Articles | Volume 12, issue 4
https://doi.org/10.5194/esd-12-1503-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-12-1503-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Storylines of weather-induced crop failure events under climate change
Henrique M. D. Goulart
CORRESPONDING AUTHOR
Deltares, Delft, the Netherlands
Institute for Environmental Studies, VU University Amsterdam, Amsterdam, the Netherlands
Karin van der Wiel
Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Christian Folberth
International Institute for Applied Systems Analysis (IIASA), Ecosystem Services and Management Program, Laxenburg, Austria
Juraj Balkovic
International Institute for Applied Systems Analysis (IIASA), Ecosystem Services and Management Program, Laxenburg, Austria
Bart van den Hurk
Deltares, Delft, the Netherlands
Institute for Environmental Studies, VU University Amsterdam, Amsterdam, the Netherlands
Related authors
Henrique M. D. Goulart, Irene Benito Lazaro, Linda van Garderen, Karin van der Wiel, Dewi Le Bars, Elco Koks, and Bart van den Hurk
Nat. Hazards Earth Syst. Sci., 24, 29–45, https://doi.org/10.5194/nhess-24-29-2024, https://doi.org/10.5194/nhess-24-29-2024, 2024
Short summary
Short summary
We explore how Hurricane Sandy (2012) could flood New York City under different scenarios, including climate change and internal variability. We find that sea level rise can quadruple coastal flood volumes, while changes in Sandy's landfall location can double flood volumes. Our results show the need for diverse scenarios that include climate change and internal variability and for integrating climate information into a modelling framework, offering insights for high-impact event assessments.
Lou Brett, Christopher J. White, Daniela I. V. Domeisen, Bart van den Hurk, Philip Ward, and Jakob Zscheischler
Nat. Hazards Earth Syst. Sci., 25, 2591–2611, https://doi.org/10.5194/nhess-25-2591-2025, https://doi.org/10.5194/nhess-25-2591-2025, 2025
Short summary
Short summary
Compound events, where multiple weather or climate hazards occur together, pose significant risks to both society and the environment. These events, like simultaneous wind and rain, can have more severe impacts than single hazards. Our review of compound event research from 2012–2022 reveals a rise in studies, especially on events that occur concurrently, hot and dry events, and compounding flooding. The review also highlights opportunities for research in the coming years.
René M. van Westen, Karin van der Wiel, Swinda K. J. Falkena, and Frank Selten
EGUsphere, https://doi.org/10.5194/egusphere-2025-1440, https://doi.org/10.5194/egusphere-2025-1440, 2025
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) moderates the European climate. The AMOC is a tipping element and may collapse to a substantially weaker state under climate change. Such an event induces global and regional climate shifts. The European hydroclimate becomes drier under an AMOC collapse, this response is not considered in the 'standard' hydroclimate projections. Our results indicate a considerable influence of the AMOC on the European hydroclimate.
Christian Folberth, Artem Baklanov, Nikolay Khabarov, Thomas Oberleitner, Juraj Balkovič, and Rastislav Skalský
EGUsphere, https://doi.org/10.5194/egusphere-2025-862, https://doi.org/10.5194/egusphere-2025-862, 2025
Short summary
Short summary
Global gridded crop models (GGCMs) are important tools in agricultural climate impact assessments but computationally costly. An emergent approach to derive crop productivity estimates similar to those from GGCMs are emulators that mimic the original model, but typically with considerable bias. Here we present a modelling package that trains emulators with very high accuracy and high computational gain, providing a basis for more comprehensive scenario assessments.
José A. Jiménez, Gundula Winter, Antonio Bonaduce, Michael Depuydt, Giulia Galluccio, Bart van den Hurk, H. E. Markus Meier, Nadia Pinardi, Lavinia G. Pomarico, and Natalia Vazquez Riveiros
State Planet, 3-slre1, 3, https://doi.org/10.5194/sp-3-slre1-3-2024, https://doi.org/10.5194/sp-3-slre1-3-2024, 2024
Short summary
Short summary
The Knowledge Hub on Sea Level Rise (SLR) has done a scoping study involving stakeholders from government and academia to identify gaps and needs in SLR information, impacts, and policies across Europe. Gaps in regional SLR projections and uncertainties were found, while concerns were raised about shoreline erosion and emerging problems like saltwater intrusion and ineffective adaptation plans. The need for improved communication to make better decisions on SLR adaptation was highlighted.
Nadia Pinardi, Bart van den Hurk, Michael Depuydt, Thorsten Kiefer, Petra Manderscheid, Lavinia Giulia Pomarico, and Kanika Singh
State Planet, 3-slre1, 2, https://doi.org/10.5194/sp-3-slre1-2-2024, https://doi.org/10.5194/sp-3-slre1-2-2024, 2024
Short summary
Short summary
The Knowledge Hub on Sea Level Rise (KH-SLR), a joint effort between JPI Climate and JPI Oceans, addresses the critical need for science-based information on sea level changes in Europe. The KH-SLR actively involves stakeholders through a co-design process discussing the impacts, adaptation planning, and policy requirements related to SLR in Europe. Its primary output is the KH Assessment Report (KH-AR), which is described in this volume.
Bart van den Hurk, Nadia Pinardi, Alexander Bisaro, Giulia Galluccio, José A. Jiménez, Kate Larkin, Angélique Melet, Lavinia Giulia Pomarico, Kristin Richter, Kanika Singh, Roderik van de Wal, and Gundula Winter
State Planet, 3-slre1, 1, https://doi.org/10.5194/sp-3-slre1-1-2024, https://doi.org/10.5194/sp-3-slre1-1-2024, 2024
Short summary
Short summary
The Summary for Policymakers compiles findings from “Sea Level Rise in Europe: 1st Assessment Report of the Knowledge Hub on Sea Level Rise”. It covers knowledge gaps, observations, projections, impacts, adaptation measures, decision-making principles, and governance challenges. It provides information for each European basin (Mediterranean, Black Sea, North Sea, Baltic Sea, Atlantic, and Arctic) and aims to assist policymakers in enhancing the preparedness of European coasts for sea level rise.
Henrique M. D. Goulart, Irene Benito Lazaro, Linda van Garderen, Karin van der Wiel, Dewi Le Bars, Elco Koks, and Bart van den Hurk
Nat. Hazards Earth Syst. Sci., 24, 29–45, https://doi.org/10.5194/nhess-24-29-2024, https://doi.org/10.5194/nhess-24-29-2024, 2024
Short summary
Short summary
We explore how Hurricane Sandy (2012) could flood New York City under different scenarios, including climate change and internal variability. We find that sea level rise can quadruple coastal flood volumes, while changes in Sandy's landfall location can double flood volumes. Our results show the need for diverse scenarios that include climate change and internal variability and for integrating climate information into a modelling framework, offering insights for high-impact event assessments.
Chiem van Straaten, Dim Coumou, Kirien Whan, Bart van den Hurk, and Maurice Schmeits
Weather Clim. Dynam., 4, 887–903, https://doi.org/10.5194/wcd-4-887-2023, https://doi.org/10.5194/wcd-4-887-2023, 2023
Short summary
Short summary
Variability in the tropics can influence weather over Europe. This study evaluates a summertime connection between the two. It shows that strongly opposing west Pacific sea surface temperature anomalies have occurred more frequently since 1980, likely due to a combination of long-term warming in the west Pacific and the El Niño Southern Oscillation. Three to six weeks later, the distribution of hot and cold airmasses over Europe is affected.
Matthew J. McGrath, Ana Maria Roxana Petrescu, Philippe Peylin, Robbie M. Andrew, Bradley Matthews, Frank Dentener, Juraj Balkovič, Vladislav Bastrikov, Meike Becker, Gregoire Broquet, Philippe Ciais, Audrey Fortems-Cheiney, Raphael Ganzenmüller, Giacomo Grassi, Ian Harris, Matthew Jones, Jürgen Knauer, Matthias Kuhnert, Guillaume Monteil, Saqr Munassar, Paul I. Palmer, Glen P. Peters, Chunjing Qiu, Mart-Jan Schelhaas, Oksana Tarasova, Matteo Vizzarri, Karina Winkler, Gianpaolo Balsamo, Antoine Berchet, Peter Briggs, Patrick Brockmann, Frédéric Chevallier, Giulia Conchedda, Monica Crippa, Stijn N. C. Dellaert, Hugo A. C. Denier van der Gon, Sara Filipek, Pierre Friedlingstein, Richard Fuchs, Michael Gauss, Christoph Gerbig, Diego Guizzardi, Dirk Günther, Richard A. Houghton, Greet Janssens-Maenhout, Ronny Lauerwald, Bas Lerink, Ingrid T. Luijkx, Géraud Moulas, Marilena Muntean, Gert-Jan Nabuurs, Aurélie Paquirissamy, Lucia Perugini, Wouter Peters, Roberto Pilli, Julia Pongratz, Pierre Regnier, Marko Scholze, Yusuf Serengil, Pete Smith, Efisio Solazzo, Rona L. Thompson, Francesco N. Tubiello, Timo Vesala, and Sophia Walther
Earth Syst. Sci. Data, 15, 4295–4370, https://doi.org/10.5194/essd-15-4295-2023, https://doi.org/10.5194/essd-15-4295-2023, 2023
Short summary
Short summary
Accurate estimation of fluxes of carbon dioxide from the land surface is essential for understanding future impacts of greenhouse gas emissions on the climate system. A wide variety of methods currently exist to estimate these sources and sinks. We are continuing work to develop annual comparisons of these diverse methods in order to clarify what they all actually calculate and to resolve apparent disagreement, in addition to highlighting opportunities for increased understanding.
Giorgia Di Capua, Dim Coumou, Bart van den Hurk, Antje Weisheimer, Andrew G. Turner, and Reik V. Donner
Weather Clim. Dynam., 4, 701–723, https://doi.org/10.5194/wcd-4-701-2023, https://doi.org/10.5194/wcd-4-701-2023, 2023
Short summary
Short summary
Heavy rainfall in tropical regions interacts with mid-latitude circulation patterns, and this interaction can explain weather patterns in the Northern Hemisphere during summer. In this analysis we detect these tropical–extratropical interaction pattern both in observational datasets and data obtained by atmospheric models and assess how well atmospheric models can reproduce the observed patterns. We find a good agreement although these relationships are weaker in model data.
Laura Muntjewerf, Richard Bintanja, Thomas Reerink, and Karin van der Wiel
Geosci. Model Dev., 16, 4581–4597, https://doi.org/10.5194/gmd-16-4581-2023, https://doi.org/10.5194/gmd-16-4581-2023, 2023
Short summary
Short summary
The KNMI Large Ensemble Time Slice (KNMI–LENTIS) is a large ensemble of global climate model simulations with EC-Earth3. It covers two climate scenarios by focusing on two time slices: the present day (2000–2009) and a future +2 K climate (2075–2084 in the SSP2-4.5 scenario). We have 1600 simulated years for the two climates with (sub-)daily output frequency. The sampled climate variability allows for robust and in-depth research into (compound) extreme events such as heat waves and droughts.
Emma E. Aalbers, Erik van Meijgaard, Geert Lenderink, Hylke de Vries, and Bart J. J. M. van den Hurk
Nat. Hazards Earth Syst. Sci., 23, 1921–1946, https://doi.org/10.5194/nhess-23-1921-2023, https://doi.org/10.5194/nhess-23-1921-2023, 2023
Short summary
Short summary
To examine the impact of global warming on west-central European droughts, we have constructed future analogues of recent summers. Extreme droughts like 2018 further intensify, and the local temperature rise is much larger than in most summers. Years that went hardly noticed in the present-day climate may emerge as very dry and hot in a warmer world. The changes can be directly linked to real-world events, which makes the results very tangible and hence useful for climate change communication.
Sigrid Jørgensen Bakke, Niko Wanders, Karin van der Wiel, and Lena Merete Tallaksen
Nat. Hazards Earth Syst. Sci., 23, 65–89, https://doi.org/10.5194/nhess-23-65-2023, https://doi.org/10.5194/nhess-23-65-2023, 2023
Short summary
Short summary
In this study, we developed a machine learning model to identify dominant controls of wildfire in Fennoscandia and produce monthly fire danger probability maps. The dominant control was shallow-soil water anomaly, followed by air temperature and deep soil water. The model proved skilful with a similar performance as the existing Canadian Forest Fire Weather Index (FWI). We highlight the benefit of using data-driven models jointly with other fire models to improve fire monitoring and prediction.
Elisabeth Tschumi, Sebastian Lienert, Karin van der Wiel, Fortunat Joos, and Jakob Zscheischler
Biogeosciences, 19, 1979–1993, https://doi.org/10.5194/bg-19-1979-2022, https://doi.org/10.5194/bg-19-1979-2022, 2022
Short summary
Short summary
Droughts and heatwaves are expected to occur more often in the future, but their effects on land vegetation and the carbon cycle are poorly understood. We use six climate scenarios with differing extreme occurrences and a vegetation model to analyse these effects. Tree coverage and associated plant productivity increase under a climate with no extremes. Frequent co-occurring droughts and heatwaves decrease plant productivity more than the combined effects of single droughts or heatwaves.
Ruud T. W. L. Hurkmans, Bart van den Hurk, Maurice J. Schmeits, Fredrik Wetterhall, and Ilias G. Pechlivanidis
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-604, https://doi.org/10.5194/hess-2021-604, 2022
Manuscript not accepted for further review
Short summary
Short summary
Seasonal forecasts can help in safely and efficiently managing a fresh water reservoir in the Netherlands. We compare hydrological forecast systems of the river Rhine, the lakes most important source and analyze forecast skill for over 1993–2016 and for specific extreme years. On average, forecast skill is high in spring due to Alpine snow and smaller in summer. Dry summers appear to be more predictable, skill increases with event extremity. In those cases, seasonal forecasts are valuable tools.
Martin Wegmann, Yvan Orsolini, Antje Weisheimer, Bart van den Hurk, and Gerrit Lohmann
Weather Clim. Dynam., 2, 1245–1261, https://doi.org/10.5194/wcd-2-1245-2021, https://doi.org/10.5194/wcd-2-1245-2021, 2021
Short summary
Short summary
Northern Hemisphere winter weather is influenced by the strength of westerly winds 30 km above the surface, the so-called polar vortex. Eurasian autumn snow cover is thought to modulate the polar vortex. So far, however, the modeled influence of snow on the polar vortex did not fit the observed influence. By analyzing a model experiment for the time span of 110 years, we could show that the causality of this impact is indeed sound and snow cover can weaken the polar vortex.
Víctor M. Santos, Mercè Casas-Prat, Benjamin Poschlod, Elisa Ragno, Bart van den Hurk, Zengchao Hao, Tímea Kalmár, Lianhua Zhu, and Husain Najafi
Hydrol. Earth Syst. Sci., 25, 3595–3615, https://doi.org/10.5194/hess-25-3595-2021, https://doi.org/10.5194/hess-25-3595-2021, 2021
Short summary
Short summary
We present an application of multivariate statistical models to assess compound flooding events in a managed reservoir. Data (from a previous study) were obtained from a physical-based hydrological model driven by a regional climate model large ensemble, providing a time series expanding up to 800 years in length that ensures stable statistics. The length of the data set allows for a sensitivity assessment of the proposed statistical framework to natural climate variability.
Ana Maria Roxana Petrescu, Matthew J. McGrath, Robbie M. Andrew, Philippe Peylin, Glen P. Peters, Philippe Ciais, Gregoire Broquet, Francesco N. Tubiello, Christoph Gerbig, Julia Pongratz, Greet Janssens-Maenhout, Giacomo Grassi, Gert-Jan Nabuurs, Pierre Regnier, Ronny Lauerwald, Matthias Kuhnert, Juraj Balkovič, Mart-Jan Schelhaas, Hugo A. C. Denier van der
Gon, Efisio Solazzo, Chunjing Qiu, Roberto Pilli, Igor B. Konovalov, Richard A. Houghton, Dirk Günther, Lucia Perugini, Monica Crippa, Raphael Ganzenmüller, Ingrid T. Luijkx, Pete Smith, Saqr Munassar, Rona L. Thompson, Giulia Conchedda, Guillaume Monteil, Marko Scholze, Ute Karstens, Patrick Brockmann, and Albertus Johannes Dolman
Earth Syst. Sci. Data, 13, 2363–2406, https://doi.org/10.5194/essd-13-2363-2021, https://doi.org/10.5194/essd-13-2363-2021, 2021
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CO2 fossil emissions and CO2 land fluxes in the EU27+UK. The data integrate recent emission inventories with ecosystem data, land carbon models and regional/global inversions for the European domain, aiming at reconciling CO2 estimates with official country-level UNFCCC national GHG inventories in support to policy and facilitating real-time verification procedures.
Bruno Ringeval, Christoph Müller, Thomas A. M. Pugh, Nathaniel D. Mueller, Philippe Ciais, Christian Folberth, Wenfeng Liu, Philippe Debaeke, and Sylvain Pellerin
Geosci. Model Dev., 14, 1639–1656, https://doi.org/10.5194/gmd-14-1639-2021, https://doi.org/10.5194/gmd-14-1639-2021, 2021
Short summary
Short summary
We assess how and why global gridded crop models (GGCMs) differ in their simulation of potential yield. We build a GCCM emulator based on generic formalism and fit its parameters against aboveground biomass and yield at harvest simulated by eight GGCMs. Despite huge differences between GGCMs, we show that the calibration of a few key parameters allows the emulator to reproduce the GGCM simulations. Our simple but mechanistic model could help to improve the global simulation of potential yield.
Gijs van Kempen, Karin van der Wiel, and Lieke Anna Melsen
Nat. Hazards Earth Syst. Sci., 21, 961–976, https://doi.org/10.5194/nhess-21-961-2021, https://doi.org/10.5194/nhess-21-961-2021, 2021
Short summary
Short summary
In this study, we combine climate model results with a hydrological model to investigate uncertainties in flood and drought risk. With the climate model, 2000 years of
current climatewas created. The hydrological model consisted of several building blocks that we could adapt. In this way, we could investigate the effect of these hydrological building blocks on high- and low-flow risk in four different climate zones with return periods of up to 500 years.
Johannes Vogel, Pauline Rivoire, Cristina Deidda, Leila Rahimi, Christoph A. Sauter, Elisabeth Tschumi, Karin van der Wiel, Tianyi Zhang, and Jakob Zscheischler
Earth Syst. Dynam., 12, 151–172, https://doi.org/10.5194/esd-12-151-2021, https://doi.org/10.5194/esd-12-151-2021, 2021
Short summary
Short summary
We present a statistical approach for automatically identifying multiple drivers of extreme impacts based on LASSO regression. We apply the approach to simulated crop failure in the Northern Hemisphere and identify which meteorological variables including climate extreme indices and which seasons are relevant to predict crop failure. The presented approach can help unravel compounding drivers in high-impact events and could be applied to other impacts such as wildfires or flooding.
Sarah F. Kew, Sjoukje Y. Philip, Mathias Hauser, Mike Hobbins, Niko Wanders, Geert Jan van Oldenborgh, Karin van der Wiel, Ted I. E. Veldkamp, Joyce Kimutai, Chris Funk, and Friederike E. L. Otto
Earth Syst. Dynam., 12, 17–35, https://doi.org/10.5194/esd-12-17-2021, https://doi.org/10.5194/esd-12-17-2021, 2021
Short summary
Short summary
Motivated by the possible influence of rising temperatures, this study synthesises results from observations and climate models to explore trends (1900–2018) in eastern African (EA) drought measures. However, no discernible trends are found in annual soil moisture or precipitation. Positive trends in potential evaporation indicate that for irrigated regions more water is now required to counteract increased evaporation. Precipitation deficit is, however, the most useful indicator of EA drought.
Maialen Iturbide, José M. Gutiérrez, Lincoln M. Alves, Joaquín Bedia, Ruth Cerezo-Mota, Ezequiel Cimadevilla, Antonio S. Cofiño, Alejandro Di Luca, Sergio Henrique Faria, Irina V. Gorodetskaya, Mathias Hauser, Sixto Herrera, Kevin Hennessy, Helene T. Hewitt, Richard G. Jones, Svitlana Krakovska, Rodrigo Manzanas, Daniel Martínez-Castro, Gemma T. Narisma, Intan S. Nurhati, Izidine Pinto, Sonia I. Seneviratne, Bart van den Hurk, and Carolina S. Vera
Earth Syst. Sci. Data, 12, 2959–2970, https://doi.org/10.5194/essd-12-2959-2020, https://doi.org/10.5194/essd-12-2959-2020, 2020
Short summary
Short summary
We present an update of the IPCC WGI reference regions used in AR5 for the synthesis of climate change information. This revision was guided by the basic principles of climatic consistency and model representativeness (in particular for the new CMIP6 simulations). We also present a new dataset of monthly CMIP5 and CMIP6 spatially aggregated information using the new reference regions and describe a worked example of how to use this dataset to inform regional climate change studies.
Sjoukje Philip, Sarah Kew, Geert Jan van Oldenborgh, Friederike Otto, Robert Vautard, Karin van der Wiel, Andrew King, Fraser Lott, Julie Arrighi, Roop Singh, and Maarten van Aalst
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 177–203, https://doi.org/10.5194/ascmo-6-177-2020, https://doi.org/10.5194/ascmo-6-177-2020, 2020
Short summary
Short summary
Event attribution studies can now be performed at short notice. We document a protocol developed by the World Weather Attribution group. It includes choices of which events to analyse, the event definition, observational analysis, model evaluation, multi-model multi-method attribution, hazard synthesis, vulnerability and exposure analysis, and communication procedures. The protocol will be useful for future event attribution studies and as a basis for an operational attribution service.
Tony W. Carr, Juraj Balkovič, Paul E. Dodds, Christian Folberth, Emil Fulajtar, and Rastislav Skalsky
Biogeosciences, 17, 5263–5283, https://doi.org/10.5194/bg-17-5263-2020, https://doi.org/10.5194/bg-17-5263-2020, 2020
Short summary
Short summary
We generate 30-year mean water erosion estimates in global maize and wheat fields based on daily simulation outputs from an EPIC-based global gridded crop model. Evaluation against field data confirmed the robustness of the outputs for the majority of global cropland and overestimations at locations with steep slopes and strong rainfall. Additionally, we address sensitivities and uncertainties of model inputs to improve water erosion estimates in global agricultural impact studies.
Giorgia Di Capua, Jakob Runge, Reik V. Donner, Bart van den Hurk, Andrew G. Turner, Ramesh Vellore, Raghavan Krishnan, and Dim Coumou
Weather Clim. Dynam., 1, 519–539, https://doi.org/10.5194/wcd-1-519-2020, https://doi.org/10.5194/wcd-1-519-2020, 2020
Short summary
Short summary
We study the interactions between the tropical convective activity and the mid-latitude circulation in the Northern Hemisphere during boreal summer. We identify two circumglobal wave patterns with phase shifts corresponding to the South Asian and the western North Pacific monsoon systems at an intra-seasonal timescale. These patterns show two-way interactions in a causal framework at a weekly timescale and assess how El Niño affects these interactions.
James A. Franke, Christoph Müller, Joshua Elliott, Alex C. Ruane, Jonas Jägermeyr, Abigail Snyder, Marie Dury, Pete D. Falloon, Christian Folberth, Louis François, Tobias Hank, R. Cesar Izaurralde, Ingrid Jacquemin, Curtis Jones, Michelle Li, Wenfeng Liu, Stefan Olin, Meridel Phillips, Thomas A. M. Pugh, Ashwan Reddy, Karina Williams, Ziwei Wang, Florian Zabel, and Elisabeth J. Moyer
Geosci. Model Dev., 13, 3995–4018, https://doi.org/10.5194/gmd-13-3995-2020, https://doi.org/10.5194/gmd-13-3995-2020, 2020
Short summary
Short summary
Improving our understanding of the impacts of climate change on crop yields will be critical for global food security in the next century. The models often used to study the how climate change may impact agriculture are complex and costly to run. In this work, we describe a set of global crop model emulators (simplified models) developed under the Agricultural Model Intercomparison Project. Crop model emulators make agricultural simulations more accessible to policy or decision makers.
Cited articles
Allakhverdiev, S. I., Kreslavski, V. D., Klimov, V. V., Los, D. A., Carpentier,
R., and Mohanty, P.: Heat stress: an overview of molecular responses in
photosynthesis, Photosynth. Res., 98, 541–550, 2008. a
Almazroui, M., Islam, M. N., Saeed, F., Saeed, S., Ismail, M., Ehsan, M. A.,
Diallo, I., O’Brien, E., Ashfaq, M., Martínez-Castro, D., Cavazos, T., Cerezo-Mota, R., Tippett, M. K., Gutowski Jr., W. J., Alfaro, E. J., Hidalgo, H. G., Vichot-Llano, A., Campbell, J. D., Kamil, S., Rashid, I. U., Sylla, M. B., Stephenson, T., Taylor, M., and Barlow, M.:
Projected changes in temperature and precipitation over the United States,
Central America, and the Caribbean in CMIP6 GCMs, Earth Systems and
Environment, 5, 1–24, 2021. a
Anderson, M. J.: A new method for non-parametric multivariate analysis of
variance, Austral. Ecol., 26, 32–46,
https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x, 2001. a
Arneth, A., Balkovic, J., Ciais, P., de Wit, A., Deryng, D., Elliott, J., Folberth, C., Glotter, M., Iizumi, T., Izaurralde, R. C., Jones, A. D., Khabarov, N., Lawrence, P., Liu, W., Mitter, H., Müller, C., Olin, S., Pugh, T. A. M., Reddy, A. D., Sakurai, G., Schmid, E., Wang, X., Wu, X., Yang, H., and Büchner, M.: ISIMIP2a Simulation Data from Agricultural Sector, GFZ Data Services [data set], https://doi.org/10.5880/PIK.2017.006, 2017. a
Balkovič, J., van der Velde, M., Skalský, R., Xiong, W., Folberth,
C., Khabarov, N., Smirnov, A., Mueller, N. D., and Obersteiner, M.: Global
wheat production potentials and management flexibility under the
representative concentration pathways, Global Planet. Change, 122,
107–121, https://doi.org/10.1016/j.gloplacha.2014.08.010, 2014. a
Barlow, K., Christy, B., O’leary, G., Riffkin, P., and Nuttall, J.:
Simulating the impact of extreme heat and frost events on wheat crop
production: A review, Field Crop. Res., 171, 109–119, 2015. a
Bastidas, A., Setiyono, T., Dobermann, A., Cassman, K. G., Elmore, R. W.,
Graef, G. L., and Specht, J. E.: Soybean sowing date: The vegetative,
reproductive, and agronomic impacts, Crop. Sci., 48, 727–740, 2008. a
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. a, b, c
Cannon, A. J., Sobie, S. R., and Murdock, T. Q.: Bias correction of GCM
precipitation by quantile mapping: How well do methods preserve changes in
quantiles and extremes?, J. Climate, 28, 6938–6959,
https://doi.org/10.1175/JCLI-D-14-00754.1, 2015. a
Chen, C., Pang, Y., Pan, X., and Zhang, L.: Impacts of climate change on cotton
yield in China from 1961 to 2010 based on provincial data,
J. Meteorol. Res.-Prc., 29, 515–524, 2015. a
Crane-Droesch, A.: Machine learning methods for crop yield prediction and
climate change impact assessment in agriculture,
Environ. Res. Lett., 13, 114003, https://doi.org/10.1088/1748-9326/aae159, 2018. a, b
Deryng, D., Conway, D., Ramankutty, N., Price, J., and Warren, R.: Global crop
yield response to extreme heat stress under multiple climate change futures,
Environ. Res. Lett., 9, 034011, https://doi.org/10.1088/1748-9326/9/3/034011, 2014. a, b
Deryng, D., Elliott, J., Folberth, C., Müller, C., Pugh, T. A. M., Boote K. J., Conway, D., Ruane, A. C., Gerten, D., Jones, J. W., Khabarov, N., Olin, S., Schaphoff, S., Schmid, E., Yang, H., and Rosenzweig, C.: Regional
disparities in the beneficial effects of rising CO2 concentrations on crop
water productivity, Nat. Clim. Change, 6, 786–790, 2016. a, b
Dhakhwa, G. B. and Campbell, C. L.: Potential effects of differential day-night
warming in global climate change on crop production, Climatic Change, 40,
647–667, 1998. a
Dirmeyer, P. A., Gao, X., Zhao, M., Guo, Z., Oki, T., and Hanasaki, N.: GSWP-2:
Multimodel Analysis and Implications for Our Perception of the Land Surface,
B. Am. Meteorol. Soc., 87, 1381–1398,
https://doi.org/10.1175/BAMS-87-10-1381, 2006. a
Feng, P., Wang, B., Liu, D. L., Waters, C., and Yu, Q.: Incorporating machine
learning with biophysical model can improve the evaluation of climate
extremes impacts on wheat yield in south-eastern Australia,
Agr. Forest. Meteorol., 275, 100–113, https://doi.org/10.1016/j.agrformet.2019.05.018,
2019. a
Fernández-Delgado, M., Cernadas, E., Barro, S., and Amorim, D.: Do we
need hundreds of classifiers to solve real world classification problems?,
J. Mach. Learn. Res., 15, 3133–3181,
https://doi.org/10.1117/1.JRS.11.015020, 2014. a
Fischer, E. M., Sedláček, J., Hawkins, E., and Knutti, R.: Models
agree on forced response pattern of precipitation and temperature extremes,
Geophys. Res. Lett., 41, 8554–8562, https://doi.org/10.1002/2014GL062018,
2014. a
Folberth, C., Elliott, J., Müller, C., Balkovic, J., Chryssanthacopoulos, J., Izaurralde, R. C., Jones, C. D., Khabarov, N., Liu, W., Reddy, A., Schmid, E., Skalský, R., Yang, H., Arneth, A., Ciais, P., Deryng, D., Lawrence, P. J., Olin, S., Pugh, T. A. M., Ruane, A. C., and Wang, X.: Uncertainties in global crop model frameworks: effects of cultivar distribution, crop management and soil handling on crop yield estimates, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2016-527, 2016. a, b
Friedman, J. H.: Greedy Function Approximation: A Gradient Boosting Machine, Ann. Stat., 29, 1189–1232, 2001. a
Frieler, K., Schauberger, B., Arneth, A., Balkovič, J.,
Chryssanthacopoulos, J., Deryng, D., Elliott, J., Folberth, C., Khabarov, N.,
Müller, C., Olin, S., Pugh, T. A., Schaphoff, S., Schewe, J., Schmid,
E., Warszawski, L., and Levermann, A.: Understanding the weather signal in
national crop-yield variability, Earth's Future, 5, 605–616,
https://doi.org/10.1002/2016EF000525, 2017. a
Gawȩda, D., Nowak, A., Haliniarz, M., and Woźniak, A.: Yield and
Economic Effectiveness of Soybean Grown Under Different Cropping Systems,
Int. J. Plant. Prod., 14, 475–485,
https://doi.org/10.1007/s42106-020-00098-1, 2020. a
Goulart, H.: dumontgoulart/agr_cli: DOI for ESD (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.5748304, 2021. a
Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU TS
monthly high-resolution gridded multivariate climate dataset, Scientific
Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3, 2020. a, b, c
Hartman, G. L., West, E. D., and Herman, T. K.: Crops that feed the World 2.
Soybean-worldwide production, use, and constraints caused by pathogens and
pests, Food Secur., 3, 5–17, https://doi.org/10.1007/s12571-010-0108-x, 2011. a, b
Hatfield, J., Wright-Morton, L., and Hall, B.: Vulnerability of grain crops and
croplands in the Midwest to climatic variability and adaptation strategies,
Climatic Change, 146, 263–275, 2018. a
Hatfield, J. L. and Prueger, J. H.: Temperature extremes: Effect on plant
growth and development, Weather and Climate Extremes, 10, 4–10,
https://doi.org/10.1016/j.wace.2015.08.001, 2015. a
Hatfield, J. L., Boote, K. J., Kimball, B. A., Ziska, L. H., Izaurralde, R. C.,
Ort, D., Thomson, A. M., and Wolfe, D.: Climate Impacts on Agriculture:
Implications for Crop Production, Agron. J., 103, 351–370,
https://doi.org/10.2134/agronj2010.0303, 2011. a
Hazeleger, W., Wang, X., Severijns, C., Ştefǎnescu, S., Bintanja, R., Sterl,
A., Wyser, K., Semmler, T., Yang, S., van den Hurk, B., van Noije, T.,
van der Linden, E., and van der Wiel, K.: EC-Earth V2.2: Description and
validation of a new seamless earth system prediction model,
Clim. Dynam., 39, 2611–2629, https://doi.org/10.1007/s00382-011-1228-5, 2012. a
Heino, M., Puma, M. J., Ward, P. J., Gerten, D., Heck, V., Siebert, S., and
Kummu, M.: Two-thirds of global cropland area impacted by climate
oscillations, Nat. Commun., 9, 1–10,
https://doi.org/10.1038/s41467-017-02071-5, 2018. a
Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B., and Gräler, B.:
Random forest as a generic framework for predictive modeling of spatial and
spatio-temporal variables, PeerJ, 6, e5518, https://doi.org/10.7717/peerj.5518, 2018. a, b
Hernandez-Barrera, S., Rodriguez-Puebla, C., and Challinor, A.: Effects of
diurnal temperature range and drought on wheat yield in Spain,
Theor. Appl. Climatol., 129, 503–519, 2017. a
Iizumi, T. and Ramankutty, N.: Changes in yield variability of major crops for
1981–2010 explained by climate change, Environ. Res. Lett., 11, 034003, https://doi.org/10.1088/1748-9326/11/3/034003, 2016. a
Iizumi, T., Luo, J. J., Challinor, A. J., Sakurai, G., Yokozawa, M., Sakuma,
H., Brown, M. E., and Yamagata, T.: Impacts of El Niño Southern
Oscillation on the global yields of major crops, Nat. Commun., 5,
1–7, https://doi.org/10.1038/ncomms4712, 2014. a
IPCC: Managing the Risks of Extreme Events and Disasters to Advance Climate
Change Adaptation, Cambridge University Press, Cambridge,
https://doi.org/10.1017/CBO9781139177245, 2012. a
Jones, P. W.: First-and second-order conservative remapping schemes for grids
in spherical coordinates, Mon. Weather. Rev., 127, 2204–2210, 1999. a
Kent, C., Pope, E., Thompson, V., Lewis, K., Scaife, A. A., and Dunstone, N.:
Using climate model simulations to assess the current climate risk to maize
production, Environ. Res. Lett., 12, 054012, https://doi.org/10.1088/1748-9326/aa6cb9, 2017. a
Kraskov, A., Stögbauer, H., and Grassberger, P.: Estimating mutual
information, Phys. Rev. E, 69, 066138, https://doi.org/10.1103/PhysRevE.69.066138,
2004. a
Lange, S.: WFDE5 over land merged with ERA5 over the ocean (W5E5), GFZ Data
Services [data set], https://doi.org/10.5880/pik.2019.023, 2019. a
Leonard, M., Westra, S., Phatak, A., Lambert, M., van den Hurk, B., McInnes,
K., Risbey, J., Schuster, S., Jakob, D., and Stafford-Smith, M.: A compound
event framework for understanding extreme impacts,
WIRES Clim. Change, 5, 113–128, https://doi.org/10.1002/wcc.252, 2014. a
Lesk, C., Coffel, E., and Horton, R.: Net benefits to US soy and maize yields
from intensifying hourly rainfall, Nat. Clim. Change, 10, 819–822, https://doi.org/10.1038/s41558-020-0830-0, 2020. a
Lobell, D. B.: Changes in diurnal temperature range and national cereal yields,
Agr. Forest. Meteorol., 145, 229–238,
https://doi.org/10.1016/j.agrformet.2007.05.002, 2007. a, b
Lobell, D. B. and Field, C. B.: Global scale climate-crop yield relationships
and the impacts of recent warming, Environ. Res. Lett., 2, 014002, https://doi.org/10.1088/1748-9326/2/1/014002, 2007. a
Lobell, D. B. and Tebaldi, C.: Getting caught with our plants down: The risks
of a global crop yield slowdown from climate trends in the next two decades,
Environ. Res. Lett., 9, 074003, https://doi.org/10.1088/1748-9326/9/7/074003, 2014. a
Maria, M. D., Robinson, E. J., Rajabu, J., Kadigi, R., Dreoni, I., and Couto,
M.: Global soybean trade – the geopolitics of a bean, UK Research and
Innovation Global Challenges Research Fund (UKRI GCRF) Trade, Development and
the Environment Hub, https://doi.org/10.34892/7yn1-k494, 2020. a
Moore, F. C. and Lobell, D. B.: The fingerprint of climate trends on european
crop yields, P. Natl. Acad. Sci. USA, 112, 2970–2975, https://doi.org/10.1073/pnas.1409606112, 2015. a
Müller, C., Elliott, J., Kelly, D., Arneth, A., Balkovic, J., Ciais, P.,
Deryng, D., Folberth, C., Hoek, S., Izaurralde, R. C., Jones, C. D.,
Khabarov, N., Lawrence, P., Liu, W., Olin, S., Pugh, T. A., Reddy, A.,
Rosenzweig, C., Ruane, A. C., Sakurai, G., Schmid, E., Skalsky, R., Wang, X.,
de Wit, A., and Yang, H.: The Global Gridded Crop Model Intercomparison
phase 1 simulation dataset, Sci. Data, 6, 1–22,
https://doi.org/10.1038/s41597-019-0023-8, 2019. a
Ogutu, G. E., Franssen, W. H., Supit, I., Omondi, P., and Hutjes, R. W.:
Probabilistic maize yield prediction over East Africa using dynamic ensemble
seasonal climate forecasts, Agr. Forest. Meteorol., 250–251,
243–261, https://doi.org/10.1016/j.agrformet.2017.12.256, 2018. a
Portmann, F. T., Siebert, S., and Döll, P.: MIRCA2000 – Global monthly
irrigated and rainfed crop areas around the year 2000: A new high-resolution
data set for agricultural and hydrological modeling,
Global Biogeochem. Cy., 24, https://doi.org/10.1029/2008GB003435, 2010. a
Qu, M., Wan, J., and Hao, X.: Analysis of diurnal air temperature range change
in the continental United States, Weather and Climate Extremes, 4, 86–95, https://doi.org/10.1016/j.wace.2014.05.002, 2014. a, b
Rahman, M. A., Kang, S., Nagabhatla, N., and Macnee, R.: Impacts of temperature
and rainfall variation on rice productivity in major ecosystems of
Bangladesh, Agriculture & Food Secur., 6, 1–11, 2017. a
Ray, D. K., Gerber, J. S., Macdonald, G. K., and West, P. C.: Climate
variation explains a third of global crop yield variability,
Nat.
Commun., 6, 1–9, https://doi.org/10.1038/ncomms6989, 2015. a
Ray, D. K., West, P. C., Clark, M., Gerber, J. S., Prishchepov, A. V., and
Chatterjee, S.: Climate change has likely already affected global food
production, PLoS ONE, 14, 1–18, https://doi.org/10.1371/journal.pone.0217148, 2019. a
Roberts, M. J., Braun, N. O., Sinclair, T. R., Lobell, D. B., and Schlenker,
W.: Comparing and combining process-based crop models and statistical models
with some implications for climate change, Environ. Res. Lett.,
12, 095010, https://doi.org/10.1088/1748-9326/aa7f33, 2017. a
Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Müller, C.,
Arneth, A., Boote, K. J., Folberth, C., Glotter, M., Khabarov, N., Neumann,
K., Piontek, F., Pugh, T. A., Schmid, E., Stehfest, E., Yang, H., and Jones,
J. W.: Assessing agricultural risks of climate change in the 21st century in
a global gridded crop model intercomparison, P. Natl. Acad. Sci. USA, 111, 3268–3273,
https://doi.org/10.1073/pnas.1222463110, 2014. a
Salvadori, G., Durante, F., De Michele, C., Bernardi, M., and Petrella, L.:
A multivariate copula-based framework for dealing with hazard scenarios and
failure probabilities, Water Resour. Res., 52, 3701–3721,
https://doi.org/10.1002/2015WR017225, 2016. a, b
Santos, V. M., Casas-Prat, M., Poschlod, B., Ragno, E., van den Hurk, B., Hao, Z., Kalmár, T., Zhu, L., and Najafi, H.: Statistical modelling and climate variability of compound surge and precipitation events in a managed water system: a case study in the Netherlands, Hydrol. Earth Syst. Sci., 25, 3595–3615, https://doi.org/10.5194/hess-25-3595-2021, 2021. a, b
Schauberger, B., Archontoulis, S., Arneth, A., Balkovic, J., Ciais, P., Deryng,
D., Elliott, J., Folberth, C., Khabarov, N., Müller, C., Pugh, T. A.,
Rolinski, S., Schaphoff, S., Schmid, E., Wang, X., Schlenker, W., and
Frieler, K.: Consistent negative response of US crops to high temperatures
in observations and crop models, Nat. Commun., 8, 13931, https://doi.org/10.1038/ncomms13931, 2017. a, b
Serinaldi, F.: Can we tell more than we can know? The limits of bivariate
drought analyses in the United States,
Stoch. Env. Res. Risk A, 30, 1691–1704, https://doi.org/10.1007/s00477-015-1124-3, 2016. a
Shepherd, T. G.: Storyline approach to the construction of regional climate
change information, P. Roy. Soc. A-Math. Phy., 475, https://doi.org/10.1098/rspa.2019.0013, 2019. a, b
Shepherd, T. G., Boyd, E., Calel, R. A., Chapman, S. C., Dessai, S., Dima-West,
I. M., Fowler, H. J., James, R., Maraun, D., Martius, O., Senior, C. A.,
Sobel, A. H., Stainforth, D. A., Tett, S. F. B., Trenberth, K. E., van den
Hurk, B. J. J. M., Watkins, N. W., Wilby, R. L., and Zenghelis, D. A.:
Storylines: an alternative approach to representing uncertainty in physical
aspects of climate change, Climatic Change, 151, 555–571,
https://doi.org/10.1007/s10584-018-2317-9, 2018. a, b, c
Siebers, M. H., Yendrek, C. R., Drag, D., Locke, A. M., Rios Acosta, L.,
Leakey, A. D. B., Ainsworth, E. A., Bernacchi, C. J., and Ort, D. R.: Heat
waves imposed during early pod development in soybean (Glycine max) cause
significant yield loss despite a rapid recovery from oxidative stress,
Glob. Change Biol., 21, 3114–3125, https://doi.org/10.1111/gcb.12935,
2015. a
Sillmann, J., Shepherd, T. G., van den Hurk, B., Hazeleger, W., Martius, O.,
Slingo, J., and Zscheischler, J.: Event‐based storylines to address
climate risk, Earth's Future, 9, e2020EF001783, https://doi.org/10.1029/2020ef001783, 2020. a
Sun, X., Ren, G., You, Q., Ren, Y., Xu, W., Xue, X., Zhan, Y., Zhang, S., and
Zhang, P.: Global diurnal temperature range (DTR) changes since 1901,
Clim. Dynam., 52, 3343–3356, https://doi.org/10.1007/s00382-018-4329-6, 2019. a, b
Toreti, A., Deryng, D., Tubiello, F. N., Müller, C., Kimball, B. A., Moser,
G., Boote, K., Asseng, S., Pugh, T. A., Vanuytrecht, E., Pleijel, H., Webber, H., Durand, J.-L., Dentener, F., Ceglar, A., Wang, X., Badeck, F., Lecerf, R., Wall, G. W., van den Berg, M., Hoegy, P., Lopez-Lozano, R., Zampieri, M., Galmarini, S., O’Leary, G. J., Manderscheid, R., Contreras, E. M., and Rosenzweig, C.: Narrowing
uncertainties in the effects of elevated CO2 on crops, Nature Food, 1,
775–782, 2020. a, b
Trenberth, K. E., Fasullo, J. T., and Shepherd, T. G.: Attribution of climate
extreme events, Nat. Clim. Change, 5, 725–730,
https://doi.org/10.1038/nclimate2657, 2015. a
van den Hurk, B., Van Meijgaard, E., De Valk, P., Van Heeringen, K. J.,
and Gooijer, J.: Analysis of a compounding surge and precipitation event in
the Netherlands, Environ. Res. Lett., 10, 035001, https://doi.org/10.1088/1748-9326/10/3/035001, 2015. a, b, c
Van der Wiel, K., Wanders, N., Selten, F. M., and Bierkens, M. F.: Added Value
of Large Ensemble Simulations for Assessing Extreme River Discharge in a
2 ∘C Warmer World, Geophys. Res. Lett., 46, 2093–2102,
https://doi.org/10.1029/2019GL081967, 2019. a, b, c, d
van Etten, J., de Sousa, K., Aguilar, A., Barrios, M., Coto, A., Dell’Acqua,
M., Fadda, C., Gebrehawaryat, Y., van de Gevel, J., Gupta A., Kiros, A. Y., Madriz, B., Mathur, P., Mengistu, D. K., Mercado, L., Mohammed, J. N., Paliwal, A., Pè, M. E., Quirós, C. F., Rosas, J. C., Sharma, N., Singh, S. S., Solanki, I. S., and Steinke, J.: Crop
variety management for climate adaptation supported by citizen science,
P. Natl. Acad. Sci. USA, 116, 4194–4199, 2019. a, b
van Oldenborgh, G. J., van der Wiel, K., Kew, S., Philip, S., Otto, F.,
Vautard, R., King, A., Lott, F., Arrighi, J., Singh, R., and van Aalst, M.: Pathways and
pitfalls in extreme event attribution, Climatic Change, 166, 1–27, 2021. a
Verón, S. R., De Abelleyra, D., and Lobell, D. B.: Impacts of precipitation
and temperature on crop yields in the Pampas, Climatic Change, 130, 235–245,
2015. a
Vogel, E., Donat, M. G., Alexander, L. V., Meinshausen, M., Ray, D. K., Karoly,
D., Meinshausen, N., and Frieler, K.: The effects of climate extremes on
global agricultural yields, Environ. Res. Lett., 14, 054010, https://doi.org/10.1088/1748-9326/ab154b, 2019. a, b, c, d
Vogel, J., Rivoire, P., Deidda, C., Rahimi, L., Sauter, C. A., Tschumi, E., van der Wiel, K., Zhang, T., and Zscheischler, J.: Identifying meteorological drivers of extreme impacts: an application to simulated crop yields, Earth Syst. Dynam., 12, 151–172, https://doi.org/10.5194/esd-12-151-2021, 2021. a, b, c, d, e, f, g
Williams, J. R.: The EPIC model, Chapter 25, edited by: Singh, V. P., in: Computer Models of Watershed Hydrology, Water Resources Publications, Highlands Ranch, CO., 1995. a
Wolski, P., Lobell, D., Stone, D., Pinto, I., Crespo, O., and Johnston, P.: On
the role of anthropogenic climate change in the emerging food crisis in
southern Africa in the 2019–2020 growing season, Glob. Change Biol.,
2020, 1–2, https://doi.org/10.1111/gcb.15047, 2020. a
Xie, W., Xiong, W., Pan, J., Ali, T., Cui, Q., Guan, D., Meng, J., Mueller,
N. D., Lin, E., and Davis, S. J.: Decreases in global beer supply due to
extreme drought and heat, Nat. Plants, 4, 964–973,
https://doi.org/10.1038/s41477-018-0263-1, 2018. a
Zampieri, M., Ceglar, A., Dentener, F., and Toreti, A.: Wheat yield loss
attributable to heat waves, drought and water excess at the global, national
and subnational scales, Environ. Res. Lett., 12, 064008,
https://doi.org/10.1088/1748-9326/aa723b, 2017. a, b, c
Zhang, D., Zang, G., Li, J., Ma, K., and Liu, H.: Prediction of soybean price
in China using QR-RBF neural network model, Comput. Electron. Agr., 154, 10–17, https://doi.org/10.1016/j.compag.2018.08.016, 2018. a
Zhang, X., Wang, S., Sun, H., Chen, S., Shao, L., and Liu, X.: Contribution of
cultivar, fertilizer and weather to yield variation of winter wheat over
three decades: A case study in the North China Plain,
Eur. J. Agron., 50, 52–59, https://doi.org/10.1016/j.eja.2013.05.005, 2013. a
Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., Huang, M.,
Yao, Y., Bassu, S., Ciais, P., Durand, J.-L., Elliott, J., Ewert, F.,
Janssens, I. A., Li, T., Lin, E., Liu, Q., Martre, P., Müller, C.,
Peng, S., Peñuelas, J., Ruane, A. C., Wallach, D., Wang, T., Wu, D.,
Liu, Z., Zhu, Y., Zhu, Z., and Asseng, S.: Temperature increase reduces
global yields of major crops in four independent estimates, P. Natl. Acad. Sci. USA, 114, 9326–9331,
https://doi.org/10.1073/pnas.1701762114, 2017. a, b
Zhu, X. and Troy, T. J.: Agriculturally Relevant Climate Extremes and Their
Trends in the World's Major Growing Regions, Earth's Future, 6, 656–672,
https://doi.org/10.1002/2017EF000687, 2018. a, b
Zipper, S. C., Qiu, J., and Kucharik, C. J.: Drought effects on US maize and
soybean production: Spatiotemporal patterns and historical changes,
Environ. Res. Lett., 11, 094021, https://doi.org/10.1088/1748-9326/11/9/094021,
2016.
a
Zscheischler, J. and Fischer, E. M.: The record-breaking compound hot and dry
2018 growing season in Germany, Weather and Climate Extremes, 29, 100270,
https://doi.org/10.1016/j.wace.2020.100270, 2020. a
Zscheischler, J. and Seneviratne, S. I.: Dependence of drivers affects risks
associated with compound events, Sci. Adv., 3, 1–11,
https://doi.org/10.1126/sciadv.1700263, 2017. a
Zscheischler, J., Orth, R., and Seneviratne, S. I.: Bivariate return periods of temperature and precipitation explain a large fraction of European crop yields, Biogeosciences, 14, 3309–3320, https://doi.org/10.5194/bg-14-3309-2017, 2017. a, b, c
Zscheischler, J., Westra, S., van den Hurk, B. J., Seneviratne, S. I., Ward,
P. J., Pitman, A., Aghakouchak, A., Bresch, D. N., Leonard, M., Wahl, T., and
Zhang, X.: Future climate risk from compound events, Nat. Clim. Change,
8, 469–477, https://doi.org/10.1038/s41558-018-0156-3, 2018. a
Short summary
Agriculture is sensitive to weather conditions and to climate change. We identify the weather conditions linked to soybean failures and explore changes related to climate change. Additionally, we build future versions of a historical extreme season under future climate scenarios. Results show that soybean failures are likely to increase with climate change. Future events with similar physical conditions to the extreme season are not expected to increase, but events with similar impacts are.
Agriculture is sensitive to weather conditions and to climate change. We identify the weather...
Altmetrics
Final-revised paper
Preprint