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Abstract. Unfavourable weather is a common cause for crop failures all over the world. Whilst extreme weather
conditions may cause extreme impacts, crop failure commonly is induced by the occurrence of multiple and com-
bined anomalous meteorological drivers. For these cases, the explanation of conditions leading to crop failure is
complex, as the links connecting weather and crop yield can be multiple and non-linear. Furthermore, climate
change is likely to perturb the meteorological conditions, possibly altering the occurrences of crop failures or
leading to unprecedented drivers of extreme impacts. The goal of this study is to identify important meteorolog-
ical drivers that cause crop failures and to explore changes in crop failures due to global warming. For that, we
focus on a historical failure event, the extreme low soybean production during the 2012 season in the midwestern
US. We first train a random forest model to identify the most relevant meteorological drivers of historical crop
failures and to predict crop failure probabilities. Second, we explore the influence of global warming on crop
failures and on the structure of compound drivers. We use large ensembles from the EC-Earth global climate
model, corresponding to present-day, pre-industrial +2 and 3 ◦C warming, respectively, to isolate the global
warming component. Finally, we explore the meteorological conditions inductive for the 2012 crop failure and
construct analogues of these failure conditions in future climate settings. We find that crop failures in the mid-
western US are linked to low precipitation levels, and high temperature and diurnal temperature range (DTR)
levels during July and August. Results suggest soybean failures are likely to increase with climate change. With
more frequent warm years due to global warming, the joint hot–dry conditions leading to crop failures become
mostly dependent on precipitation levels, reducing the importance of the relative compound contribution. While
event analogues of the 2012 season are rare and not expected to increase, impact analogues show a significant
increase in occurrence frequency under global warming, but for different combinations of the meteorological
drivers than experienced in 2012. This has implications for assessment of the drivers of extreme impact events.
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1 Introduction

Soybeans are important for modern global society. They are
used for human consumption, the main source of protein for
animal feed worldwide and the second most consumed type
of vegetable oil (Hartman et al., 2011). The vast majority
of its production is concentrated in specific regions in Ar-
gentina, Brazil and United States of America, accounting for
80 % of the world production (Hartman et al., 2011; Maria
et al., 2020). The difference in scale between local produc-
tion and global consumption makes soybeans the most traded
crop in value in the world (FAO, 2021). Such a broad and
extensive trade network renders the soybean supply chain
especially vulnerable to local perturbations at the growing
regions. Local shocks on production sites can potentially
have worldwide consequences, as evidenced by the 2012 sea-
son, when exceptional low yields in most of the midwestern
United States drove global soybean prices to the highest val-
ues ever recorded (Zhang et al., 2018).

Weather and climate events have direct influence on agri-
cultural production (IPCC, 2012). On a global level, inter-
annual climate variability is responsible for approximately
30 % of the year-to-year variability in crop yields (Lobell and
Field, 2007), but the influence of interannual climate vari-
ability reaches up to 60 % of the yield variability in certain re-
gions (Ray et al., 2015; Frieler et al., 2017). Extreme weather
events are also linked to crop failures (Vogel et al., 2019).
In addition, unprecedented weather conditions due to anthro-
pogenic global warming may alter crop failure frequency and
the climatic drivers behind failures. Recent warming trends
are already impacting crops worldwide in multiple ways and
further warm conditions are expected to exacerbate these im-
pacts (Schauberger et al., 2017; Moore and Lobell, 2015; Ray
et al., 2019; Zhao et al., 2017; Wolski et al., 2020; Iizumi and
Ramankutty, 2016; Zhu and Troy, 2018).

While extreme weather events, such as abnormally low
levels of precipitation or excessive heat, can alone cause dis-
ruptions of crop development (Deryng et al., 2014), the ma-
jority of climate-driven societal or natural shocks are the re-
sult of compound events (Zscheischler et al., 2017; Zampieri
et al., 2017). Compound events are combinations of multi-
ple climate drivers that lead to an extreme impact, without
necessarily being extreme themselves (Leonard et al., 2014;
Zscheischler et al., 2018). Compound events should ideally
be assessed from an impact perspective or the analysis should
at least account for the complexity of weather-impact re-
lations, rather than relying exclusively on extreme weather
states (Zscheischler and Fischer, 2020; van der Wiel et al.,
2020). Dealing with this complexity requires the use of ex-
plicit models (van den Hurk et al., 2015; van der Wiel et al.,
2020), and a common alternative is to use statistical mod-
els to represent compound events. From linear models (Ben-
Ari et al., 2018; Vogel et al., 2021) to deep neural networks
(Crane-Droesch, 2018), statistical models in climate studies

have been successful in linking extreme impacts to weather
and in explaining specific unusual events.

Explaining individual events is part of the event attribu-
tion domain. It aims to determine both the influence of ran-
dom weather and the footprint of climate change in indi-
vidual cases (Trenberth et al., 2015; van Oldenborgh et al.,
2021). Storylines of climatic events that lead to high impacts
may be used to explore complex events, related drivers and
interactions, improving risk awareness and strengthening de-
cision making (Shepherd et al., 2018). Storylines start from
a given impact, be it historical or physically plausible, and
create a physically sound chain of events from the impact
to the driving components (Shepherd et al., 2018). The ad-
vantages of this approach are to quantify and understand the
driving components and the influence of climate change and
also the possibility of perturbing the driving components for
the creation of analogues. Analogues are alternative realisa-
tions of a reference event that are perturbed by hypothetical
conditions. Storylines can naturally embed the complexity of
compound events and offer a framework to explore future
analogues under different global warming scenarios (Shep-
herd, 2019). Since crop failures are usually the result of com-
pound meteorological drivers, storylines can be built from a
historical crop season of interest in order to disentangle the
driving components and to generate analogues of the histori-
cal season under influence of climate change.

There are many recent studies that explore the interactions
between crop and climate (Gawȩda et al., 2020; Zipper et al.,
2016; Heino et al., 2018; Iizumi et al., 2014; Zampieri et al.,
2017; Ogutu et al., 2018). Some have included the possible
impacts of global warming under different scenarios (Rosen-
zweig et al., 2014; Lobell and Tebaldi, 2014; Feng et al.,
2019; Xie et al., 2018). Others aimed to represent the com-
pound nature of crop failures (Ben-Ari et al., 2018; van der
Wiel et al., 2020; Vogel et al., 2021; Hamed et al., 2021; Zhu
et al., 2021). van der Wiel et al. (2020) show the complex-
ity between climate and crops by explicitly modelling the
full distribution of climate impacts on crops with a physi-
cal crop model and large ensembles of climatic data. They
demonstrate that links between extreme weather and extreme
impacts are non-linear and the need for modelling impacts.
Vogel et al. (2021) apply a statistical linear model to auto-
matically identify the most relevant meteorological variables
for simulated extreme impact events in large ensemble crop
data. They conclude that compounding effects are ubiqui-
tous across time and meteorological drivers for crop failures.
Hamed et al. (2021) use a statistical linear model to identify
dominant within season climatic drivers that influence soy-
bean yield variability in the US and highlight the synergistic
effects between summer heat and moisture conditions mod-
ulating the final impact on yields. They find that, in spite of
beneficial summer wetting and cooling in the Midwest re-
gion largely attributed to agricultural intensification, the fre-
quency of damaging joint hot and dry conditions remains
largely unchanged. Ben-Ari et al. (2018) also apply a sta-
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tistical linear model to successfully link climatic conditions
with crop failures, including the identification of an extreme
season that was not detected by the existing forecast mod-
els. Moreover, they individually analyse the trends for each
of the selected meteorological variables for different levels
of global warming. Building on these works, we expand the
studies of global warming impacts on agriculture to include
multivariate analysis by explicitly modelling the compound
nature of meteorological variables and their interactions.

The aim of this work is to understand how global warming
affects the meteorological conditions leading to crop failures.
More specifically, we explain historical soybean failures, ex-
plore possible future analogues and assess changes in the
compound drivers due to rising temperatures. The work is
divided into three parts (Fig. 1): first, we develop a statis-
tical model that links soybean failures generated by a crop
model to local meteorological conditions. We use a non-
linear and non-parametric statistical model (random forest)
that accounts for compound drivers and that allows interpre-
tation of the driving conditions (Fig. 1a). Second, we apply
the model to 6000 years of climate data under different sce-
narios of global warming for failure analysis (Fig. 1b). Third,
we evaluate analogues of the 2012 season in the global warm-
ing scenarios using two different approaches (Fig. 1c). De-
tails on features selection, model training and the setup for
the future analogues, along with the data used for this work,
are presented in Sect. 2. The selected features are shown
in Sect. 3.1, while the performance of the model and the
explanation of the driving components are demonstrated in
Sect. 3.2. The use of large ensembles for global warming sce-
narios and the role of compound events for crop failures are
found in Sect. 3.3, while the exploration of analogues of the
2012 season is shown in Sect. 3.4. The findings are put into
context and debated in Sect. 4, and a summary of the work
with its main messages is presented in Sect. 5.

2 Data and methods

2.1 Weather and crop data

We constructed a random forest (RF) model that identi-
fies relationships between crop development and meteoro-
logical variables during the growing season. For crop data,
we adopted yearly soybean yields (t/ha of dry matter) gen-
erated by the global gridded crop model (GGCM) EPIC-
IIASA (Balkovič et al., 2014), which is based on the Envi-
ronmental Policy Integrated Climate (EPIC; Williams et al.,
1995) field-scale crop model. This GGCM simulates com-
plex relations between weather conditions and crops at plan-
etary scales by reproducing biophysical processes in the soil–
plant–atmosphere system and providing crop-related outputs
based on climate-related inputs. Simulation outputs used in
this study were performed for phase 3a of the Intersectoral
Impact Model Intercomparison Project (ISIMIP; see https:
//isimip.org, last access: 20 June 2021, for details and proto-

Figure 1. Experimental outline for this work. (a) Model training:
the process of training a random forest model to link multiple local
meteorological variables to crop failures. (b) Climate change sce-
narios: the extension of the trained random forest model for global
warming scenarios to predict future soybean failure ratios. (c) Sto-
rylines of the 2012 season: construction of analogues to the 2012
season using two different approaches: the event analogues and the
impact analogues.

cols) and the Global Gridded Crop Model Intercomparison
(GGCMI) initiative. It used as climatic input in the GSWP3-
W5E5 dataset, which is a merger of the GSWP3 (Global Soil
Wetness Project phase 3) dataset (Dirmeyer et al., 2006) and
the W5E5 dataset (Lange, 2019). It captures the period from
1901 to 2016 at a 0.5◦× 0.5◦ resolution. The reasons for us-
ing yields from crop models are the longer time series that
allow for more years to be included in the training of the
statistical model and uniformity of data quality for regions
where there is low quality of observational data. Another ad-
vantage of using simulated crop models is that management
and technology trends are static, whereas they are intrinsi-
cally embedded in the observed yield datasets. Other works
have also adopted simulated yields for climate–crop analysis
(Vogel et al., 2021; Zhu et al., 2021). Details of the EPIC-
IIASA model’s performance can be seen in Folberth et al.
(2016), Müller et al. (2019). We used 100 years of data (1916
to 2016) to train the model and we limited the analysis to grid
cells from the top 10 US soybean producer states, which are
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Table 1. Meteorological variables and their descriptions.

Variable name Description Units

Tmp Mean temperature ◦C
Tmn Minimum temperature ◦C
Tmx Maximum temperature ◦C
Dtr Diurnal temperature range ◦C
Precip Precipitation amount mm/month
Wet Wet days per month days
Vap Vapour pressure hPa
Pet Potential evapotranspiration mm/day
Frs Ground frost days days
Cld Cloud cover %

(ordered by production volume): Illinois, Iowa, Minnesota,
Indiana, Nebraska, Ohio, South Dakota, North Dakota, Mis-
souri and Arkansas. Together, they represent over 70 % of the
US national soybean production and approximately 20 % of
the global soybean production (FAO, 2021). In addition, to
ensure only rainfed soybeans were considered, we selected
only grid cells that contained at least 90 % of the grid as
rainfed, which corresponded to 84 % of the region studied
(MIRCA2000; Portmann et al., 2010). For validation of the
crop model, we compared the EPIC-IIASA simulated yields
with the observed yields from the US Department of Agricul-
ture (USDA, https://www.nass.usda.gov/Quick_Stats/, last
access: 15 August 2021) for the region considered. EPIC-
IIASA has higher mean and standard deviations values than
the observed because the simulated yields are potential (Fol-
berth et al., 2016). To evaluate the interannual variability, we
obtained a coefficient of determination,R2, of 0.674. We also
observed a good correlation between the two standardised
datasets (Fig. C1). We consider EPIC capable of replicating
the interannual variability of the observed data.

For weather data, we used observed data obtained from
the Climate Research Unit (CRU) TS4.04 dataset (Harris
et al., 2020). They have global coverage at a resolution of
0.5◦×0.5◦, cover the period from 1901 to 2019 at a monthly
scale and are based on weather station observations. The
CRU dataset has a comprehensive range of climatic variables
at monthly resolution (Table 1), which makes the dataset suit-
able for agricultural studies, as shown in Kent et al. (2017),
Zhu and Troy (2018), Vogel et al. (2019) and Hamed et al.
(2021).

Because the analysis involves also the exploration of fu-
ture scenarios of global warming (GW), we included large
ensembles of synthetic weather data produced by the global
climate model (GCM) EC-Earth V2.3 (Hazeleger et al.,
2012). As a global coupled climate model, it combines atmo-
spheric, ocean, land surface and sea ice models at a resolution
of 1.125◦× 1.125◦. We used large ensembles of short-time
periods to represent the full range of possible realisations
at different levels of global warming (Van der Wiel et al.,
2019). Three scenarios are considered: a benchmark repre-

Figure 2. Selected grid points for the main producer states and the
mean yields (t/ha) per grid cell as simulated by the EPIC-IIASA
model.

senting the present-day climate of 2011–2015 (referred to as
PD), a 5-year period representing an average global mean
temperature 2 ◦C above the pre-industrial levels (referred to
as 2C) and another 5-year period corresponding to an aver-
age of 3 ◦C above pre-industrial levels (referred to as 3C). To
create the large ensembles for each GW scenario, we com-
bined the 5-year periods with 16 different initial conditions
and 25 different realisations based on stochastic physics. To-
gether, they culminate in 2000 years of different simulations
for each warming level scenario (Fig. C2; see Van der Wiel
et al., 2019, for more information on the ensemble setup).
Finally, we resampled the large ensembles in 20 members of
100 years to be consistent with the length of the historical
dataset (referred to as grouped ensembles hereinafter).

2.2 Data aggregation and detrending

To facilitate the comparison of observed and modelled data,
we first upscaled the CRU and crop model data to the same
resolution of the EC-Earth data with the first-order conserva-
tive remapping method (Jones, 1999). We spatially averaged
all data for the region studied (Fig. 2) to focus on the re-
gional scale of weather events and their crop yield impacts,
as these have larger influence on global markets. Aggregating
data spatially might lead to loss of information, especially on
local extreme conditions, but the RF model performance is
comparable when running on aggregated data and on all grid
points (Table C1).

The setup of this work relies on comparing large uni-
form samples at different levels of global warming. There-
fore, long-term trends in the data needed to be removed. The
yield data from the EPIC-IIASA model have a significant
long-term trend, which is a result of the inclusion of atmo-
spheric CO2 concentration levels in the biomass growth cal-
culation, a process called CO2 fertilisation (Deryng et al.,
2016; Toreti et al., 2020). We regressed the yield data against
the global CO2 concentration levels to remove the long-term
trend (Fig. C3). Here, we explore the probability of soybean
failure, which is defined by means of a threshold, similarly to

Earth Syst. Dynam., 12, 1503–1527, 2021 https://doi.org/10.5194/esd-12-1503-2021

https://www.nass.usda.gov/Quick_Stats/


H. M. D. Goulart et al.: Storylines of weather-induced crop failure events under climate change 1507

Ben-Ari et al. (2018), Vogel et al. (2021), Zhu et al. (2021).
Every season with a yield of 1 standard deviation below the
mean was considered a failure. The meteorological variables
from the CRU dataset were also detrended linearly to remove
global warming influence. This way, we isolated the inter-
annual variability component from long-term trends in both
meteorological variables and crop yield time series.

2.3 Training and validation of the random forest model

We chose a random forest model to detect failures in soybean
yields because of its high performance, flexibility and inter-
pretability. Random forest (Breiman, 2001) is a non-linear
and non-parametric statistical model for classification and
regression. The model consists of an ensemble of indepen-
dent decision trees. The decision trees are each trained on
random subsamples of the data to provide different predic-
tions, and the final estimate of the model takes into consid-
eration all predictions together, accounting for internal vari-
ability. Random forest has become widely popular and is ap-
plied in different fields of science. It presents high accuracy
while providing low overfitting levels (Breiman, 2001) and
is ranked among the best classifiers for real-world problems
(Fernández-Delgado et al., 2014).

The first step in designing the random forest model was the
feature selection. Among the multiple meteorological vari-
ables considered (Table 1), some variables are more relevant
than others in predicting crop failures for the region stud-
ied. There is also a temporal factor, where the importance
of a meteorological variable shows a seasonal cycle. By re-
moving non-relevant variables and months, the data fed to
the random forest model are simplified and the model per-
formance possibly increased. We considered multiple feature
selection methods because there is no universal method, pro-
viding robustness to the selection. The methods are analysis
of variance (ANOVA) (Anderson, 2001), mutual information
selection (Kraskov et al., 2004), the χ2 test and the inter-
nal feature selection of the random forest model (Breiman,
2001). At the end of the feature selection step, we obtained
the most important meteorological variables to soybean fail-
ures.

Random forest models require the tuning of internal pa-
rameters for an optimal performance. We tuned the random
forest’s parameters following a resampling technique called
cross-validation. It consisted of dividing the data in 10 dif-
ferent splits, where nine splits are used to train the model
and the remaining one is used for validation. The process
is run 10 times so that every split is used once for testing.
In addition, this process was repeated five times with differ-
ent random divisions, leading to 50 runs in total. The final
configuration of the RF parameters can be seen in Table C4.
Because the crop yield dataset has less failure seasons than
non-failure seasons, the dataset is imbalanced, affecting the
model’s capacity in identifying the minority class. To address
this issue and improve the model performance, we assigned

weights to the predictions of each class with values inversely
proportional to their frequency. This increases the penalties
for underrepresentation of the minority class, balancing the
model.

With the RF setup complete, we trained and validated the
RF model on the historical data following a 80/20 split,
where 80 % of the data were used to train the model and
the remaining 20 % were used to validate the model’s per-
formance on unseen data. Whilst non-parametric and non-
linear models like random forests tend to achieve higher per-
formance than simpler linear models, their complexity ren-
ders it more difficult to interpret the outcomes. We included
partial dependence plots in the analysis. Partial dependence
plots illustrate how model outputs vary according to alter-
ations in one or more inputs, while preserving other inputs
values (Friedman, 2001). These plots make the random forest
model more interpretable and demonstrate the interactions
between meteorological variables and crop yields.

In order to evaluate the random forest performance, we
used the Matthews correlation coefficient (MCC) metric on
the validation data. It is considered more informative and
truthful for the evaluation of binary classification models
than other metrics (Chicco and Jurman, 2020). The MCC
assesses the performance of the model by quantifying the
number of true positives (TPs), the number of true negatives
(TNs), the number of false positives (FPs) and the number of
false negatives (FNs), as illustrated in Eq. (1). It ranges from
−1 to 1, and a score of 0 is equivalent to a random prediction.
The model requires both positive data and negative data to be
correctly predicted to have a high score, which makes it par-
ticularly useful for imbalanced datasets (Chicco and Jurman,
2020). For a comprehensive overview of the model perfor-
mance, we included additional performance metrics, which
are accuracy, precision, recall and F1 score. They can be seen
in Appendix A.

MCC=
TP ·TN−FP ·FN

√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

(1)

We compare the random forest’s performance to
threshold-conditioned methods, which are frequently used
for multivariate risk assessment (Serinaldi, 2016; Salvadori
et al., 2016; Zscheischler and Seneviratne, 2017). Two cases
are adopted here: the “AND” and the “OR” cases. The
“AND” case requires all variables to be equal to or above
hazard limits simultaneously for the failure definition. The
“OR” case considers at least one of the conditions surpass-
ing the limit to classify as failure (Salvadori et al., 2016).
The threshold values for this work were defined as the av-
erage conditions of failure seasons in the observed data for
each variable minus the corresponding standard deviation of
that variables across the sample of failure seasons.
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2.4 Exploration of global warming scenarios

To explore soybean failures at different levels of global
warming, we used large ensembles of meteorological data
from the EC-Earth model. The large ensembles have the ad-
vantage of explicitly simulating extreme events that would
not be found in smaller datasets due to their rare nature
(Van der Wiel et al., 2019). Because the RF model relies on
thresholds that may be exceeded more or less frequently in
biased climate model data, bias corrections were applied for
the analysed regions. We estimated adjustment factors be-
tween the detrended CRU dataset between 1916 and 2016
and the PD scenario. Bias adjustment factors were calculated
with Detrended Quantile Mapping (Cannon et al., 2015),
considering 25 degrees of freedom. The adjustment factors
were then applied to the scenarios 2C and 3C, assuming a
constant bias (see Fig. C4 for bias correction results for each
scenario and Fig. C5 for spatial variability of corrected bias).

To assess the importance of the correlation of the con-
ditions leading to failures, we created permuted versions
of each large ensemble by randomly reshuffling the me-
teorological variables (van den Hurk et al., 2015; San-
tos et al., 2021), so that the correlation structure between
them was removed (referred to as shuffled versions). We
also defined a metric called the relative compound contri-
bution. Relative compound contribution measures the im-
portance of the correlation structure between the meteoro-
logical variables leading to crop failures. It is a statistical
interpretation comparing crop failures under different cor-
relation structures. Relative compound contribution is cal-
culated as the ratio of the failure ratio obtained with the
original data to the failure ratio obtained with the shuf-
fled data, Relative compound contribution= Failure ratiooriginal

Failure ratioshuffled
.

The closer to 1 the relative compound contribution gets, the
less important the correlation structure between the variables
is. For scenario exploration in this study, we use six scenar-
ios: PD, PD shuffled, 2C, 2C shuffled, 3C and 3C shuffled,
each of which was fed into the RF model to obtain the soy-
bean failure probabilities. We assessed the impact of climate
change by comparing the failure probabilities for different
return periods (calculated as the inverse of the exceedance
probability of the specific event to occur) for the PD, 2C
and 3C scenarios. Then, we quantified the relative compound
contribution by comparing each level of global warming with
their shuffled variants. Finally, we compared the RF model
with the threshold-conditioned methods to account for dif-
ferences in the approaches to predict changes with global
warming and to quantify the relative compound contribution.

Machine learning algorithms do not extrapolate well for
data outside the training range (Hengl et al., 2018). Given
the random forest model in this work is trained on histor-
ical conditions but applied to GW scenarios, we tested the
influence of data outside the training range in the analysis
following a three-step test: (1) identify the number of cases
outside the training range for each meteorological variable;

(2) restrict the values outside the training range to be within
the training range; (3) quantify possible differences and in-
consistencies in the results between the data before and after
the conversion of values outside the training data range (see
Appendix B for more information).

2.5 Development of storylines

Storylines were here used to identify the driving components
of a historical extreme event and to generate future analogues
based on the same event. The 2012 soybean season is our
case study, which presented extremely low yields across the
main producing regions of the United States. We first veri-
fied whether the trained RF model was able to correctly pre-
dict 2012 as a failure event and the failure probability as-
signed to it. To explore the possible analogues of the 2012
season in warmer scenarios, we took two approaches based
on the event definition: (1) the first approach was based on
the physical conditions that led to the 2012 extreme event,
defined here as “event analogues”. We quantified the joint
occurrences of meteorological conditions exceeding the 2012
season conditions in the global warming (GW) scenarios; (2)
the second approach was based on the impact metric of the
event, its yield failure probability estimated by the random
forest model, and we defined this approach as “impact ana-
logues” (as, e.g. in Van der Wiel et al., 2019). Using this
approach, we quantified the number of seasons in the GW
scenarios with equal or higher failure probability predicted
by the random forest model. Last, we compared the 2012
season meteorological conditions with the mean meteorolog-
ical conditions of impact analogues to account for possible
changes in the physical aspects of the future analogues.

3 Results

3.1 Feature evaluation and selection

Following the methods section, the first step to build a ran-
dom forest model is the feature selection. The four feature
selection methods (Table C2) show potential evapotranspira-
tion, diurnal temperature range, monthly maximum temper-
ature and precipitation as the most important features. The
considered soybean season in the US ranges from May to Oc-
tober, and we see that the months with the highest sensitivity
to meteorological conditions are July and August (Fig. C6).
The two months correspond to the reproductive phase of soy-
beans in the region studied (Bastidas et al., 2008; Hatfield
et al., 2018), which is a vulnerable crop stage to weather
stress (Hatfield et al., 2011; Siebers et al., 2015; Hatfield and
Prueger, 2015; Hamed et al., 2021). Based on this, we test an
alternative version of the meteorological variables limited to
July and August and aggregated along the two months. Re-
sults show the aggregated data outperform the monthly data
(Table C3). We therefore adopt for this study the aggregated
version of the meteorological variables along July and Au-
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gust and compare them to their climatology to identify gen-
eral features (Fig. 3). Failure years are warmer, have lower
levels of precipitation and fewer wet days, larger daily tem-
perature range, higher levels of potential evapotranspiration
and lower fractions of cloud cover when compared to the cli-
matology. Vapour pressure and ground frost frequency do not
show significant differences between normal and failure sea-
sons, so they are removed from the model training.

The remaining meteorological variables have high corre-
lation levels between themselves, as seen in Fig. 3b. To sepa-
rate which correlations have statistical redundancy and which
have not, we examine each meteorological variable individu-
ally. Among the monthly temperature variables, mean (tmp),
minimum (tmn) and maximum (tmx) temperature variables
are highly interconnected. Tmx shows the best performance
among the three variables, so we select tmx as the representa-
tive of temperature variables. Monthly precipitation and wet
days per month are also highly interconnected, but their per-
formance is similar. As precipitation is a precursor of wet
days per month in the CRU dataset (Harris et al., 2020),
monthly precipitation is selected. Potential evapotranspira-
tion exhibits high correlation values to all other variables be-
cause potential evapotranspiration is derived from tempera-
ture, vapour pressure and cloud cover (Harris et al., 2020).
Therefore, we consider potential evapotranspiration redun-
dant for this specific experiment. Finally, the three variables
selected are maximum monthly temperature, precipitation
and diurnal temperature range. They still have considerable
levels of correlation, but these have a physical meaning, high-
lighting the compound nature of meteorological variables
leading to crop failures in the region.

3.2 Random forest model evaluation

To evaluate the performance of the random forest (RF) model
to link meteorological variables to crop yield failures, we use
the Matthews correlation coefficient (MCC) metric (Eq. 1)
and compare the results with the “AND” and “OR” threshold-
conditioned approaches for reference. The RF model has the
highest MCC score at 0.61, while the “AND” approach has
0.54 and the “OR” method only 0.34. The random forest
model also performs better than the other methods in the ad-
ditional metrics as seen in Fig. C7. Therefore, the RF model
is successful to link inputs with outputs and outperforms the
threshold-conditioned methods.

Partial dependence plots (Fig. 4) explore which variables
contribute to successfully distinguish between failure and
non-failure conditions. They show the relationships between
the meteorological variables’ perturbations and crop fail-
ure probability. For the selected time period, crop failures
are proportional to diurnal temperature range and maximum
temperature. Precipitation shows a general inverse propor-
tion to crop failure probability, suggesting low values of
precipitation to increase failure probability, as indicated by
Fig. 4. Soybean failures in the region studied are thus associ-

ated with high levels of monthly maximum temperature, high
levels of diurnal temperature range and low levels of precip-
itation. Furthermore, we observe that the links between crop
failures and the meteorological variables are non-linear.

The random forest model manages to successfully link
weather conditions with crop failures, to capture the com-
plexity of the failure, including non-linear relationships, and
to outperform the approaches “AND” and “OR”. The success
in reproducing crop failure impacts from combinations of
weather features for the historical datasets makes the model
suitable to explore different climate scenarios.

3.3 Scenario exploration

The trained and validated random forest model is applied
to the grouped ensembles to estimate crop failure probabil-
ities for different global warming scenarios. First, we deter-
mine if the crop failure probabilities obtained for the present-
day (PD) scenario is consistent with the historical data from
EPIC-IIASA (Fig. 5a). The width of the grouped ensemble
(shading) indicates the many possible manifestations due to
natural variability. The observed data are just a single real-
isation over that period, and we see the observed data are
within the range of the ensemble. For the estimation of global
warming influence on crop failure probabilities, we quantify
the return periods of failure probabilities for the PD, 2C and
3C scenarios (Fig. 5b). The 2C scenario shows increased fail-
ure probabilities for any given return period with respect to
the PD scenario, while the 3C scenario shows slightly higher
failure probabilities than the 2C scenario. Global warming is
therefore likely to increase the occurrence of soybean fail-
ures, but the difference between 2C and 3C is not significant.

The relative compound contribution is quantified by con-
sidering two versions of data arrangement: original (ordered)
and shuffled (unordered, no correlation between variables).
Figure 6 presents the crop failure probabilities for different
return periods. In all scenarios, the return periods for the
0.5 failure probability threshold are shorter for the original
data than for the shuffled data. Thus, the combination of the
meteorological variables is relevant for the failure likelihood
of soybeans (e.g. low precipitation concurs with above aver-
age temperatures), which highlights the compound nature of
the crop failure drivers. For the 2000 years of data in each
scenario, the RF model predicts 276 failure seasons for the
PD original data, whereas the shuffled version has 63 fail-
ure seasons predicted. The failure seasons for the 2C original
and shuffled data are, respectively, 616 and 241 seasons, and
for the 3C scenario, 621 and 353 seasons. Thus, while the
number of failure seasons increases with global warming for
the original data, the increase in the number of failure sea-
sons for the shuffled data is larger. A reduction in the rela-
tive compound contribution for the 2C and 3C scenarios sug-
gests the correlation structure between meteorological vari-
ables becomes less relevant for our definition of crop failure.
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Figure 3. (a) Probability distribution function of monthly values for meteorological conditions of soybean seasons with (red) and without
(blue) failures for maximum monthly temperature (tmx), precipitation (precip), diurnal temperature range (dtr), vapour pressure (vap), po-
tential evapotranspiration (pet) and cloud cover (cld). Numbers 7 and 8 indicate the months of July and August, respectively. (b) Pearson’s
correlation matrix indicating the correlation levels for meteorological variables aggregated along July and August, and crop yields.

We demonstrate the changes in the physical conditions for
failure and non-failure seasons at each scenario (Fig. 7 for 3C
and Fig. C8 for 2C). Median temperature values along July
and August of failure years increase by 1.1 ◦C for 2C and
2.6 ◦C for 3C. Median precipitation values of failure years
show little change, slightly increasing by 2.4 mm/month for
2C and 0.18 mm/month for the 3C compared to PD. Me-
dian diurnal temperature range values of failure years show
a slight decrease of 0.33 and 0.36 ◦C for 2C and 3C scenar-
ios, respectively. Despite median values of precipitation not

changing significantly, we see an increase in the failure rate at
the low end of the rainfall distribution for 2C and 3C (Fig. 7a
top). Together with temperature extremes, the results suggest
more frequent and intense joint warm and dry conditions in
the future (Fig. 7a). However, we see also an increase in the
failure distribution at higher (and thus less critical) precipita-
tion levels for both 2C and 3C than for PD. A similar pattern
is observed for the diurnal temperature range values, where
less critical levels of DTR still incur failures (Fig. 7b). Ex-
treme temperature values dominate the failure probability at
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Figure 4. Partial dependence plots showing the failure probabil-
ity (0 to 1.0) given the variation of the meteorological variables,
monthly maximum temperature (temperature), diurnal temperature
range and monthly precipitation (precipitation) along the months of
July and August.

warmer levels, which reduces the need for other variables
to be extreme as well to generate failures. Therefore, the
univariate increase in the temperature values due to global
warming is associated with the increase of soybean failure
ratios and with the decrease of the relative compound contri-
bution.

We compare the RF model with the “AND” and “OR”
approaches to account for differences in the approaches in
quantifying the relative compound contribution and the pre-
dicted changes with global warming. The “AND” approach
shows the lowest ratio of failure for both original and shuf-
fled data (Fig. 8a) but also the highest levels of relative com-
pound contribution (the difference between ordered and per-
muted datasets, Fig. 8b). The “OR” approach only requires
one critical variable for failure definition, which implies the
highest failure ratios (Fig. 8a). Moreover, breaking the cor-
relation structure and shuffling the meteorological variables
for this approach means increasing the number of failure sea-
sons, which implies relative compound contribution has a de-
creasing role. Finally, the random forest model predicts an
intermediate number of failure seasons. The RF model sug-
gests relative compound contribution as an enhancing factor
for crop failures (in contrast to the “OR” method) but not as
much as suggested by the “AND” model (Fig. 8a). Because
the RF model presented the highest performance scores pre-
viously, we consider it to be the most reliable in quantify-
ing relative compound contribution, while the others either
underestimate or overestimate the importance of compound
structure for crop failures. Nevertheless, all three methods
agree that relative compound contribution loses importance
under warmer scenarios, trending towards a level of 1.0 (no
relative compound contribution, Fig. 8b).

The extrapolation test indicates all three meteorological
variables in the climate projections have values outside the
training range, with temperature extremes exceeding the his-
torical range as the most frequent case of extrapolation. How-
ever, the conversion of values outside the training range into

values within the training range does not change the results
obtained. This is because the model is a binary classifier,
and the failure is defined within the historical data. Unprece-
dented extreme values do not change the failure definition,
as it follows the assumption that values outside the training
range are similar to the extremes in the training range (see
Appendix B for further information). With the extrapolation
test demonstrating that values outside the training range do
not affect the results, the impacts of different levels of cli-
mate change on soybean failure probability in the region are
validated. Next, we investigate if these general conclusions
also hold for specific cases like the extreme 2012 season us-
ing a storyline approach.

3.4 Storyline analysis: the 2012 season and future
analogues

The year 2012 had an extreme loss in US soybean produc-
tion, with exceptionally low yields in the majority of the pro-
ducing region (Fig. 9a). We test the random forest model for
the 2012 season to identify the meteorological variables asso-
ciated with the failure event. The season stood out as all three
selected meteorological variables presented extreme values
(Fig. 9b), with precipitation approximately at −2 SD (stan-
dard deviations), temperature above 2 SD and DTR scoring
the highest recorded value exceeding 3 SD. When used to
predict the probability of crop failure due to the meteoro-
logical conditions described above, the RF model indicates a
0.96 likelihood of the 2012 season to be a failure.

We create 2012 season analogues using both impact and
event perspectives. Event analogues are defined as the joint
occurrences of the 2012 climatic conditions (as in Fig. 9b),
while impact analogues are defined as the number of seasons
with failure probability assigned by the random forest model
as equal or higher than the probability of the 2012 season
(i.e. probability >=0.96). The event analogues have a oc-
currence ratio of 0.0015 (three events in 2000 years, 666-
year return period) for both PD and 2C scenarios, but it is
not seen in the 3C scenario (Fig. C9), suggesting a highly
rare event that does not increase with global warming. How-
ever, we find a higher ratio of 2012 impact analogues for the
PD scenario, 0.022 (44-year return period), 14 times the PD
event analogues. Impact analogues also increase in frequency
at warmer scenarios, 0.038 (26-year return period) for 2C and
0.042 (24-year return period) for 3C. The difference in re-
sults between the two types of analogues is mainly due to the
DTR values, illustrated by Fig. 10a–c, which show the ratio
of exceedance (the frequency of seasons exceeding a given
threshold) of the 2012 meteorological conditions for each
variable individually. Event analogues require all variables to
exceed the corresponding 2012 conditions. While we observe
an increase in the number of seasons with temperature and
precipitation exceeding the 2012 conditions in global warm-
ing scenarios, DTR does not increase with GW. Therefore,
DTR becomes a bottleneck in the generation of event ana-
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Figure 5. (a) Random forest model failure probabilities for different return periods, comparing observed data (black) to the PD scenario
(blue). (b) Return periods for PD (blue), 2C (orange) and 3C (pink). Dots show the 20-member mean; shading shows the range across the
20 members. The dashed line represents the failure probability of the 2012 season predicted by the RF model (Sect. 3.4).

Figure 6. Random forest model failure probabilities for different return periods, based on original data (variable correlations as normal,
blue) and shuffled data (variable correlation removed, orange) for three climatic periods: (a) present-day, (b) pre-industrial +2C warming
and (c) pre-industrial +3C warming. Dots show the 20-member mean; shading shows the envelope of variability for the grouped ensemble.

logues. Impact analogues, on the other hand, are predicted
to increase with global warming because they are defined
based on the impact metric (failure probability) and bypass
the DTR limitation. In addition, by relying on the impact
metric, the meteorological conditions of the analogues can
be analysed for changes due to global warming (Fig. 10d–
f and C10). The impact analogues of the year 2012 show
warmer temperatures during summer with respect to the orig-
inal event. For precipitation, the analogues are significantly
drier than those in the year 2012 during July and August, the
months in which the RF model takes into account. Finally,
the analogues present lower DTR values during most of the
year.

4 Discussion

A large portion of crop failures is attributed to combinations
of meteorological drivers (Zampieri et al., 2017; Zscheischler
et al., 2017) and the interactions between weather and crops
are known to be non-linear (Schlenker and Roberts, 2009;
Zscheischler et al., 2017). It is a challenge, therefore, to iden-
tify the variety of combinations of weather conditions that
can lead to crop failures. We argue that a model explicitly
designed based on the impact, here crop failure, allows the
conversion of a multivariate problem into a univariate vari-
able, which simplifies the analysis, and improves the qual-
ity of results (van der Wiel et al., 2020). The random for-
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Figure 7. Kernel density estimate plots for seasons with and without failures at different GW scenarios: (a) for maximum monthly tempera-
ture and precipitation and (b) temperature and diurnal temperature range.

Figure 8. (a) The failure ratios for ordered and shuffled PD data for the three approaches: AND, OR and RF with respect to the failure ratio
of observed data; (b) relative compound contribution level (original failure ratio divided by shuffled failure ratio) of each approach for the
GW scenarios.

est model here developed is successful at predicting soybean
failure seasons and shows an overall better performance than
benchmark methods. It adds to the list of works that demon-
strate the usefulness of impact-inspired approaches (Ben-Ari
et al., 2018; Vogel et al., 2021; van der Wiel et al., 2020;
Hamed et al., 2021; Zhu et al., 2021). The feature selection
process used here combines machine learning with findings
from the literature to identify compound drivers of soybean
failures in the US. Temperature, precipitation and diurnal
temperature range along July and August are deemed key cli-
matic drivers in the region studied. The meteorological vari-
ables identified in this work are in agreement with the work

of Vogel et al. (2021), which also shows temperature, pre-
cipitation and DTR to be important meteorological variables
for crop development, and with the work of Hamed et al.
(2021), which highlights the harmful combination of hot and
dry conditions along summer for soybeans in the same re-
gion. This work considers only meteorological variables dur-
ing the growing season of rainfed soybeans, so management
practices, irrigation and subsurface conditions are not con-
sidered. The meteorological variables are at a monthly scale,
which has been used in past studies as well (Ben-Ari et al.,
2018; Vogel et al., 2019; Hamed et al., 2021). However,
adopting shorter timescales could lead to additional informa-
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Figure 9. (a) Map of the yield anomaly for the 2012 season
compared to the averaged historical yield data from EPIC-IIASA.
(b) Normalised meteorological variables for the observed dataset
and the corresponding 2012 season climatic conditions.

tion on how weather interacts with crops. We spatially ag-
gregate the climate and crop data over the region analysed to
focus on crop failures and meteorological conditions at the
regional scale. While this approach allows us to analyse the
main dynamics of the region, information on local extreme
conditions is not attained. Another caveat is that we do not
account for CO2 concentrations, due to our focus on year to
year variability. Yet, CO2 fertilisation is an important factor
when considering crop–climate interactions and when look-
ing at the effects of future climate change (Schlenker and
Roberts, 2009; Deryng et al., 2016; Toreti et al., 2020).

Even though extrapolation with statistical models carries
risks (Hengl et al., 2018), there are works that train statistical
models on historical data and apply them on global warming
scenarios (Schlenker and Roberts, 2009; Roberts et al., 2017;
Crane-Droesch, 2018; Zhu et al., 2021). The random forest
model used here is a classifier trained to detect a class of fail-
ure events determined by the historical dataset. The decision
trees within the random forest are threshold based, so val-
ues outside the training range are categorised together with
historical extremes. Furthermore, the purpose of the work is
to measure the frequency of historical failures and analogues
under future conditions, instead of quantifying the magnitude
of failures under unprecedented extreme conditions. Finally,

we run a extrapolation test and results show no influence
of values outside the training data range in the results (Ap-
pendix B). Together, these factors validate the application of
the random forest model for global warming scenarios under
these assumptions.

We use three large ensembles with different levels of
global mean surface temperature to investigate the influ-
ence of climate change on crop failure probabilities. Soybean
failures increase in frequency for both 2 and 3 ◦C warmer
worlds. When compared to the literature, some works sup-
port future global warming negatively affecting soybeans
in the Unites States (Schlenker and Roberts, 2009; Deryng
et al., 2014; Schauberger et al., 2017; Zhao et al., 2017),
while others indicate that soybeans in the same region could
actually benefit from climate change due to an intensification
of local rainfall (Lesk et al., 2020). In the EC-Earth runs,
we see a drying trend for extreme years in the midwestern
United States (Fig. 10d), which explains the different results.
Dynamical aspects of global warming have large uncertain-
ties due to high internal variability (Fischer et al., 2014), and
the ensemble of CMIP6 models does not show significant
changes for the months of July and August in the region
studied (Almazroui et al., 2021). The adoption of different
global climate models and the evaluation of climate change
impacts conditioned on storylines of different levels of pre-
cipitation are alternatives that could explain the discrepan-
cies seen above and should be further explored in the future.
Furthermore, we do not consider potential adaptation mea-
sures by farmers such as the expansion of irrigation systems
to counteract any possible drying trends.

Our results show climate change is expected to impact
both univariate and multivariate components of crop fail-
ure. From a univariate perspective, temperature is expected
to increase significantly, contributing to more frequent fail-
ures. In a warmer world, the same levels of precipitation lead
to higher rates of crop failures than under the current cli-
mate conditions. The DTR projections indicate a descending
trend, which in itself reduces crop failure probability accord-
ing to our model. DTR is highly relevant for crop develop-
ment, with previous studies showing the multiple impacts it
can have on crops (Lobell, 2007; Zhang et al., 2013; Chen
et al., 2015; Verón et al., 2015; Hernandez-Barrera et al.,
2017; Rahman et al., 2017; van Etten et al., 2019). High
values of DTR suggest peaks in high daytime temperature,
which can disrupt the photosynthetic activity of crops (Al-
lakhverdiev et al., 2008). High values of DTR can also indi-
cate low nighttime temperatures or night frosts, with capac-
ity to damage crops during all stages of crop growth (Barlow
et al., 2015). A study based on EPIC to simulate maize yields
in the US has demonstrated that higher DTR values lead to
greater evapotranspiration losses, reducing the yield outputs
(Dhakhwa and Campbell, 1998). On the other hand, low val-
ues of DTR could indicate low solar radiation or high cloud
coverage, both harmful for crops (van Etten et al., 2019; Vo-
gel et al., 2019; Lobell, 2007). The decrease in DTR values
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Figure 10. Radar graphs showing the number of seasons exceeding the 2012 values for each meteorological variable for present-day (a),
2 ◦C global warming scenario (b) and 3 ◦C global warming scenario (c) scenarios. Annual cycle of the historical years, the 2012 season,
the impact analogues and their corresponding climatology for maximum monthly temperature (d), precipitation (e) and diurnal temperature
range (f). Coloured shadings represent the 95 % confidence interval for each scenario. The vertical grey bar represents the months considered
in the training of the RF model.

due to global warming is mainly associated with a higher in-
crease of minimum nighttime temperature than daytime tem-
perature (Qu et al., 2014; Sun et al., 2019). From a multi-
variate perspective, the correlation structure of the variables
contributes to the occurrence of compound events, as pre-
viously shown by (van den Hurk et al., 2015) and (San-
tos et al., 2021). Yet, we observe a decrease in its impor-
tance under global warming conditions for the failure yield
threshold adopted here (Fig. 6). A higher frequency of years
with critical temperature during summer makes crop failures
mostly dependent on precipitation values. Therefore, while
still physically a compound event, the soybean failures under
global warming become statistically similar to a univariate
event based mostly on precipitation.

The random forest model defines the year 2012 as a highly
likely failure season. That year, the climatic conditions dur-
ing the reproductive phase of the crop were dry and hot, and
had a particularly high diurnal temperature range. When con-
sidering the event analogues, i.e. looking at the event given
its meteorological specifics, results show the 2012 season to
be particularly rare and unlikely to increase in frequency due

to climate change in the projections considered herein. Yet,
when assessing the impact analogues, defined as the likeli-
hood of events with a similar failure probability using the
random forest model, more events are identified in the PD
scenario compared to the event analogues. Furthermore, we
find that significant increases are predicted for warmer sce-
narios. The differences between event analogues and impact
analogues reflect the concept behind each approach. Event
analogues are based on the physical conditions of the event
and obtained by quantifying the joint occurrence of these
conditions in the ensembles. Impact analogues, on the other
hand, are based on the impact metric, accounting for all com-
binations of weather that lead to the same failure probability
of the 2012 season. This difference between an event-based
and impact-based approach was also highlighted by (van der
Wiel et al., 2020). In spite of the exceptionally high DTR
value for the 2012 season, the GW scenarios show decreasing
DTR values with respect to the mean temperature increase.
This evidence is supported by the literature, suggesting DTR
is inversely proportional to global warming (Qu et al., 2014;
Sun et al., 2019). Lower DTR values therefore constrain the
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increase of 2012 event analogues, even though the other two
meteorological variables show a significant increase. Since
the random forest is able to explicitly account for the impact
of the 2012 season, it detects other possible combinations of
meteorological variables leading to 2012 impact analogues.
Furthermore, impact analogues of the 2012 season in the fu-
ture display a change in their physical properties: they are
hotter and drier but with lower values of diurnal temperature
range. Results highlight the importance of the inclusion of
impact analogues in storylines creation. Storylines have been
commonly used to generate counterfactuals by reproducing
similar physical events to historical ones, adopting an event-
inspired perspective (Shepherd, 2019; Sillmann et al., 2020).
However, storyline counterfactuals (Shepherd et al., 2018)
could profit from also explicitly considering the impact per-
spective, as we have shown with the impact analogues cre-
ated with the random forest model to directly model crop
failures. The inclusion of the impact perspective into story-
lines allows for a more comprehensive view of future realisa-
tions when compared to considering only the occurrence of
similar physical events. Note that for society it is the impacts
that matter, rather than the meteorological condition. Further-
more, using impact analogues allows for the estimation of
possible changes in the physical characteristics of analogues
due to global warming, increasing the robustness of climate
risk assessment for future scenarios.

5 Conclusions

This work presents an evaluation of the impacts of global
warming on weather-induced soybean failure events. Its nov-
elty lies in combining a statistical model capable of simulat-
ing non-linear and compound interactions, the random forest
model, with large ensembles of future global warming sce-
narios. The steps to create the model are the selection of the
most important meteorological variables during the growing
phase of the crop and the training of the model on histor-
ical data. We explore the influence of global warming on
soybean crop failure with the use of large ensembles at dif-
ferent levels of global warming. The model is successful at
identifying failure seasons in the historical data and select-
ing the most relevant meteorological variables for crop fail-
ures. When compared to two benchmark methods, the model
presents an overall better performance.

The main findings of the paper suggest soybean failures
in the midwestern United States are likely to increase with
global warming mainly due to warmer atmospheric con-
ditions during summer. With more frequent warmer years,
the joint hot–dry conditions leading to crop failures be-
come more common. Conversely, the increase in frequency
of warmer years renders the occurrence of joint hot–dry ex-
tremes more dependent on summer precipitation anomalies,
reducing the importance of the relative compound contribu-
tion. With global warming, the crop failures approximate sta-

tistically to a more univariate behaviour, despite still being
physically the results of compound events. Estimations of fu-
ture analogues of the 2012 season diverge according to the
approach used. If considering the event-inspired threshold-
conditioned method, event analogues are deemed extremely
rare and do not increase in likelihood with global warming.
However, when using the impact-inspired model here devel-
oped, we show that impact analogues are actually more com-
mon than what was originally predicted by the threshold-
conditioned method, and the number of analogues is ex-
pected to significantly increase with warmer climates. More-
over, we observe changes in the physical properties of the
impact analogues under global warming, becoming warmer
and drier, but with lower diurnal temperature range levels.
Impact analogues complement event analogues, improving
the risk estimation of storylines.

Appendix A: Additional performance metrics

To provide robustness to the performance analysis, additional
performance metrics were used to evaluate the model. Accu-
racy quantifies the amount of TPs and TNs out of the total
data (that is, the true data plus FPs and FNs (Eq. A1). Pre-
cision defines the fraction of TP cases out of the total pre-
dicted positive cases by the model (Eq. A2). Recall measures
the correct fraction of positive cases out of the true positive
cases (Eq. A3). The F1 score is a metric used to address false
positives and negatives (Eq. A4).

Accuracy=
TP+TN

TP+TN+FP+FN
(A1)

Precision=
TP

TP+FP
(A2)

Recall=
TP

TP+FN
(A3)

F1=
2TP

2TP+FP+FN
(A4)

Appendix B: Extrapolation test

Machine learning algorithms have the drawback of not ex-
trapolating well for data outside the training range. However,
there are works that use the extrapolation technique to pre-
dict crop impacts under global warming scenarios with sta-
tistical models (Schlenker and Roberts, 2009). Yet, the setup
of the experiment is to quantify the number of failure events
in global warming scenarios based on failures already identi-
fied in the historical data. The presence of values outside the
training data range might not affect the random forest model,
because the same failure probabilities are assigned to these
values as to the closest values in the training range (corre-
sponding maximum and minimum values). This is due to the
decision trees that compose the random forest. The decision
trees divide the input space using thresholds, which group
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similar input values together. Values outside the training data
are grouped together with the corresponding extreme values
within the training data, because they are within the same in-
put space according to the decision tree (lower or higher than
a threshold value). We verify the validity of the experiment
with an extrapolation test based on three steps: (1) identify
the number of cases outside the training range for each me-
teorological variable; (2) convert the values outside the train-
ing range into the closest values within the training range;
(3) quantify differences and inconsistencies in the results be-
tween the GW scenarios before and after the conversion.

Table B1. Number of years with values above the historical maximum (“above”) and below the historical minimum (“below”) for each of
the GW scenarios (PD, 2C and 3C). Each scenario has 2000 years in total.

PD PD 2C 2C 3C 3C
above below above below above below

Temperature in July and August 2 0 103 0 607 0
DTR in July and August 3 14 3 34 0 97
Precipitation in July and August 5 26 13 48 10 91

Figure B1. (a) Random forest model failure probabilities for PD (blue), 2C (orange) and 3C (pink); panel (b) is the same as (a) but for
values adjusted to the training data limits. Dots show the 20-member mean; shading shows the range across the 20 members. The dashed line
represents the failure probability of the 2012 season predicted by the RF.

The number of events in each GW scenario that is outside
the training range is shown in Table B1. After the conversion
of values outside the training data range into values within
the training data range, the results stayed the same for all
scenarios (Fig. B1). We assume the presence of values out-
side the training range does not influence the results obtained
with the random forest model.
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Appendix C: Additional figures

Figure C1. Standardised comparison between the EPIC-IIASA simulated yields and the observed yield dataset of the USDA (United States
Department of Agriculture) for the region considered in this work.

Figure C2. The distribution of mean yearly temperatures in the midwestern United States of EC-Earth ensembles for the present-day scenario
(blue), 2 ◦C global warming scenario (2C, orange) and 3 ◦C global warming scenario (3C, green) scenarios.
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Figure C3. Time series of averaged US soybean yields for the selected area (dotted black line) and its detrended counterpart (blue). The
2012 season is highlighted in red. The regression trend based on the global CO2 levels that is used to detrend the soybean yields is shown in
green.

Figure C4. Mean annual cycle for the selected variables: temperature (a, b, c), DTR (d, e, f) and precipitation (g, h, i). Panels (a), (d), (g)
presents the observed data (black), the original EC-Earth PD data (blue) and the EC-Earth after bias correction (dashed red). In panels (b), (e),
(h) and (c), (f), (i) the bias-corrected EC-Earth data for the present-day scenario (PD, dashed red) is then compared with the bias-corrected
versions of the 2 ◦C (2C, b, e, h, orange) and 3 ◦C (3C, c, f, i, green) scenarios.
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Figure C5. Spatial variability of bias-corrected values between observed data and EC-Earth PD scenario for (a) monthly temperature values,
(b) DTR and (c) precipitation.

Figure C6. Coefficient of determination between soybean yields and all meteorological variables considered in this study grouped by month
of the growing season.

Figure C7. Evaluation of each approach in identifying crop failures for the observed data under different performance categories: accuracy,
precision, recall, F1 and MCC. The approaches are AND (blue), OR (orange) and RF (green).
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Figure C8. Same as Fig. 7 but for the 2C scenario.

Figure C9. Event analogues (blue) and impact analogues (green) of the 2012 season for each GW scenario: present-day (PD), 2 ◦C (2C) and
3 ◦C (3C) scenarios.
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Figure C10. Same as Fig. 7 but for the 2012 impact analogues.

Table C1. Comparison of the random forest model performance
between spatially aggregated data over the region studied and the
gridded spatial format, considering all grid points.

Spatial format Accuracy Precision Recall F1 MCC

Aggregated 0.9 0.67 0.67 0.67 0.61
Gridded 0.88 0.62 0.82 0.7 0.64

Table C2. Rank of the most important features for different fea-
ture selection methods along the entire soybean growing season:
ANOVA, mutual information selection, random forest classifier and
χ2. Variables considered are maximum monthly temperature (tmx),
precipitation (precip), diurnal temperature range (dtr), vapour pres-
sure (vap), potential evapotranspiration (pet) and cloud cover (cld).
Numbers 7 and 8 indicate the months of July and August, respec-
tively.

Method 1st 2nd 3rd 4th 5th

ANOVA pet_8 dtr_7 pet_7 tmx_8 tmx_7
χ2 pet_8 pet_7 dtr_8 dtr_7 precip_7
Mutual selection pet_8 tmx_8 pet_6 tmx_7 dtr_7
Random forest dtr_7 pet_7 pet_8 precip_7 tmx_7
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Table C3. Comparison of the random forest model performance between monthly data and aggregated data along reproductive phase of
soybean growing season.

Data arrangement MCC Accuracy Precision Recall F1

Monthly 0.49 0.85 0.5 0.67 0.57
Aggregated 0.61 0.9 0.67 0.67 0.67

Table C4. Random forest model configuration of hyperparameters.

Parameter Description Value

n_estimators Number of trees in the model 600
max_depth Maximum tree depth 7
max_features Maximum features per split Square root of total features
class_weight Weights associated with classes “Balanced_subsample”

Code availability. The code for this experiment is available at
https://doi.org/10.5281/zenodo.5748304 (Goulart, 2021).

Data availability. CRU data are freely available with the cited
literature. EC-Earth data are available with Karin van der Wiel
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