections are strongly affected by the uncertainty from internal...
Altmetrics
Final-revised paper
Preprint