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Abstract. Near-term projections of climate change are subject to substantial uncertainty from internal climate
variability. Here we present an approach to reduce this uncertainty by sub-selecting those ensemble members
that more closely resemble observed patterns of ocean temperature variability immediately prior to a certain
start date. This constraint aligns the observed and simulated variability phases and is conceptually similar to
initialization in seasonal to decadal climate predictions. We apply this variability constraint to large multi-model
projection ensembles from the Coupled Model Intercomparison Project phase 6 (CMIP6), consisting of more
than 200 ensemble members, and evaluate the skill of the constrained ensemble in predicting the observed near-
surface temperature, sea-level pressure, and precipitation on decadal to multi-decadal timescales.

We find that the constrained projections show significant skill in predicting the climate of the following 10
to 20 years, and added value over the ensemble of unconstrained projections. For the first decade after applying
the constraint, the global patterns of skill are very similar and can even outperform those of the multi-model
ensemble mean of initialized decadal hindcasts from the CMIP6 Decadal Climate Prediction Project (DCPP).
In particular for temperature, larger areas show added skill in the constrained projections compared to DCPP,
mainly in the Pacific and some neighboring land regions. Temperature and sea-level pressure in several regions
are predictable multiple decades ahead, and show significant added value over the unconstrained projections
for forecasting the first 2 decades and the 20-year averages. We further demonstrate the suitability of regional
constraints to attribute predictability to certain ocean regions. On the example of global average temperature
changes, we confirm the role of Pacific variability in modulating the reduced rate of global warming in the
early 2000s, and demonstrate the predictability of reduced global warming rates over the following 15 years
based on the climate conditions leading up to 1998. Our results illustrate that constraining internal variability
can significantly improve the accuracy of near-term climate change estimates for the next few decades.
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1 Introduction

In the context of ongoing climate change, predicting the cli-
mate evolution over the coming decades is important to en-
able targeted adaptation to the anticipated changes. While
increasing greenhouse gas concentrations cause a general
global warming (IPCC, 2021), different modes of climate
variability can regionally amplify or counteract the warming-
related effects.

To obtain information about the expected climate in the fu-
ture, climate projections simulate the responses of the Earth
system to specified radiative forcing scenarios (Eyring et al.,
2016; Taylor et al., 2012). These climate projections are af-
fected by different uncertainties related to the forcing sce-
nario chosen, the climate model used, and the phasing of in-
ternal variability. For projections of near-term climate change
in the next 20 to 30 years, internal variability is the domi-
nating source of uncertainty at regional scales (Hawkins and
Sutton, 2009, 2011; Lehner et al., 2020), while at longer
timescales the scenario choice becomes increasingly impor-
tant.

Decadal predictions, initialized towards observational
states, are designed to exploit the predictability arising from
both internal climate variability (Meehl et al., 2021; Kush-
nir et al., 2019), which is achieved by aligning the phases
of the variability modes in the model simulations with our
best estimate of the real-world state, and from externally
forced changes (Doblas-Reyes et al., 2013). These initialized
decadal predictions show significant improvements in terms
of added skill as compared to the uninitialized projections
(e.g., Smith et al., 2019, 2020). However, the decadal predic-
tions often suffer from initialization shocks and the subse-
quent drift towards the model’s preferred climate state which
can significantly reduce the overall skill of a decadal predic-
tion system (e.g., Bilbao et al., 2021). In addition, the decadal
hindcasts involve running very large ensembles of simula-
tions and are therefore computationally expensive, which has
traditionally limited their production to the next 10 years
with relatively small ensemble sizes (Boer et al., 2016).

As an alternative, constraining decadal variability in large
ensembles of future projection simulations can improve cli-
mate information and reduce uncertainty of projections for
the next few decades. Different approaches have been ex-
plored to constrain internal variability in climate projections
(e.g., Hegerl et al., 2021). An important advantage of these
approaches, based on sub-selecting members of a set of tran-
sient climate simulations, is that predictions made based on
these simulations are consistent with the model-specific cli-
mate attractor, and not affected by shock, drift, or related
artifacts (Hazeleger et al., 2013; Smith et al., 2013; Bil-
bao et al., 2021). On seasonal to interannual timescales,
Ding et al. (2018) made skillful predictions of tropical Pa-
cific sea surface temperatures (SSTs) by finding model ana-
logues similar to the observed state and using the subse-
quent trajectories of those analogues as forecasts. Similarly,
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Menary et al. (2021) developed an analogue approach to pre-
dict decadal-scale variations in the North Atlantic region.

On decadal to multi-decadal timescales, Befort et
al. (2020) and Mahmood et al. (2021) have recently proposed
approaches to constrain projections based on their agreement
with decadal predictions and demonstrated some added value
beyond the time period covered by decadal predictions. How-
ever, the aforementioned limitations affecting the initialized
decadal predictions can also limit the added value of the con-
strained ensembles. Here we implement an approach similar
to Mahmood et al. (2021), however using climate observa-
tions for the constraining criteria instead of decadal predic-
tion data. In particular, we use multi-annual averages of sea
surface temperature (SST) anomaly patterns as constraining
criterion. In essence, this method exploits ensembles of al-
ready available model simulations to sub-select those mem-
bers in closest agreement with the contemporary and/or im-
mediately preceding observed SST anomaly patterns. Such
member selection method thus works as a poor man’s initial-
ization to predict climate in the following decades.

In the following we describe the data and approach used
to implement the poor man’s initialized prediction system
(Sect. 2). We then demonstrate its application and evaluate
the skill in predicting temperature, sea level pressure, and
precipitation globally, in comparison to state-of-the-art ini-
tialized predictions contributing to the Decadal Climate Pre-
diction Project (DCPP; Boer et al., 2016), and discuss the
sensitivity to some of the various choices to be made dur-
ing the selection procedure. We further outline the applica-
bility of this approach to attribute predictability of specific
decadal-scale phenomena to certain ocean regions (Sect. 3).
We conclude this paper with a summary and discussion of
this poor man’s initialized prediction approach in the context
of other existing prediction systems (Sect. 4).

2 Data and methods

We use climate model simulation data from the Coupled
Model Intercomparison Project phase 6 (CMIP6) simula-
tions (Eyring et al., 2016). A total of 212 ensemble mem-
bers from 32 different models were available, composed of
transient historical simulations (hereafter referred to as “un-
constrained”, see Table S1 in the Supplement) until 2014 and
continued with future projection simulations following the
shared socioeconomic pathway (SSP2-45) forcing scenario
(from 2015 onwards). We also use 93 members from 9 differ-
ent models of the CMIP6/DCPP-A initialized decadal hind-
casts in order to evaluate the skill of the constrained projec-
tions in comparison to actual initialized predictions.

The observational data set used in this study to constrain
the climate projections is the Extended Reconstructed Sea
Surface Temperature version 5 dataset (ERSSTvS; Huang
et al., 2017) from the National Oceanic and Atmospheric
Administration (NOAA). Surface temperature from Had-
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Figure 1. A schematic illustration of the constraining methodology in which observed SST anomaly patterns (as in the top row) are used to
compute spatial pattern correlations with individual historical ensemble members. Based on these pattern correlations, the historical ensemble
members are ranked from the one with the best agreement with the observed state (e.g., BestO1, Best02, Best03) to the worst agreement. For
conciseness, we only show here the observed and the ranked historical member anomaly patterns of four start dates, however this ranking
procedure is repeated every year using 9-year average SST anomalies prior to starting a prediction. For each start date, we select the 30 top
ranking members to make predictions on decadal to multi-decadal timescales.

CRUT4.6 (Morice et al., 2012), sea level pressure (SLP)
from Japanese 55-year Reanalysis (JRA-55; Kobayashi et al.,
2015), and precipitation from Global Precipitation Clima-
tology Center (Schamm et al., 2014) were used to evaluate
the hindcasts on decadal and multi-decadal timescales. All
data sets used in this study were converted to monthly mean
anomalies relative to the reference climatological period of
1981-2010. We also evaluated the skill of the hindcasts using
a different set of observational data for surface temperature,
SLP, and precipitation (see Sect. S1 in the Supplement), to
confirm the robustness of the results for different reference
datasets.

The constraining procedure involves comparing SST
anomaly patterns of individual unconstrained members with
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the corresponding observed anomalies averaged over a given
period that precedes the start of the prediction, by means of
area-weighted spatial pattern correlation. To do so, all SST
datasets from both models and observations were regridded
to a common regular 3° x 3° grid. For each start date, based
on these anomaly pattern correlations, the unconstrained en-
semble members were ranked (Fig. 1) and the top ranking
30 members (referred to as “Best30”) were chosen for fore-
casting up to 20 years after the initialization period. Since
the choice of selecting 30 members is somewhat arbitrary,
the sensitivity to selecting a different number of members is
further addressed in Sect. 3.2. We use 9-year averages for
most of the analyses, but additionally tested other averag-
ing periods for the constraints to assess the sensitivity of
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the predictions to this parameter. Using 9-year averages, in
order to start a constrained prediction from January 1961,
the 9-year mean SST anomalies from January 1952 to De-
cember 1960 were used to select the Best30 members. This
procedure was repeated every year and the Best30 ensem-
bles were selected based on the SST anomaly comparisons
of 1953-1961 (for predictions starting in 1962), 1954—962
(for predictions starting in 1963), and 1955-1963 (for pre-
dictions starting in 1964), and so on. While the constrained
projections can be used to make climate predictions for as
long as the projections are run, in this study we focus on
the forecast periods of years 1-10, 11-20, and 1-20 after the
“initialization” (meaning selection of members closest to the
observational state). To evaluate the 20-year mean hindcasts
against observational data sets, the final constraining period
considered goes from January 1991 to December 1999 for
predicting January 2000 till December 2019. Therefore a to-
tal of 40 start dates were used for the hindcasts. For real-time
prediction purposes, the constraint would use the most recent
9 years.

As also discussed in Mahmood et al. (2021), the con-
straint involves a number of choices. For example, regional
SST anomalies can be used instead of using global SSTs to
rank and sub-select the Best30 ensemble. Similarly, as dis-
cussed above, time periods covering different numbers of
years (rather than using 9-year average SST anomalies) can
also be used for determining the Best30 members most simi-
lar to observations. The sensitivity to these regional and tem-
poral initializations and other potential choices are evaluated
in Sect. 3.2 and 3.3.

The skill of the hindcasts is evaluated with two differ-
ent deterministic metrics: the anomaly correlation coeffi-
cient (ACC) to test the phase agreement between the climate
model ensemble means (unconstrained, Best30, and DCPP)
and observational data sets (Goddard et al., 2013), and the
residual correlations to evaluate the added value of Best30
over the unconstrained ensemble mean after removing an es-
timate of the forced signal (for which we used the ensem-
ble mean of all 212 CMIP6 members) following Smith et
al. (2019). The residuals are calculated by subtracting from
the Best30 and DCPP ensemble means and the observations
their respective linear fits with the unconstrained ensemble
mean. The residual correlation is obtained by computing cor-
relations between the residuals of the constrained (or ini-
tialized) ensemble mean and the observations, respectively
(Smith et al., 2019). The residual correlation has been sug-
gested as a measure of added skill in predictions in particular
for variables with a strong response to forcing, such as near-
surface temperature. For consistency, we use this measure to
evaluate the added skill for all variables in this study. We
note however that for precipitation and SLP ACC differences
show very similar results (not shown). The statistical signifi-
cance of the ACC and residual correlation is estimated based
on a two-tailed Student’s z-test after taking into account the
temporal autocorrelation (Guemas et al., 2014). The results
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are considered statistically significant when the null hypoth-
esis of no correlation can be rejected with p < 0.05.

In addition, we further test the probabilistic forecast
skill of the Best30 ensemble in comparison with the skill
of the unconstrained ensemble with the ranked probabil-
ity skill score (RPSS; Wilks, 2011). The ranked probability
score (RPS) is computed by dividing each prediction made
by the constrained ensemble (e.g., Best30) and the uncon-
strained ensembles (here these predictions refer to the fore-
casts from each individual start dates) into three equiprob-
able categories (below normal, normal, and above normal),
computing the terciles separately for observations and simu-
lations to avoid the biases in mean and variance. The RPSS is
then obtained by computing the relative difference between
mean RPS of Best30 and the unconstrained ensemble (with
positive values indicating the Best30 outperforms the un-
constrained ensemble in terms of probabilistic forecasts and
vice versa). The same procedure was also applied for testing
the added value of DCPP over the unconstrained ensemble
in forecasting the first decade, i.e., years 1-10. The statisti-
cal significance of the RPSS is estimated by a random walk
test following DelSole and Tippett (2016). For all forecast
quality assessments the model fields of near-surface temper-
atures, sea-level pressure and precipitation, and the observa-
tional reference data, were regridded to a common 5° x 5°
grid. This is done following recommendations for the evalu-
ation of decadal predictions (Goddard et al., 2013), with the
rationale to reduce effects from small-scale noise in the iden-
tification of large-scale predictable signals.

3 Results

3.1 Evaluation of the variability-constrained projections

We evaluate the forecast quality of the constrained projec-
tions, where constraining decadal variability has the purpose
to initialize decadal to multi-decadal predictions, similar to
what is done in initialized climate predictions (e.g., Doblas-
Reyes et al., 2013; Meehl et al., 2021) by means of data as-
similation. To this end we construct hindcasts (also known as
retrospective forecasts) on three decadal and multi-decadal
time ranges. For the first decade (average of forecast years 1—
10, “FY1-10"), we also compare the skill of the Best30 en-
semble with that of the actual DCPP ensemble obtained from
the multi-model decadal predictions provided within CMIP6.
We further evaluate the second decade (“FY11-20") and the
20-year forecasts (“FY1-20) in order to explore the applica-
bility of the constraining approach beyond the 10-year fore-
cast period.

Figure 2a—c shows that the Best30 ensemble has high
skill in terms of ACC for near-surface air temperature over
most of the global regions except in parts of the Pacific and
Southern Ocean where the skill is statistically not significant
(p > 0.05). Similarly high positive ACC values are obtained
for the unconstrained ensemble mean (Fig. Sla—c in the Sup-
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Figure 2. Anomaly correlation coefficient (ACC) between observed and predicted near-surface temperature anomalies for three forecast
periods, average of forecast years 1-10, 11-20, and 1-20 (a—c). Residual correlations for Best30 (d—f) and for DCPP (g) ensemble means
after removing the forced signal (estimated based on ensemble mean of the unconstrained 212 members following Smith et al., 2019). RPSS
for Best30 (h—j) and for DCPP (k) against the unconstrained CMIP6 ensemble as reference. Stippling indicates regions where the ACC,
residual correlation, and RPSS are statistically not significant at 95 % confidence level (see Methods for details).

plement) suggesting that the external forcing signal strongly
contributes to these high correlations. To understand the ad-
ditional skill of the Best30 over the unconstrained ensem-
ble, residual correlations are shown in Fig. 2d—f after remov-
ing an estimate of the global warming signal from both the
Best30 ensemble and the observations following the method-
ology of Smith et al. (2019). The same procedure is applied
to evaluate the skill of the DCPP ensemble over the uncon-
strained ensemble for FY1-10 (Fig. 2g).

The results show that the Best30 residual correlations for
the first decade are generally similar to DCPP in terms of the
overall spatial distributions (cf. Fig. 2d and g). The Best30,
however, shows larger added skill than DCPP in many re-
gions including extended areas of the tropical Pacific, parts
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of Africa, eastern Asia, southern Europe, and Southeast Asia
with residual correlations exceeding 0.6. In contrast, DCPP
shows higher residual correlations than Best30 in the subpo-
lar North Atlantic, which is a region where previous studies
have reported the largest added value in initialized decadal
predictions (Doblas-Reyes et al., 2013; Yeager et al., 2018;
Smith et al., 2019). Note that higher skill in the North At-
lantic can also be achieved for the Best30 when constraining
the projections using regional SST anomalies (see Sect. 3.3).
Significant added value of the variability-constraint is also
found beyond the first 10 forecast years typically covered
by decadal predictions. We find positive residual correlations
also for FY11-20 (Fig. 2e) and FY1-20 (Fig. 2d) over large
parts of the Pacific, Atlantic, and Indian oceans and some
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neighboring land regions including parts of Africa, Australia,
eastern Asia, and North America.

We further evaluate the efficacy of the constraining ap-
proach by means of the RPSS where positive values indicate
superiority of the Best30 or DCPP over the unconstrained en-
semble in making probabilistic forecasts (Fig. 2h—k). Similar
to residual correlations, the Best30 shows significant added
value over the unconstrained ensemble, and in several re-
gions stronger added value than DCPP, for FY1-10, for ex-
ample in the eastern tropical Pacific, the North Atlantic, and
Indian Ocean, and neighboring land regions in most conti-
nents. Significant added value in terms of RPSS is also found
for the longer forecast times, e.g., the second decade (FY11-
20; Fig. 2i) and the next 20-years (FY1-20; Fig. 2j), over
substantial parts of the global ocean and land regions. While
many regions consistently exhibit added value from the con-
straint for the different forecast times shown, in other regions
such as large parts of the Atlantic Ocean or the tropical In-
dian Ocean, positive residual correlations emerge only in the
second decade of the hindcasts.

We compare the regional time series from the different en-
sembles and observations for some selected regions where
the constraint adds skill, such as the eastern tropical Pacific,
the North Atlantic, and eastern Asia (Fig. S2). These time se-
ries show that added skill in the constrained ensemble is of-
ten associated with showing a stronger warming rate than the
unconstrained CMIP6 ensemble and also DCPP during the
first 1-2 investigated decades (e.g., 1961 to 1980 in FY1-
10) in these regions, more similar to the observed trend. In
some cases (e.g., FY 1-20 predictions in eastern Asia and the
North Atlantic), the constrained ensemble also better cap-
tures the decreased warming rates observed after about 1990.
This suggests that added skill in the constrained ensemble is
associated with better capturing observed long-term regional
warming rates and also decadal-scale variations, whereas the
unconstrained CMIP6 ensemble shows a more monotonic
warming.

While the focus of this study is on constraining climate
variability to improve projection information on decadal to
multi-decadal timescales, added value is also evident for
shorter forecasting periods. For example, considering the
S-year forecasting periods FY1-5, FY6-10, FY11-15, and
FY16-20 (Figs. S3 and S4), we can see that, even if sub-
stantial parts of the globe show added value for the differ-
ent forecast periods, their spatial distribution changes with
time. During the first 5 forecast years, the largest added skill
is found in the North Atlantic and the eastern tropical Pa-
cific, which evolves to larger parts of the North Pacific dur-
ing the second pentad (years 6—10). During the third pen-
tad (years 11-15), positive residual correlations are found
over large parts of the North Pacific, the Atlantic, and the
Indian Ocean, including some adjacent land regions. Dur-
ing the fourth pentad (years 16-20), positive residual cor-
relations remain over large parts of the Atlantic, the Indian
Ocean, and some extra-tropical regions of the Pacific Ocean.
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The constrained projections also show significant added
value in predicting other variables than temperature, for ex-
ample sea level pressure (Fig. 3). ACC values up to 0.8
and higher are obtained predominantly over the Pacific and
the Atlantic oceans, parts of Northern Europe and Asia, the
Southern Ocean, and Antarctica (Fig. 3a—c). We again find
added value in terms of ACC difference and RPSS over
similar regions where also DCPP shows added value during
FY1-10, mainly over the tropical Pacific and parts of the At-
lantic Ocean. Also for SLP, areas of added skill are found
beyond the first decade covered by DCPP, mostly over parts
of the Pacific and Atlantic oceans — indicating some SLP
predictability on multi-decadal timescales. Some added skill
also emerges only in the second forecast decade e.g., over
parts of the subtropical Atlantic and the Indian Ocean (not-
ing however that ACC over the Indian Ocean remains nega-
tive for all forecast periods shown).

The constrained projections also show some skill in pre-
dicting annual mean precipitation in land areas (Fig. 4).
While we find significant skill in terms of ACC over large
continental areas (e.g., northern Eurasia, subtropical Africa,
and South America, Fig. 4a—), the added value for the
Best30 compared to the unconstrained ensemble, as shown
by their ACC difference (Fig. 4d—f), is however generally
small. Despite this lack of widespread added value, in some
locations such as the Middle East, southern Africa, Australia,
and North and South America, the ACC difference is posi-
tive and statistically significant at 95 % confidence level for
all three forecast periods. Note that also the DCPP-initialized
decadal predictions show only small added value for precip-
itation, and again there is some resemblance in the global
patterns of added skill between Best30 and DCPP for FY1-
10. Similarly, Best30, as well as DCPP, show limited added
value over the unconstrained ensemble in terms of RPSS.

3.2 Sensitivity to different selection criteria

We next evaluate the sensitivity of the constrained projec-
tions to a number of choices related to the constraining cri-
teria. There is a wide range of choices involved when apply-
ing the constraints, and it is beyond the scope of this paper
to systematically document all possible choices and their ef-
fects. We rather aim to illustrate how different settings can
be useful to optimize the results depending on the targeted
outcome. In particular we illustrate the sensitivity to (i) the
temporal averaging of SST anomalies used for constraining,
(ii) the number of ensemble members kept in the constrained
ensemble, and (iii) the metric based on which the “best”
members are selected.

Figures S5 and S6 show residual correlation and RPSS re-
sults, respectively, when selecting the Best30 members us-
ing SST anomalies for different time periods instead of us-
ing 9-year mean SST anomalies. When selecting based on
shorter time averages (e.g., 1 or 3 years), the added value of
the constrained ensemble is smaller for decadal and multi-
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Figure 3. Anomaly correlation coefficient (ACC) between observed and predicted SLP anomalies for three forecast periods, average of
forecast years 1-10, 11-20, and 1-20 (a—c). Residual correlations for Best30 (d—f) and for DCPP (g) ensemble means after removing the
forced signal (estimated based on ensemble mean of the unconstrained 212 members following Smith et al., 2019). RPSS for Best30 (h—j)
and for DCPP (k) against the unconstrained CMIP6 ensemble as reference. Stippling indicates regions where the ACC, residual correlation,
and RPSS are statistically not significant at 95 % confidence level (see Methods for details).

decadal predictions when compared to using longer averages
(e.g., 9 years in Fig. 2). The overall spatial patterns of the
residual correlations and RPSS are similar between the dif-
ferent selection periods, but values are lower and often not
statistically significant when averaging over shorter periods.
When using 6-year averages (Figs. S5g—i and S6g—i), results
are very similar to our default option of using 9-year av-
erages. These results are also summarized in Fig. 5, where
constraints based on 6- and 9-year average SST fields show
larger global areas with significant added skill compared to
constraints using shorter averaging periods. This suggests
that low-frequency variability relevant for decadal to multi-
decadal predictions is well constrained when using averages
of 6 years or longer. However, the optimal choice for the av-

https://doi.org/10.5194/esd-13-1437-2022

eraging period depends on the particular prediction target.
While averaging over 6 to 9 years is suitable to constrain low-
frequency variability and provides added value to predict the
next decades, shorter time averages (filtering e.g., for inter-
annual variability) can provide larger added value to predict
just the next year, as illustrated in Fig. S7. This is plausi-
ble as shorter averaging periods will emphasize the signals
related to inter-annual variability in the member selections,
whereas longer averaging periods will emphasize signals re-
lated to lower frequency variability relevant for predicting
variations on decadal timescales. Constraints based on 1-
year averages lead to significant added value, measured in
both residual correlation and RPSS, for forecast year 1 in the
tropical Pacific, Indian Ocean, parts of Africa, and South-
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Figure 4. Anomaly correlation coefficient (ACC) between observed and predicted precipitation anomalies for three forecast periods, average
of forecast years 1-10, 11-20, and 1-20 (a—c). Residual correlations for Best30 (d—f) and for DCPP (g) ensemble means after removing the
forced signal (estimated based on ensemble mean of the unconstrained 212 members following Smith et al., 2019). RPSS for Best30 (h—j)
and for DCPP (k) against the unconstrained CMIP6 ensemble as reference. Stippling indicates regions where the ACC, residual correlation,
and RPSS are statistically not significant at 95 % confidence level (see Methods for details).

east Asia. In contrast, constraints based on averaging SST
anomalies over 3 or more years yield almost no added value
for forecast year 1. While significant added skill is found
for forecast year 1 when constraining based on 1-year SST
anomalies, the added skill is smaller than in the initialized
DCPP predictions for this same forecast time.

Another choice is the number of ensemble members se-
lected for the constrained ensemble. While for initialized cli-
mate predictions the benefit of using very large ensembles
has been highlighted recently (Smith et al., 2020), the na-
ture of our constraining method implies that simulations in
less good agreement with the observed state would be in-
cluded when selecting more members. In this context, the
choice related to the number of selected ensemble members

Earth Syst. Dynam., 13, 1437-1450, 2022

includes a balance between selecting only a few members
more closely resembling the observed initial state or a larger
constrained ensemble (which could more efficiently capture
the predictable signal) that, however, also includes members
with decreasing similarity of the initial SST anomaly pat-
terns. The effects of this choice are illustrated in Figs. S8
and S9, where we show the results for selecting the best 10
and best 50 members, respectively. The results indicate over-
all a high robustness of the results to the number of selected
members. All constrained sub-ensembles (of 10, 30, and
50 members) show very similar skill patterns, and added
value in similar regions. The magnitude of the added skill (in
particular for RPSS) is in some regions slightly larger for the
smaller Best10 ensemble, however larger areas with signifi-
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Figure 5. Fraction of global area where the added skill in near-
surface temperature (measured as residual correlation and RPSS
against the unconstrained CMIP6 ensemble as reference) of DCPP
and the constrained ensembles is positive and statistically signifi-
cant at the 95 % confidence level for residual correlation (a) and for
RPSS (b). Different colors represent different forecast periods.

cant added skill are found when using the Best50 ensemble
(Fig. S9).

We finally test the use of a different metric to determine
the level of agreement between the SST anomaly patterns
in observations and the full set of CMIP6 ensemble mem-
bers. Instead of calculating the pattern correlations, we use
the area-weighted root mean squared error (RMSE), calcu-
lated based on the differences between observed and sim-
ulated SST anomalies over all grid cells (Fig. S10). Again
we find broadly similar patterns of skill and added value
compared to the “default” approach of constraining based on
pattern correlations for 9-year average anomalies. This illus-
trates that using a globally aggregated error measure can also
be useful to select the members in closest agreement with ob-
served variability patterns. However, in our applications we
find that the added skill with this alternative selection method
is overall smaller than selecting based on pattern correlations.
While we do not exclude the possibility that selecting based
on RMSE can be advantageous for specific prediction targets,
in our applications we find the selections based on pattern
correlations to yield higher skill.

3.3 Regional SST constraints and attribution of skill to
specific ocean regions

All results discussed so far were for constraints using global
SST anomaly patterns, however constraining based on re-
gional SST anomaly patterns can also be useful, either to
optimize the skill over specific target regions or to under-
stand the predictive roles of certain ocean basins. Selecting
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the Best30 based on different SST regions can provide added
value to regional scale projections of near-term climate. This
is shown by constraining the Best30 ensemble using alterna-
tively SST anomalies from the Pacific (65° N-50° S) basin
or the North Atlantic (0-60° N) basin (Figs. S11 and S12).
These results show that Pacific constraints lead to substan-
tially larger areas with significant added value than the At-
lantic constraints (Fig. S11), with values that are similar to
those obtained with the global constraints, which suggests
that the Pacific Ocean is a dominant internal predictabil-
ity source on decadal to multi-decadal timescales (compare
Figs. S11, S12, and 2). Constraining based on North At-
lantic SSTs, however, provides improved skill of the Best30
over mostly the sub-polar North Atlantic (Figs. S11 and S12)
which is not seen when selecting based on either global or
Pacific SSTs. Selecting based on Atlantic SSTs also pro-
vides some added value on multi-decadal timescales in parts
of the Pacific, but overall the global areas with added skill
over the unconstrained projections ensemble are smaller than
when selecting based on Pacific or global SST anomalies
(Fig. 5). We demonstrate here the effects of constraining
based on different ocean basins for the global picture of
decadal to multi-decadal predictability. Using other more
confined ocean regions, ideally physically informed, can thus
be useful to optimize skill for specific locations or target re-
gions (e.g., Borchert et al., 2021).

Selecting the “best” members based on regional SSTs can
further be useful to attribute predictability to specific ocean
regions, and thereby help generate understanding of the cli-
mate system. We illustrate this in the following for repro-
ducing the historical evolution of global average tempera-
tures. Observed global average temperatures showed a slow-
down in their warming rate during the early 2000s (Fig. 6),
sometimes also termed as the “hiatus” period (Easterling and
Wehner, 2009; Cowtan and Way, 2014; Trenberth, 2015; Fyfe
et al., 2016). The HadCRUT4.6 time series shows a trend
slope that is close to zero during 2003-2013, although the
true global warming rate is thought to have been slightly
larger when accounting for unsampled regions (Cowton and
Way, 2014). Some previous studies also identified contri-
butions from natural forcing by moderate volcanic erup-
tions in the early 2000s to the slowdown in global warming
(e.g., Haywood et al., 2014; Ridley et al., 2014; Santer et
al., 2014). However, no such warming slowdown is found in
the ensemble mean of all CMIP6 projections (which show an
increase of 0.2 K per decade during 2003-2013), indicating
that forcing is unlikely to explain the reduced global warming
rates during that time. The Best30 predictions “initialized”
in 1998 (i.e., constrained based on their SST anomaly pat-
terns during 1989-1997) based on global SST patterns show
areduced warming rate of 0.13 K per decade. And constrain-
ing based on Pacific SST yields an even smaller warming of
about 0.10 K per decade during 2003-2013, confirming the
important role of Pacific internal variability in modulating
the “hiatus” (Kosaka and Xie, 2013; England et al., 2014).
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Figure 6. Global annual average temperature time series for
the period including the global warming “slowdown” in the
early 2000s (a). HadCRUT4.6 observational time series (black), the
unconstrained/uninitialized projections (blue), and the Best30 en-
sembles “initialized” in 1998 (i.e., according to the SST anomaly
patterns during 1989-1997) constrained based on global (red), Pa-
cific basin (orange), and North Atlantic basin (pink) SST anomaly
patterns. The dashed lines show the linear trends during 2003—
2013 with corresponding slope values in square brackets after each
dataset name in the legend.

Our results further indicate that a reduced global warming
rate during the 1.5 decades following 1998 would have been
predictable based on the Pacific Ocean temperatures in the
preceding decade. No reduced warming rate is found for the
Best30 ensemble constrained based on North Atlantic SSTs,
suggesting that the North Atlantic did not contribute to this
early 2000s global warming slowdown. Note that, also con-
sidering the entire hindcast period, the North Atlantic con-
straint does not improve GMST predictions compared to the
full unconstrained ensemble (i.e., residual correlations are
negative, not shown). This suggests that, at least based on
the models used, the North Atlantic does not seem to provide
predictability for global mean temperature. These results add
to Risbey et al. (2014), who demonstrated that CMIP5 simu-
lations sub-selected to more closely resemble the concurrent
SST trends in the tropical Pacific also showed a slowdown in
global warming. However, our results further highlight that
such reduced global warming was predictable based on the
SSTs prior to 1998.

4 Summary, discussion, and conclusions

We present a novel approach to constrain decadal-scale vari-
ability in large climate projection ensembles, acting as a poor
man’s initialization to align the phases of simulated and ob-
served climate variability. The constraint selects those en-
semble members most closely resembling observed patterns
of multi-annual SST anomalies. We apply this constraint to
each year from 1961 onwards to build a set of annually ini-
tialized hindcasts that cover multiple decades (i.e., as long
as the projection simulations are run). We evaluate the fore-
cast quality of these constrained projections for the follow-
ing 20 years after applying the annual constraints, focusing
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the evaluation on the average of forecast years 1-10 (i.e., the
forecast period also covered by initialized decadal hindcasts
e.g., from DCPP), 11-20, and 1-20. For all these forecast
times, the constrained ensemble provides skillful predictions
of near-surface temperature, sea-level pressure, and precipi-
tation in large areas of the globe. Significant improvements
over the unconstrained ensemble are found in particular for
near-surface temperature and sea-level pressure.

The skill of the variability-constrained projections for pre-
dicting the first decade is comparable to the skill provided by
the DCPP decadal hindcasts. In particular for near-surface
temperature, the constrained ensemble provides added skill
over the unconstrained large ensemble of projections in
larger global areas than DCPP, in particular in the Pacific,
where initialized decadal prediction systems tend to have
problems (see e.g., Yeager et al., 2018). This indicates that
there is decadal-scale predictability in the climate system that
is missed by current initialized decadal prediction systems
which typically suffer from initialization-related effects per-
turbing the model attractors, such as shocks and drifts (see
e.g., Bilbao et al., 2021). The poor man’s initialization, by
selecting well spun-up projection members that are in phase
with observed variability, does not involve such perturbation
of the model attractor, and therefore does not introduce such
artifacts. Furthermore, while initialized decadal predictions
require large computational resources, the poor man’s initial-
ization presented here makes use of existing climate projec-
tions and does not require to run any additional simulations.

The added skill in the constrained projections likely
comes in part from an improved representation of long-term
changes in response to forcing (as also found for decadal pre-
dictions, e.g., Doblas-Reyes et al., 2013), and also the repre-
sentation of decadal-scale variations. Inspection of regional
average time series in regions with added skill (e.g., in the
Pacific, eastern Asia, or the North Atlantic) indicates warm-
ing trends more similar to the observations in the constrained
ensemble compared to the full CMIP6 ensemble in particu-
lar in the early parts of the hindcast period. These time series
also show that the constrained ensemble better captures the
observed variations around the warming trend, likely in rela-
tion to decadal-scale climate variability.

Constraining against observed SSTs also allows to pro-
duce hindcast sets covering much longer time periods (as far
back as suitable SST observations are available to make the
constraints). Here we start the hindcasts in 1961 for compara-
bility with DCPP. It would also be relatively straightforward
to use the presented approach to provide predictions in near-
real time (https://hadleyserver.metoffice.gov.uk/wmolc/, last
access: October 2022). Such predictions can be done as soon
as observational SST fields are available and can also be used
as a benchmark for operational decadal prediction.

While initialized climate predictions such as those in
DCPP are typically restricted to predictions of the next
10 years after initialization, the predictions based on con-
strained projections can easily (i.e., at no extra cost) provide
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climate information beyond 10 years. We identify significant
added value from the variability constraint also in the sec-
ond predicted decade (e.g., forecast years 1-20), and when
predicting multi-decadal averages (e.g., forecast years 1-20).
These results indicate that there is significant multi-decadal
predictability from internal climate variability, which can be
exploited to improve near-term climate change estimates.

In this study we discuss some sensitivity of the results to
different choices when implementing the constraint, in par-
ticular to the averaging time, to the size of the constrained
ensemble, to the ocean regions used to evaluate the agree-
ment between models and observations, and to the metric to
quantify agreement. These choices can lead to increased or
decreased skill for specific regions and prediction timescales.
The sensitivity tests therefore also indicate the possibility to
optimize the skill for specific applications, e.g., finding the
settings that lead to the highest forecast quality for a specific
forecast time at a specific location.

We further demonstrate that constraining variability in cli-
mate projections can be useful to attribute predictability to
certain ocean regions, and thus helps generate understand-
ing of the climate system. By applying the constraint only
to certain ocean regions, we can evaluate the regionally con-
strained ensembles in their ability to predict certain climate
phenomena. On the example of the so-called “hiatus” in
global mean temperature increases in the early 2000s, we
demonstrate that the projections constrained to observed cli-
mate anomalies leading up to 1998 are capable of predict-
ing a slowdown in global warming rates during the following
15 years. This predictability can be attributed to constraining
Pacific variability (in agreement with previous studies based
on specific model experiments prescribing aspects of Pacific
variability, such as Kosaka and Xie, 2013 and England et al.,
2014).

Our implementation of the constraint to the CMIP6 multi-
model ensemble does not select all models with equal prob-
ability, and in particular different members of the CanESMS5
model (which provides 25 ensemble members) are selected
most frequently for many start dates (Fig. S13). This suggests
that part of the added skill could come from selecting models
better representing some aspects of observed climate. How-
ever, we also tested our constraint with an additional con-
dition that limits the number of ensemble members that can
be selected from any one model respectively to three or five
members at each start date — forcing the method to select
members more evenly across models. This condition leads
to overall slightly reduced skill, but very similar patterns of
skill (Fig. S14), indicating that a substantial part of the skill
does not depend on the specific models selected and that con-
straining decadal-scale variability is an important contributor
to skill. Still, there may be important challenges when apply-
ing the approach to actually predict future climate, related for
example to unrealistically high climate sensitivity of some
CMIP6 models (Zelinka et al., 2020). For applications to fu-
ture climate prediction it might therefore be useful to pre-
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filter the multi-model ensemble, excluding those with unre-
alistically high climate sensitivity (Hausfather et al., 2022).

Analogue-based selections of climate simulations have
been proven useful in the context of both seasonal and re-
gional decadal predictions (Ding et al., 2018; Menary et al.,
2021). Using SST and sea surface height anomalies, and se-
lecting those simulations with minimum distance to the target
climate states, Ding et al. (2018) demonstrated skill of such
sub-selected analogues in predicting observed monthly mean
SST and sea surface height anomalies mainly in the tropical
Indo-Pacific region over the following 12 months. Menary
et al. (2021) used a pool of 35-year mean SST anomalies
from different CMIP5 and CMIP6 experiments to find model
analogues with the lowest error in spatial patterns compared
to observed states of 35-year mean SST anomalies, to make
predictions for years 2—10 in the North Atlantic region. They
found the analogue-based predictions (selecting from unini-
tialized simulations) to have comparable skill to the initial-
ized predictions of SSTs in the North Atlantic sub-polar gyre
region.

The constraining approach used here is similar to Mah-
mood et al. (2021), who constrained a 40-member single-
model ensemble based on the pattern agreement with ini-
tialized decadal predictions. The major differences are that
here we select members from a much larger multi-model
ensemble, and we select based on the agreement with SST
anomaly patterns from observations instead of decadal pre-
dictions. The benefit from the constraint (in terms of added
skill) found here is substantially larger than reported by
Mahmood et al. (2021), likely due to the large ensemble
size of CMIP6 projections to select from. Also, constrain-
ing based on decadal predictions requires that these decadal
predictions add skill over the projections, which only hap-
pens in certain regions like the North Atlantic (Befort et al.,
2020). Limitations that deteriorate the skill in decadal pre-
dictions (e.g., Bilbao et al., 2021) may however transfer to
the constrained projections. Future work will test the decadal
predictions-based constraint on the large multi-model ensem-
ble of projections as used here to understand if the larger en-
semble size also benefits that approach.

Both approaches, constraining the projections based on
their agreement with either observations or decadal predic-
tions, can be used to provide seamless climate information
for the next multiple decades. This is an important advan-
tage over the use of different datasets for different timescales,
e.g., initialized seasonal to decadal predictions for the first
few years and projections afterwards. Data from these differ-
ent sources are often inconsistent, both in a statistical sense
and the climate conditions that they represent. In contrast, the
variability-constrained projections provide consistent tran-
sient climate information for the next years and multiple
decades, which can facilitate their use when seamless climate
information across timescales is required. We show here that
such constrained projections show promising skill, compa-
rable to initialized predictions on the decadal timescale, and
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provide significant added value over unconstrained projec-
tions on multi-decadal timescales — pointing to predictabil-
ity in the climate system that is not currently exploited with
existing prediction systems. The variability-constrained pro-
jections therefore provide a promising pathway to provide
improved climate information, of reduced uncertainty and in-
creased accuracy, about near-term climate change in the next
few decades. This improved information can be useful to un-
derpin targeted adaptation strategies.

Data availability. CMIP6 data are available through various
ESFG data nodes (https://www.wcrp-climate.org/wgcm-cmip/
wgem-cmip6; WCRP, 2022). Other data sets used in this study are
also available from their respective data sources:

— ERSST: https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.
html (NOAA, 2022a);

— HadCRUT: https://crudata.uea.ac.uk/cru/data/temperature/
(Climate Research Unit, 2022a);

— CRU precipitation: https://crudata.uea.ac.uk/cru/data/hrg/ (Cli-
mate Research Unit, 2022b);

— GPCC: https://www.dwd.de/EN/ourservices/gpcc/gpcec.html
(DWD, 2022);
— ERAS: https://www.ecmwf.int/en/forecasts/datasets/

reanalysis-datasets/eraS (ECMWF, 2022);

— JRASS: https://jra.kishou.go.jp/JRA-55/index_en.html (JRA
project, 2022);
— NOAAGlobTemp: https://www.ncei.noaa.gov/access/

monitoring/global-temperature-anomalies/grid (NOAA,
2022b).
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