Articles | Volume 12, issue 3
https://doi.org/10.5194/esd-12-975-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-12-975-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The sensitivity of the El Niño–Southern Oscillation to volcanic aerosol spatial distribution in the MPI Grand Ensemble
Benjamin Ward
CORRESPONDING AUTHOR
Department of Earth and Atmospheric Sciences, University of Quebec in Montreal, Montreal, Canada
now at: Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Canada
Francesco S. R. Pausata
CORRESPONDING AUTHOR
Department of Earth and Atmospheric Sciences, University of Quebec in Montreal, Montreal, Canada
Nicola Maher
Max Planck Institute for Meteorology, Hamburg, Germany
Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado at Boulder, Boulder, CO, USA
Department of Atmospheric and Oceanic Sciences (ATOC), University of Colorado at Boulder, Boulder, CO, USA
Related authors
No articles found.
Ming Cheng, Nicola Maher, and Michael J. Ellwood
EGUsphere, https://doi.org/10.5194/egusphere-2025-2633, https://doi.org/10.5194/egusphere-2025-2633, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The Southern Ocean helps regulate Earth’s climate by cycling nutrients and carbon. We studied how well 14 modern climate models represent key ocean properties, such as plant growth, nutrients, and carbon particles. By comparing model results with real-world observations, we found large differences in model performance. Some models captured certain features better than others. Our findings can guide future improvements in ocean and climate predictions.
Ricarda Winkelmann, Donovan P. Dennis, Jonathan F. Donges, Sina Loriani, Ann Kristin Klose, Jesse F. Abrams, Jorge Alvarez-Solas, Torsten Albrecht, David Armstrong McKay, Sebastian Bathiany, Javier Blasco Navarro, Victor Brovkin, Eleanor Burke, Gokhan Danabasoglu, Reik V. Donner, Markus Drüke, Goran Georgievski, Heiko Goelzer, Anna B. Harper, Gabriele Hegerl, Marina Hirota, Aixue Hu, Laura C. Jackson, Colin Jones, Hyungjun Kim, Torben Koenigk, Peter Lawrence, Timothy M. Lenton, Hannah Liddy, José Licón-Saláiz, Maxence Menthon, Marisa Montoya, Jan Nitzbon, Sophie Nowicki, Bette Otto-Bliesner, Francesco Pausata, Stefan Rahmstorf, Karoline Ramin, Alexander Robinson, Johan Rockström, Anastasia Romanou, Boris Sakschewski, Christina Schädel, Steven Sherwood, Robin S. Smith, Norman J. Steinert, Didier Swingedouw, Matteo Willeit, Wilbert Weijer, Richard Wood, Klaus Wyser, and Shuting Yang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1899, https://doi.org/10.5194/egusphere-2025-1899, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
The Tipping Points Modelling Intercomparison Project (TIPMIP) is an international collaborative effort to systematically assess tipping point risks in the Earth system using state-of-the-art coupled and stand-alone domain models. TIPMIP will provide a first global atlas of potential tipping dynamics, respective critical thresholds and key uncertainties, generating an important building block towards a comprehensive scientific basis for policy- and decision-making.
Iuri Gorenstein, Ilana Wainer, Francesco S. R. Pausata, Luciana F. Prado, Pedro L. S. Dias, Allegra N. LeGrande, Clay R. Tabor, and William R. Peltier
EGUsphere, https://doi.org/10.5194/egusphere-2025-921, https://doi.org/10.5194/egusphere-2025-921, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Using a new approach based on information theory we study climate variability in the tropical and South Atlantic by examining broad patterns in ocean and rainfall data at decadal scales. Four climate models under mid‐Holocene and pre‐industrial conditions show that shifts in vegetation and dust yield varied weather responses. Our findings indicate that incorporating large-scale patterns provides a framework for understanding long-term climate behavior, offering insights for improved predictions.
Zhihong Zhuo, Xinyue Wang, Yunqian Zhu, Ewa M. Bednarz, Eric Fleming, Peter R. Colarco, Shingo Watanabe, David Plummer, Georgiy Stenchikov, William Randel, Adam Bourassa, Valentina Aquila, Takashi Sekiya, Mark R. Schoeberl, Simone Tilmes, Wandi Yu, Jun Zhang, Paul J. Kushner, and Francesco S. R. Pausata
EGUsphere, https://doi.org/10.5194/egusphere-2025-1505, https://doi.org/10.5194/egusphere-2025-1505, 2025
Short summary
Short summary
The 2022 Hunga eruption caused unprecedented stratospheric water injection, triggering unique atmospheric impacts. This study combines observations and model simulations, projecting a stratospheric water vapor anomaly lasting 4–7 years, with significant temperature variations and ozone depletion in the upper atmosphere lasting 7–10 years. These findings offer critical insights into the role of stratospheric water vapor in shaping climate and atmospheric chemistry.
Nicola Maher, Adam S. Phillips, Clara Deser, Robert C. Jnglin Wills, Flavio Lehner, John Fasullo, Julie M. Caron, Lukas Brunner, and Urs Beyerle
EGUsphere, https://doi.org/10.5194/egusphere-2024-3684, https://doi.org/10.5194/egusphere-2024-3684, 2024
Short summary
Short summary
We present a new multi-model large ensemble archive (MMLEAv2) and introduce the newly updated Climate Variability Diagnostics Package version 6 (CVDPv6), which is designed specifically for use with large ensembles. For highly variable quantities, we demonstrate that a model might evaluate poorly or favourably compared to the single realisation of the world that the observations represent, highlighting the need for large ensembles for model evaluation.
Aude Garin, Francesco S. R. Pausata, Mathieu Boudreault, and Roberto Ingrosso
EGUsphere, https://doi.org/10.5194/egusphere-2024-3435, https://doi.org/10.5194/egusphere-2024-3435, 2024
Short summary
Short summary
As tropical cyclones move poleward, they can transform into extratropical cyclones, a process known as extratropical transition. These storms can pose serious risks to human lives and cause damage to infrastructure along the northeastern coasts of the U.S. & Canada. Our study investigates the impacts of climate change on the frequency, intensity, and location of extratropical transitions, revealing that transitioning storms may become more destructive in the future but may not be more frequent.
Andrew D. King, Tilo Ziehn, Matthew Chamberlain, Alexander R. Borowiak, Josephine R. Brown, Liam Cassidy, Andrea J. Dittus, Michael Grose, Nicola Maher, Seungmok Paik, Sarah E. Perkins-Kirkpatrick, and Aditya Sengupta
Earth Syst. Dynam., 15, 1353–1383, https://doi.org/10.5194/esd-15-1353-2024, https://doi.org/10.5194/esd-15-1353-2024, 2024
Short summary
Short summary
Governments are targeting net-zero emissions later this century with the aim of limiting global warming in line with the Paris Agreement. However, few studies explore the long-term consequences of reaching net-zero emissions and the effects of a delay in reaching net-zero. We use the Australian Earth system model to examine climate evolution under net-zero emissions. We find substantial changes which differ regionally, including continued Southern Ocean warming and Antarctic sea ice reduction.
Marco Gaetani, Gabriele Messori, Francesco S. R. Pausata, Shivangi Tiwari, M. Carmen Alvarez Castro, and Qiong Zhang
Clim. Past, 20, 1735–1759, https://doi.org/10.5194/cp-20-1735-2024, https://doi.org/10.5194/cp-20-1735-2024, 2024
Short summary
Short summary
Palaeoclimate reconstructions suggest that, around 6000 years ago, a greening of the Sahara took place, accompanied by climate changes in the Northern Hemisphere at middle to high latitudes. In this study, a climate model is used to investigate how this drastic environmental change in the Sahara impacted remote regions. Specifically, climate simulations reveal significant modifications in atmospheric circulation over the North Atlantic, affecting North American and European climates.
Sina Loriani, Yevgeny Aksenov, David Armstrong McKay, Govindasamy Bala, Andreas Born, Cristiano M. Chiessi, Henk Dijkstra, Jonathan F. Donges, Sybren Drijfhout, Matthew H. England, Alexey V. Fedorov, Laura Jackson, Kai Kornhuber, Gabriele Messori, Francesco Pausata, Stefanie Rynders, Jean-Baptiste Salée, Bablu Sinha, Steven Sherwood, Didier Swingedouw, and Thejna Tharammal
EGUsphere, https://doi.org/10.5194/egusphere-2023-2589, https://doi.org/10.5194/egusphere-2023-2589, 2023
Short summary
Short summary
In this work, we draw on paleoreords, observations and modelling studies to review tipping points in the ocean overturning circulations, monsoon systems and global atmospheric circulations. We find indications for tipping in the ocean overturning circulations and the West African monsoon, with potentially severe impacts on the Earth system and humans. Tipping in the other considered systems is considered conceivable but currently not sufficiently supported by evidence.
Víctor Malagón-Santos, Aimée B. A. Slangen, Tim H. J. Hermans, Sönke Dangendorf, Marta Marcos, and Nicola Maher
Ocean Sci., 19, 499–515, https://doi.org/10.5194/os-19-499-2023, https://doi.org/10.5194/os-19-499-2023, 2023
Short summary
Short summary
Climate change will alter heat and freshwater fluxes as well as ocean circulation, driving local changes in sea level. This sea-level change component is known as ocean dynamic sea level (DSL), and it is usually projected using computationally expensive global climate models. Statistical models are a cheaper alternative for projecting DSL but may contain significant errors. Here, we partly remove those errors (driven by internal climate variability) by using pattern recognition techniques.
Nicola Maher, Robert C. Jnglin Wills, Pedro DiNezio, Jeremy Klavans, Sebastian Milinski, Sara C. Sanchez, Samantha Stevenson, Malte F. Stuecker, and Xian Wu
Earth Syst. Dynam., 14, 413–431, https://doi.org/10.5194/esd-14-413-2023, https://doi.org/10.5194/esd-14-413-2023, 2023
Short summary
Short summary
Understanding whether the El Niño–Southern Oscillation (ENSO) is likely to change in the future is important due to its widespread impacts. By using large ensembles, we can robustly isolate the time-evolving response of ENSO variability in 14 climate models. We find that ENSO variability evolves in a nonlinear fashion in many models and that there are large differences between models. These nonlinear changes imply that ENSO impacts may vary dramatically throughout the 21st century.
Nicola Maher, Thibault P. Tabarin, and Sebastian Milinski
Earth Syst. Dynam., 13, 1289–1304, https://doi.org/10.5194/esd-13-1289-2022, https://doi.org/10.5194/esd-13-1289-2022, 2022
Short summary
Short summary
El Niño events occur as two broad types: eastern Pacific (EP) and central Pacific (CP). EP and CP events differ in strength, evolution, and in their impacts. In this study we create a new machine learning classifier to identify the two types of El Niño events using observed sea surface temperature data. We apply our new classifier to climate models and show that CP events are unlikely to change in frequency or strength under a warming climate, with model disagreement for EP events.
Francesco S. R. Pausata, Gabriele Messori, Jayoung Yun, Chetankumar A. Jalihal, Massimo A. Bollasina, and Thomas M. Marchitto
Clim. Past, 17, 1243–1271, https://doi.org/10.5194/cp-17-1243-2021, https://doi.org/10.5194/cp-17-1243-2021, 2021
Short summary
Short summary
Far-afield changes in vegetation such as those that occurred over the Sahara during the middle Holocene and the consequent changes in dust emissions can affect the intensity of the South Asian Monsoon (SAM) rainfall and the lengthening of the monsoon season. This remote influence is mediated by anomalies in Indian Ocean sea surface temperatures and may have shaped the evolution of the SAM during the termination of the African Humid Period.
Nicola Maher, Sebastian Milinski, and Ralf Ludwig
Earth Syst. Dynam., 12, 401–418, https://doi.org/10.5194/esd-12-401-2021, https://doi.org/10.5194/esd-12-401-2021, 2021
Samuel Dandoy, Francesco S. R. Pausata, Suzana J. Camargo, René Laprise, Katja Winger, and Kerry Emanuel
Clim. Past, 17, 675–701, https://doi.org/10.5194/cp-17-675-2021, https://doi.org/10.5194/cp-17-675-2021, 2021
Short summary
Short summary
This study analyzes the impacts of changing vegetation and atmospheric dust concentrations over an area that is currently desert (the Sahara) to investigate their impacts on tropical cyclone activity during a warm climate state, the mid-Holocene. Our results suggest a significant change in Atlantic TC frequency, intensity and seasonality when considering the effects of a warmer climate in a greener world. They also highlight the importance of considering these factors in future climate studies.
Julien Chartrand and Francesco S. R. Pausata
Weather Clim. Dynam., 1, 731–744, https://doi.org/10.5194/wcd-1-731-2020, https://doi.org/10.5194/wcd-1-731-2020, 2020
Short summary
Short summary
This study explores the relationship between the North Atlantic Oscillation and the winter climate of eastern North America using reanalysis data. Results show that negative phases are linked with an increase in frequency of winter storms developing on the east coast of the United States, resulting in much heavier snowfall over the eastern United States. On the contrary, an increase in cyclone activity over southeastern Canada results in slightly heavier precipitation during positive phases.
Sebastian Milinski, Nicola Maher, and Dirk Olonscheck
Earth Syst. Dynam., 11, 885–901, https://doi.org/10.5194/esd-11-885-2020, https://doi.org/10.5194/esd-11-885-2020, 2020
Short summary
Short summary
Initial-condition large ensembles with ensemble sizes ranging from 30 to 100 members have become a commonly used tool to quantify the forced response and internal variability in various components of the climate system, but there is no established method to determine the required ensemble size for a given problem. We propose a new framework that can be used to estimate the required ensemble size from a model's control run or an existing large ensemble.
Cited articles
Adams, J. B., Mann, M. E., and Ammann, C. M.: Proxy evidence for an El
Niño-like response to volcanic forcing, Nature, 426, 274–278,
https://doi.org/10.1038/nature02101, 2003.
Anchukaitis, K. J., Breitenmoser, P., Briffa, K. R., Buchwal, A.,
Büntgen, U., Cook, E. R., D'Arrigo, R. D., Esper, J., Evans, M. N.,
Frank, D., Grudd, H., Gunnarson, B. E., Hughes, M. K., Kirdyanov, A. V.,
Körner, C., Krusic, P. J., Luckman, B., Melvin, T. M., Salzer, M. W.,
Shashkin, A. V., Timmreck, C., Vaganov, E. A., and Wilson, R. J. S.: Tree
rings and volcanic cooling, Nat. Geoci., 5, 836–837,
https://doi.org/10.1038/ngeo1645, 2012.
Barnes, J. E. and Hofmann, D. J.: Lidar measurements of stratospheric
aerosol over Mauna Loa Observatory, Geophys. Res. Lett., 24, 1923–1926,
https://doi.org/10.1029/97GL01943, 1997.
Bittner, M., Schmidt, H., Timmreck, C., and Sienz, F.: Using a large
ensemble of simulations to assess the Northern Hemisphere stratospheric
dynamical response to tropical volcanic eruptions and its uncertainty,
Geophys. Res. Lett., 43, 9324–9332, https://doi.org/10.1002/2016GL070587,
2016.
Bjerknes, J.: Atmospheric Teleconnections From the Equatorial Pacific, Mon.
Weather Rev., 97, 163–172, 1969.
Bluth, G. J. S., Doiron, S. D., Schnetzler, C. C., Krueger, A. J., and
Walter, L. S.: Global tracking of the SO2 clouds from the June, 1991 Mount
Pinatubo eruptions, Geophys. Res. Lett., 19, 151–154,
https://doi.org/10.1029/91GL02792, 1992.
Choi, W., Grant, W. B., Park, J. H., Lee, K.-M., Lee, H., and Russell, J.
M.: Role of the quasi-biennial oscillation in the transport of aerosols from
the tropical stratospheric reservoir to midlatitudes, J. Geophys. Res.-Atmos., 103,
6033–6042, https://doi.org/10.1029/97JD03118, 1998.
Christiansen, B.: Volcanic eruptions, large-scale modes in the Northern
Hemisphere, and the El Niño-Southern Oscillation, J. Climate, 21, 910–922,
https://doi.org/10.1175/2007JCLI1657.1, 2008.
Clement, A. C., Seager, R., Cane, M. A., and Zebiak, S. E.: An ocean
dynamical thermostat, J. Climate, 9, 2190–2196,
https://doi.org/10.1175/1520-0442(1996)009<2190:AODT>2.0.CO;2, 1996.
Colose, C. M., LeGrande, A. N., and Vuille, M.: Hemispherically asymmetric volcanic forcing of tropical hydroclimate during the last millennium, Earth Syst. Dynam., 7, 681–696, https://doi.org/10.5194/esd-7-681-2016, 2016.
D'Arrigo, R., Cook, E. R., Wilson, R. J., Allan, R., and Mann, M. E.: On the
variability of ENSO over the past six centuries, Geophys. Res. Lett., 32,
1–4, https://doi.org/10.1029/2004GL022055, 2005.
Dee, S. G., Cobb, K. M., Emile-Geay, J., Ault, T. R., Lawrence Edwards, R.,
Cheng, H., and Charles, C. D.: No consistent ENSO response to volcanic
forcing over the last millennium, Science, 367, 1477–1481,
https://doi.org/10.1126/science.aax2000, 2020.
Ding, Y., Carton, J. A., Chepurin, G. A., Stenchikov, G., Robock, A.,
Sentman, L. T., and Krasting, J. P.: Ocean response to volcanic eruptions in
Coupled Model Intercomparison Project 5 simulations, J. Geophys. Res.-Ocean., 119, 5622–5637, https://doi.org/10.1002/2013JC009780, 2014.
Driscoll, S., Bozzo, A., Gray, L. J., Robock, A., and Stenchikov, G.:
Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate
following volcanic eruptions, J. Geophys. Res.-Atmos., 117, 17105,
https://doi.org/10.1029/2012JD017607, 2012.
Eddebbar, Y. A., Rodgers, K. B., Long, M. C., Subramanian, A. C., Xie, S.
P., and Keeling, R. F.: El Niño-like physical and biogeochemical ocean
response to tropical eruptions, J. Climate, 32, 2627–2649,
https://doi.org/10.1175/JCLI-D-18-0458.1, 2019.
Emile-Geay, J., Seager, R., Cane, M. A., Cook, E. R., and Haug, G. H.:
Volcanoes and ENSO over the past millennium, J. Climate, 21, 3134–3148,
https://doi.org/10.1175/2007JCLI1884.1, 2008.
Fasullo, J. T., Tomas, R., Stevenson, S., Otto-Bliesner, B., Brady, E., and
Wahl, E.: The amplifying influence of increased ocean stratification on a
future year without a summer, Nat. Commun., 8, 1–10,
https://doi.org/10.1038/s41467-017-01302-z, 2017.
Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J.,
Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak,
K., Gayler, V., Haak, H., Hollweg, H.-D., Ilyina, T., Kinne, S., Kornblueh,
L., Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W., Notz, D.,
Pithan, F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H.,
Schnur, R., Segschneider, J., Six, K. D., Stockhause, M., Timmreck, C.,
Wegner, J., Widmann, H., Wieners, K.-H., Claussen, M., Marotzke, J., and
Stevens, B.: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM
simulations for the Coupled Model Intercomparison Project phase 5, J. Adv.
Model. Earth Sy., 5, 572–597, https://doi.org/10.1002/jame.20038, 2013.
Harshvardhan, M. R.: Perturbation of the Zonal Radiation Balance by a Stratospheric Aerosol Layer, J. Atmos. Sci., 36, 1274–1285, 1979.
Iles, C. E., Hegerl, G. C., Schurer, A. P., and Zhang, X.: The effect of
volcanic eruptions on global precipitation, J. Geophys. Res.-Atmos., 118,
8770–8786, https://doi.org/10.1002/jgrd.50678, 2013.
Illing, S., Kadow, C., Pohlmann, H., and Timmreck, C.: Assessing the impact of a future volcanic eruption on decadal predictions, Earth Syst. Dynam., 9, 701–715, https://doi.org/10.5194/esd-9-701-2018, 2018.
Kang, S. M., Held, I. M., Frierson, D. M. W., and Zhao, M.: The response of
the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments
with a GCM, J. Climate, 21, 3521–3532, https://doi.org/10.1175/2007JCLI2146.1,
2008.
Khodri, M., Izumo, T., Vialard, J., Janicot, S., Cassou, C., Lengaigne, M.,
Mignot, J., Gastineau, G., Guilyardi, E., Lebas, N., Robock, A., and
McPhaden, M. J.: Tropical explosive volcanic eruptions can trigger El
Ninõ by cooling tropical Africa, Nat. Commun., 8, 1–13,
https://doi.org/10.1038/s41467-017-00755-6, 2017.
Kodera, K.: Influence of volcanic eruptions on the troposphere through
stratospheric dynamical processes in the Northern Hemisphere winter, J.
Geophys. Res., 99, 1273–1282, https://doi.org/10.1029/93JD02731, 1994.
Li, J., Xie, S. P., Cook, E. R., Morales, M. S., Christie, D. A., Johnson,
N. C., Chen, F., D'Arrigo, R., Fowler, A. M., Gou, X., and Fang, K.: El
Niño modulations over the past seven centuries, Nat. Clim. Change, 3,
822–826, https://doi.org/10.1038/nclimate1936, 2013.
Lim, H. G., Yeh, S. W., Kug, J. S., Park, Y. G., Park, J. H., Park, R., and
Song, C. K.: Threshold of the volcanic forcing that leads the El
Niño-like warming in the last millennium: results from the ERIK
simulation, Clim. Dynam., 11, 3725–3736,
https://doi.org/10.1007/s00382-015-2799-3, 2016.
Liu, F., Li, J., Wang, B., Liu, J., Li, T., Huang, G., and Wang, Z.:
Divergent El Niño responses to volcanic eruptions at different latitudes
over the past millennium, Clim. Dynam., 50, 3799–3812,
https://doi.org/10.1007/s00382-017-3846-z, 2018.
Maher, N., McGregor, S., England, M. H., and Gupta, A. Sen: Effects of
volcanism on tropical variability, Geophys. Res. Lett., 42, 6024–6033,
https://doi.org/10.1002/2015GL064751, 2015.
Maher, N., Milinski, S., Suarez-Gutierrez, L., Botzet, M., Dobrynin, M.,
Kornblueh, L., Kröger, J., Takano, Y., Ghosh, R., Hedemann, C., Li, C.,
Li, H., Manzini, E., Notz, D., Putrasahan, D., Boysen, L., Claussen, M.,
Ilyina, T., Olonscheck, D., Raddatz, T., Stevens, B., and Marotzke, J.: The
Max Planck Institute Grand Ensemble – Enabling the Exploration of Climate
System Variability, J. Adv. Model. Earth Sy., 11, 2050–2069,
https://doi.org/10.1029/2019MS001639, 2019.
Man, W., Zhou, T., and Jungclaus, J. H.: Effects of large volcanic eruptions
on global summer climate and east asian monsoon changes during the last
millennium: Analysis of MPI-ESM simulations, J. Climate, 27, 7394–7409,
https://doi.org/10.1175/JCLI-D-13-00739.1, 2014.
Mann, M. E., Cane, M. A., Zebiak, S. E., and Clement, A.: Volcanic and solar
forcing of the tropical Pacific over the past 1000 years, J. Climate, 18,
447–456, https://doi.org/10.1175/JCLI-3276.1, 2005.
Max-Planck-Institut für Meteorologie: Grand Ensemble, available at: https://mpimet.mpg.de/en/grand-ensemble/, last access: 15 September 2021.
McGregor, S. and Timmermann, A.: The effect of explosive tropical volcanism
on ENSO, J. Climate, 24, 2178–2191, https://doi.org/10.1175/2010JCLI3990.1,
2011.
McGregor, S., Timmermann, A., and Timm, O.: A unified proxy for ENSO and PDO variability since 1650, Clim. Past, 6, 1–17, https://doi.org/10.5194/cp-6-1-2010, 2010.
McGregor, S., Khodri, M., Maher, N., Ohba, M., Pausata, F. S. R., and
Stevenson, S.: The Effect of Strong Volcanic Eruptions on ENSO, ENSO Chang.
Clim., 12, 267–287, https://doi.org/10.1002/9781119548164.ch12, 2020.
Milinski, S., Maher, N., and Olonscheck, D.: How large does a large ensemble need to be?, Earth Syst. Dynam., 11, 885–901, https://doi.org/10.5194/esd-11-885-2020, 2020.
Nicholls, N.: Low latitude volcanic eruptions and the El Niño-Southern
Oscillation, J. Climatol., 8, 91–95, https://doi.org/10.1002/joc.3370080109,
1988.
Ohba, M., Shiogama, H., Yokohata, T., and Watanabe, M.: Impact of Strong
Tropical Volcanic Eruptions on ENSO Simulated in a Coupled GCM, J. Climate,
26, 5169–5182, https://doi.org/10.1175/JCLI-D-12-00471.1, 2013.
Paik, S., Min, S. K., Iles, C. E., Fischer, E. M., and Schurer, A. P.:
Volcanic-induced global monsoon drying modulated by diverse El Ninõ
responses, Sci. Adv., 6, eaba1212, https://doi.org/10.1126/sciadv.aba1212,
2020.
Pausata, F. S. R., Grini, A., Caballero, R., Hannachi, A., and Seland,
Ø.: High-latitude volcanic eruptions in the Norwegian Earth System Model:
The effect of different initial conditions and of the ensemble size, Tellus,
B, 67, 26728,
https://doi.org/10.3402/tellusb.v67.26728, 2015a.
Pausata, F. S. R., Chafik, L., Caballero, R., and Battisti, D. S.: Impacts
of high-latitude volcanic eruptions on ENSO and AMOC, P. Natl. Acad.
Sci. USA, 112, 13784–13788, https://doi.org/10.1073/pnas.1509153112, 2015b.
Pausata, F. S. R., Karamperidou, C., Caballero, R., and Battisti, D. S.:
ENSO response to high-latitude volcanic eruptions in the Northern
Hemisphere: The role of the initial conditions, Geophys. Res. Lett., 43,
8694–8702, https://doi.org/10.1002/2016GL069575, 2016.
Pausata, F. S. R., Zanchettin, D., Karamperidou, C., Caballero, R., and
Battisti, D. S.: ITCZ shift and extratropical teleconnections drive ENSO
response to volcanic eruptions, Sci. Adv., 6, eaaz5006,
https://doi.org/10.1126/SCIADV.AAZ5006, 2020.
Pinto, J. P., Turco, R. P., and Toon, O. B.: Self-limiting physical and
chemical effects in volcanic eruption clouds, J. Geophys.
Res., 94, 11165–11174, https://doi.org/10.1029/jd094id08p11165, 1989.
Pollack, J. B., Toon, O. B., Sagan, C., Summers, A., Baldwin, B., and Van
Camp, W.: Volcanic explosions and climatic change: A theoretical assessment,
J. Geophys. Res., 81, 1071–1083, https://doi.org/10.1029/jc081i006p01071,
1976.
Predybaylo, E., Stenchikov, G., Wittenberg, A. T., and Zeng, F.: Impacts of a
pinatubo-size volcanic eruption on ENSO, J. Geophys. Res., 122, 925–947,
https://doi.org/10.1002/2016JD025796, 2017.
Predybaylo, E., Stenchikov, G., Wittenberg, A. T., and Osipov, S.: El
Niño/Southern Oscillation response to low-latitude volcanic eruptions
depends on ocean pre-conditions and eruption timing, Commun. Earth Environ.,
1, 1–13, https://doi.org/10.1038/s43247-020-0013-y, 2020.
Rampino, M. R. and Self, S.: Sulphur-rich volcanic eruptions and
stratospheric aerosols, Nature, 310, 677–679,
https://doi.org/10.1038/310677a0, 1984.
Robock, A.: Volcanic eruptions and climate, Rev. Geophys., 38, 191–219,
https://doi.org/10.1029/1998RG000054, 2000.
Robock, A. and Liu, Y.: The volcanic signal in Goddard Institute for Space
Studies three- dimensional model simulations, J. Climate, 7,
44–55, https://doi.org/10.1175/1520-0442(1994)007<0044:TVSIGI>2.0.CO;2, 1994.
Robock, A. and Mao, J.: The volcanic signal in surface temperature
observations, J. Climate, 8, 1086–1103, https://doi.org/10.1175/1520-0442(1995)008<1086:TVSIST>2.0.CO;2, 1995.
Schmidt, H., Rast, S., Bunzel, F., Esch, M., Giorgetta, M., Kinne, S.,
Krismer, T., Stenchikov, G., Timmreck, C., Tomassini, L., and Walz, M.:
Response of the middle atmosphere to anthropogenic and natural forcings in
the CMIP5 simulations with the Max Planck Institute Earth system model, J.
Adv. Model. Earth Sy., 5, 98–116, https://doi.org/10.1002/JAME.20014,
2013.
Schneider, T., Bischoff, T., and Haug, G. H.: Migrations and dynamics of the
intertropical convergence zone, Nature, 513, 45–53,
https://doi.org/10.1038/nature13636, 2014.
Self, S. and Rampino, M. R.: The 1963–1964 eruption of Agung volcano (Bali,
Indonesia), Bull. Volcanol., 74, 1521–1536,
https://doi.org/10.1007/s00445-012-0615-z, 2012.
Self, S., Rampino, M. R., Zhao, J., and Katz, M. G.: Volcanic aerosol
perturbations and strong El Niño events: No general correlation,
Geophys. Res. Lett., 24, 1247–1250, https://doi.org/10.1029/97GL01127, 1997.
Stenchikov, G., Hamilton, K., Stouffer, R. J., Robock, A., Ramaswamy, V.,
Santer, B., and Graf, H. F.: Arctic Oscillation response to volcanic
eruptions in the IPCC AR4 climate models, J. Geophys. Res.-Atmos., 111, D07107,
https://doi.org/10.1029/2005JD006286, 2006.
Stenchikov, G. L., Kirchner, I., Robock, A., Graf, H. F., Antuña, J. C.,
Grainger, R. G., Lambert, A., and Thomason, L.: Radiative forcing from the
1991 Mount Pinatubo volcanic eruption, J. Geophys. Res.-Atmos., 103,
13837–13857 https://doi.org/10.1029/98JD00693, 1998.
Stevenson, S., Otto-Bliesner, B., Fasullo, J., and Brady, E.: “El Niño
Like” hydroclimate responses to last millennium volcanic eruptions, J.
Climate, 29, 2907–2921, https://doi.org/10.1175/JCLI-D-15-0239.1, 2016.
Stevenson, S., Fasullo, J. T., Otto-Bliesner, B. L., Tomas, R. A., and Gao,
C.: Role of eruption season in reconciling model and proxy responses to
tropical volcanism, P. Natl. Acad. Sci. USA, 114, 1822–1826,
https://doi.org/10.1073/pnas.1612505114, 2017.
Stoffel, M., Khodri, M., Corona, C., Guillet, S., Poulain, V., Bekki, S.,
Guiot, J., Luckman, B. H., Oppenheimer, C., Lebas, N., Beniston, M., and
Masson-Delmotte, V.: Estimates of volcanic-induced cooling in the Northern
Hemisphere over the past 1,500 years, Nat. Geosci., 8, 784–788,
https://doi.org/10.1038/ngeo2526, 2015.
Suarez-Gutierrez, L., Milinski, S., and Maher, N.: Exploiting large
ensembles for a better yet simpler climate model evaluation, Clim. Dynam.,
1, 1–24, https://doi.org/10.1007/S00382-021-05821-W, 2021.
Sun, W., Liu, J., Wang, B., Chen, D., Liu, F., Wang, Z., Ning, L., and Chen,
M.: A “La Niña-like” state occurring in the second year after large
tropical volcanic eruptions during the past 1500 years, Clim. Dynam., 52,
7495–7509, https://doi.org/10.1007/s00382-018-4163-x, 2019.
Thompson, D. W. J., Wallace, J. M., Jones, P. D., and Kennedy, J. J.:
Identifying signatures of natural climate variability in time series of
global-mean surface temperature: Methodology and insights, J. Climate, 22,
6120–6141, https://doi.org/10.1175/2009JCLI3089.1, 2009.
Timmreck, C.: Modeling the climatic effects of large explosive volcanic
eruptions, WIRES Clim. Change, 3, 545–564,
https://doi.org/10.1002/wcc.192, 2012.
Timmreck, C., Pohlmann, H., Illing, S., and Kadow, C.: The impact of
stratospheric volcanic aerosol on decadal-scale climate predictions,
Geophys. Res. Lett., 43, 834–842, https://doi.org/10.1002/2015GL067431,
2016.
Toohey, M., Krüger, K., Niemeier, U., and Timmreck, C.: The influence of eruption season on the global aerosol evolution and radiative impact of tropical volcanic eruptions, Atmos. Chem. Phys., 11, 12351–12367, https://doi.org/10.5194/acp-11-12351-2011, 2011.
Trenberth, K. E. and Dai, A.: Effects of Mount Pinatubo volcanic eruption on
the hydrological cycle as an analog of geoengineering, Geophys. Res. Lett.,
34, L15702, https://doi.org/10.1029/2007GL030524, 2007.
Vecchi, G. A. and Soden, B. J.: Effect of remote sea surface temperature
change on tropical cyclone potential intensity, Nature, 450, 1066–1070,
https://doi.org/10.1038/nature06423, 2007.
Wang, T., Guo, D., Gao, Y., Wang, H., Zheng, F., Zhu, Y., Miao, J., and Hu,
Y.: Modulation of ENSO evolution by strong tropical volcanic eruptions,
Clim. Dynam., 51, 2433–2453, https://doi.org/10.1007/s00382-017-4021-2, 2018.
Wilson, R., Cook, E., D'Arrigo, R., Riedwyl, N., Evans, M. N., Tudhope, A.,
and Rob, A.: Reconstructing ENSO: The influence of method, proxy data,
climate forcing and teleconnections, J. Quaternary Sci., 25, 62–78,
https://doi.org/10.1002/jqs.1297, 2010.
Wittenberg, A. T.: Are historical records sufficient to constrain ENSO
simulations?, Geophys. Res. Lett., 32, L12702,
https://doi.org/10.1029/2009GL038710, 2009.
Zambri, B. and Robock, A.: Winter warming and summer monsoon reduction after
volcanic eruptions in Coupled Model Intercomparison Project 5 (CMIP5)
simulations, Geophys. Res. Lett., 43, 10920–10928
https://doi.org/10.1002/2016GL070460, 2016.
Zanchettin, D., Timmreck, C., Graf, H. F., Rubino, A., Lorenz, S., Lohmann,
K., Krüger, K., and Jungclaus, J. H.: Bi-decadal variability excited in
the coupled ocean-atmosphere system by strong tropical volcanic eruptions,
Clim. Dynam., 39, 419–444 https://doi.org/10.1007/s00382-011-1167-1, 2012.
Zuo, M., Man, W., Zhou, T., and Guo, Z.: Different impacts of Northern,
tropical, and Southern volcanic eruptions on the tropical pacific SST in the
Last Millennium, J. Climate, 31, 6729–6744,
https://doi.org/10.1175/JCLI-D-17-0571.1, 2018.
Short summary
Using the largest ensemble of a climate model currently available, the Max Planck Institute Grand Ensemble (MPI-GE), we investigated the impact of the spatial distribution of volcanic aerosols on the El Niño–Southern Oscillation (ENSO) response. By selecting three eruptions with different aerosol distributions, we found that the shift of the Intertropical Convergence Zone (ITCZ) is the main driver of the ENSO response, while other mechanisms commonly invoked seem less important in our model.
Using the largest ensemble of a climate model currently available, the Max Planck Institute...
Altmetrics
Final-revised paper
Preprint