Articles | Volume 11, issue 4
https://doi.org/10.5194/esd-11-855-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-11-855-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Storylines of the 2018 Northern Hemisphere heatwave at pre-industrial and higher global warming levels
Kathrin Wehrli
CORRESPONDING AUTHOR
Institute for Atmospheric and Climate Science, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
Mathias Hauser
Institute for Atmospheric and Climate Science, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
Sonia I. Seneviratne
Institute for Atmospheric and Climate Science, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
Related authors
Kathrin Wehrli, Fei Luo, Mathias Hauser, Hideo Shiogama, Daisuke Tokuda, Hyungjun Kim, Dim Coumou, Wilhelm May, Philippe Le Sager, Frank Selten, Olivia Martius, Robert Vautard, and Sonia I. Seneviratne
Earth Syst. Dynam., 13, 1167–1196, https://doi.org/10.5194/esd-13-1167-2022, https://doi.org/10.5194/esd-13-1167-2022, 2022
Short summary
Short summary
The ExtremeX experiment was designed to unravel the contribution of processes leading to the occurrence of recent weather and climate extremes. Global climate simulations are carried out with three models. The results show that in constrained experiments, temperature anomalies during heatwaves are well represented, although climatological model biases remain. Further, a substantial contribution of both atmospheric circulation and soil moisture to heat extremes is identified.
Fei Luo, Frank Selten, Kathrin Wehrli, Kai Kornhuber, Philippe Le Sager, Wilhelm May, Thomas Reerink, Sonia I. Seneviratne, Hideo Shiogama, Daisuke Tokuda, Hyungjun Kim, and Dim Coumou
Weather Clim. Dynam., 3, 905–935, https://doi.org/10.5194/wcd-3-905-2022, https://doi.org/10.5194/wcd-3-905-2022, 2022
Short summary
Short summary
Recent studies have identified the weather systems in observational data, where wave patterns with high-magnitude values that circle around the whole globe in either wavenumber 5 or wavenumber 7 are responsible for the extreme events. In conclusion, we find that the climate models are able to reproduce the large-scale atmospheric circulation patterns as well as their associated surface variables such as temperature, precipitation, and sea level pressure.
Martin Hirschi, Dominik Michel, Dominik L. Schumacher, Wolfgang Preimesberger, and Sonia I. Seneviratne
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-416, https://doi.org/10.5194/essd-2025-416, 2025
Preprint under review for ESSD
Short summary
Short summary
Drier summers and more frequent droughts were experienced in Switzerland in the last decades. We present a comprehensive set of in situ soil moisture measurements from the Swiss Soil Moisture Experiment (SwissSMEX) network, which as of now covers 15 years, and use this curated data to analyse reported drying trends. Although the data indicate that summer soil drying has increased in recent years, the temporal coverage is in many cases not yet sufficient to robustly estimate a significant trend.
Hao Pan, Lukas Gudmundsson, Mathias Hauser, Jonas Schwaab, Yann Quilcaille, and Sonia I. Seneviratne
EGUsphere, https://doi.org/10.5194/egusphere-2025-3052, https://doi.org/10.5194/egusphere-2025-3052, 2025
Short summary
Short summary
Regional climate models (RCMs) provide critical detailed information about the local climate. However, running RCM simulations requires powerful computers and is computationally expensive. This study present a probabilistic RCM emulator, MESMER-RCM, a data-driven statistical model. MESMER-RCM can generate large ensembles of synthetic, yet physically plausible fine-scale 2-meter temperature projections spanning multiple decades at negligible computational overhead.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Christophe Cassou, Mathias Hauser, Zeke Hausfather, June-Yi Lee, Matthew D. Palmer, Karina von Schuckmann, Aimée B. A. Slangen, Sophie Szopa, Blair Trewin, Jeongeun Yun, Nathan P. Gillett, Stuart Jenkins, H. Damon Matthews, Krishnan Raghavan, Aurélien Ribes, Joeri Rogelj, Debbie Rosen, Xuebin Zhang, Myles Allen, Lara Aleluia Reis, Robbie M. Andrew, Richard A. Betts, Alex Borger, Jiddu A. Broersma, Samantha N. Burgess, Lijing Cheng, Pierre Friedlingstein, Catia M. Domingues, Marco Gambarini, Thomas Gasser, Johannes Gütschow, Masayoshi Ishii, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Aurélien Liné, Didier P. Monselesan, Colin Morice, Jens Mühle, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Jan C. Minx, Matthew Rigby, Robert Rohde, Abhishek Savita, Sonia I. Seneviratne, Peter Thorne, Christopher Wells, Luke M. Western, Guido R. van der Werf, Susan E. Wijffels, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 17, 2641–2680, https://doi.org/10.5194/essd-17-2641-2025, https://doi.org/10.5194/essd-17-2641-2025, 2025
Short summary
Short summary
In a rapidly changing climate, evidence-based decision-making benefits from up-to-date and timely information. Here we compile monitoring datasets to track real-world changes over time. To make our work relevant to policymakers, we follow methods from the Intergovernmental Panel on Climate Change (IPCC). Human activities are increasing the Earth's energy imbalance and driving faster sea-level rise compared to the IPCC assessment.
Basil Kraft, Michael Schirmer, William H. Aeberhard, Massimiliano Zappa, Sonia I. Seneviratne, and Lukas Gudmundsson
Hydrol. Earth Syst. Sci., 29, 1061–1082, https://doi.org/10.5194/hess-29-1061-2025, https://doi.org/10.5194/hess-29-1061-2025, 2025
Short summary
Short summary
This study reconstructs daily runoff in Switzerland (1962–2023) using a deep-learning model, providing a spatially contiguous dataset on a medium-sized catchment grid. The model outperforms traditional hydrological methods, revealing shifts in Swiss water resources, including more frequent dry years and declining summer runoff. The reconstruction is publicly available.
Martin Hirschi, Pietro Stradiotti, Bas Crezee, Wouter Dorigo, and Sonia I. Seneviratne
Hydrol. Earth Syst. Sci., 29, 397–425, https://doi.org/10.5194/hess-29-397-2025, https://doi.org/10.5194/hess-29-397-2025, 2025
Short summary
Short summary
We investigate the potential of long-term satellite and reanalysis products for characterising soil drying by analysing their 2000–2022 soil moisture trends and their representation of agroecological drought events of this period. Soil moisture trends are globally diverse and partly contradictory between products. This also affects the products' drought-detection capacity. Based on the best-estimate products, consistent soil drying is observed over more than 40 % of the land area covered.
Sarah Schöngart, Lukas Gudmundsson, Mathias Hauser, Peter Pfleiderer, Quentin Lejeune, Shruti Nath, Sonia Isabelle Seneviratne, and Carl-Friedrich Schleussner
Geosci. Model Dev., 17, 8283–8320, https://doi.org/10.5194/gmd-17-8283-2024, https://doi.org/10.5194/gmd-17-8283-2024, 2024
Short summary
Short summary
Precipitation and temperature are two of the most impact-relevant climatic variables. Yet, projecting future precipitation and temperature data under different emission scenarios relies on complex models that are computationally expensive. In this study, we propose a method that allows us to generate monthly means of local precipitation and temperature at low computational costs. Our modelling framework is particularly useful for all downstream applications of climate model data.
Felix Jäger, Jonas Schwaab, Yann Quilcaille, Michael Windisch, Jonathan Doelman, Stefan Frank, Mykola Gusti, Petr Havlik, Florian Humpenöder, Andrey Lessa Derci Augustynczik, Christoph Müller, Kanishka Balu Narayan, Ryan Sebastian Padrón, Alexander Popp, Detlef van Vuuren, Michael Wögerer, and Sonia Isabelle Seneviratne
Earth Syst. Dynam., 15, 1055–1071, https://doi.org/10.5194/esd-15-1055-2024, https://doi.org/10.5194/esd-15-1055-2024, 2024
Short summary
Short summary
Climate change mitigation strategies developed with socioeconomic models rely on the widespread (re)planting of trees to limit global warming below 2°. However, most of these models neglect climate-driven shifts in forest damage like fires. By assessing existing mitigation scenarios, we show the exposure of projected forestation areas to fire-promoting weather conditions. Our study highlights the problem of ignoring climate-driven shifts in forest damage and ways to address it.
Malte Meinshausen, Carl-Friedrich Schleussner, Kathleen Beyer, Greg Bodeker, Olivier Boucher, Josep G. Canadell, John S. Daniel, Aïda Diongue-Niang, Fatima Driouech, Erich Fischer, Piers Forster, Michael Grose, Gerrit Hansen, Zeke Hausfather, Tatiana Ilyina, Jarmo S. Kikstra, Joyce Kimutai, Andrew D. King, June-Yi Lee, Chris Lennard, Tabea Lissner, Alexander Nauels, Glen P. Peters, Anna Pirani, Gian-Kasper Plattner, Hans Pörtner, Joeri Rogelj, Maisa Rojas, Joyashree Roy, Bjørn H. Samset, Benjamin M. Sanderson, Roland Séférian, Sonia Seneviratne, Christopher J. Smith, Sophie Szopa, Adelle Thomas, Diana Urge-Vorsatz, Guus J. M. Velders, Tokuta Yokohata, Tilo Ziehn, and Zebedee Nicholls
Geosci. Model Dev., 17, 4533–4559, https://doi.org/10.5194/gmd-17-4533-2024, https://doi.org/10.5194/gmd-17-4533-2024, 2024
Short summary
Short summary
The scientific community is considering new scenarios to succeed RCPs and SSPs for the next generation of Earth system model runs to project future climate change. To contribute to that effort, we reflect on relevant policy and scientific research questions and suggest categories for representative emission pathways. These categories are tailored to the Paris Agreement long-term temperature goal, high-risk outcomes in the absence of further climate policy and worlds “that could have been”.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Bradley Hall, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan P. Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Blair Trewin, Myles Allen, Robbie Andrew, Richard A. Betts, Alex Borger, Tim Boyer, Jiddu A. Broersma, Carlo Buontempo, Samantha Burgess, Chiara Cagnazzo, Lijing Cheng, Pierre Friedlingstein, Andrew Gettelman, Johannes Gütschow, Masayoshi Ishii, Stuart Jenkins, Xin Lan, Colin Morice, Jens Mühle, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Jan C. Minx, Gunnar Myhre, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, Sophie Szopa, Peter Thorne, Mahesh V. M. Kovilakam, Elisa Majamäki, Jukka-Pekka Jalkanen, Margreet van Marle, Rachel M. Hoesly, Robert Rohde, Dominik Schumacher, Guido van der Werf, Russell Vose, Kirsten Zickfeld, Xuebin Zhang, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 16, 2625–2658, https://doi.org/10.5194/essd-16-2625-2024, https://doi.org/10.5194/essd-16-2625-2024, 2024
Short summary
Short summary
This paper tracks some key indicators of global warming through time, from 1850 through to the end of 2023. It is designed to give an authoritative estimate of global warming to date and its causes. We find that in 2023, global warming reached 1.3 °C and is increasing at over 0.2 °C per decade. This is caused by all-time-high greenhouse gas emissions.
Steven J. De Hertog, Carmen E. Lopez-Fabara, Ruud van der Ent, Jessica Keune, Diego G. Miralles, Raphael Portmann, Sebastian Schemm, Felix Havermann, Suqi Guo, Fei Luo, Iris Manola, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
Earth Syst. Dynam., 15, 265–291, https://doi.org/10.5194/esd-15-265-2024, https://doi.org/10.5194/esd-15-265-2024, 2024
Short summary
Short summary
Changes in land use are crucial to achieve lower global warming. However, despite their importance, the effects of these changes on moisture fluxes are poorly understood. We analyse land cover and management scenarios in three climate models involving cropland expansion, afforestation, and irrigation. Results show largely consistent influences on moisture fluxes, with cropland expansion causing a drying and reduced local moisture recycling, while afforestation and irrigation show the opposite.
Dominik L. Schumacher, Mariam Zachariah, Friederike Otto, Clair Barnes, Sjoukje Philip, Sarah Kew, Maja Vahlberg, Roop Singh, Dorothy Heinrich, Julie Arrighi, Maarten van Aalst, Mathias Hauser, Martin Hirschi, Verena Bessenbacher, Lukas Gudmundsson, Hiroko K. Beaudoing, Matthew Rodell, Sihan Li, Wenchang Yang, Gabriel A. Vecchi, Luke J. Harrington, Flavio Lehner, Gianpaolo Balsamo, and Sonia I. Seneviratne
Earth Syst. Dynam., 15, 131–154, https://doi.org/10.5194/esd-15-131-2024, https://doi.org/10.5194/esd-15-131-2024, 2024
Short summary
Short summary
The 2022 summer was accompanied by widespread soil moisture deficits, including an unprecedented drought in Europe. Combining several observation-based estimates and models, we find that such an event has become at least 5 and 20 times more likely due to human-induced climate change in western Europe and the northern extratropics, respectively. Strong regional warming fuels soil desiccation; hence, projections indicate even more potent future droughts as we progress towards a 2 °C warmer world.
Yann Quilcaille, Lukas Gudmundsson, and Sonia I. Seneviratne
Earth Syst. Dynam., 14, 1333–1362, https://doi.org/10.5194/esd-14-1333-2023, https://doi.org/10.5194/esd-14-1333-2023, 2023
Short summary
Short summary
Climate models are powerful tools, but they have high computational costs, hindering their use in exploring future climate extremes. We demonstrate MESMER-X, the only existing emulator for spatial climate extremes (heatwaves, fires, droughts) that mimics all of their relevant properties. Thanks to its negligible computational cost, MESMER-X may greatly accelerate the exploration of future climate extremes or enable the integration of climate extremes in economic and financial models.
Shruti Nath, Lukas Gudmundsson, Jonas Schwaab, Gregory Duveiller, Steven J. De Hertog, Suqi Guo, Felix Havermann, Fei Luo, Iris Manola, Julia Pongratz, Sonia I. Seneviratne, Carl F. Schleussner, Wim Thiery, and Quentin Lejeune
Geosci. Model Dev., 16, 4283–4313, https://doi.org/10.5194/gmd-16-4283-2023, https://doi.org/10.5194/gmd-16-4283-2023, 2023
Short summary
Short summary
Tree cover changes play a significant role in climate mitigation and adaptation. Their regional impacts are key in informing national-level decisions and prioritising areas for conservation efforts. We present a first step towards exploring these regional impacts using a simple statistical device, i.e. emulator. The emulator only needs to train on climate model outputs representing the maximal impacts of aff-, re-, and deforestation, from which it explores plausible in-between outcomes itself.
Piers M. Forster, Christopher J. Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Sonia I. Seneviratne, Blair Trewin, Xuebin Zhang, Myles Allen, Robbie Andrew, Arlene Birt, Alex Borger, Tim Boyer, Jiddu A. Broersma, Lijing Cheng, Frank Dentener, Pierre Friedlingstein, José M. Gutiérrez, Johannes Gütschow, Bradley Hall, Masayoshi Ishii, Stuart Jenkins, Xin Lan, June-Yi Lee, Colin Morice, Christopher Kadow, John Kennedy, Rachel Killick, Jan C. Minx, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sophie Szopa, Peter Thorne, Robert Rohde, Maisa Rojas Corradi, Dominik Schumacher, Russell Vose, Kirsten Zickfeld, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 15, 2295–2327, https://doi.org/10.5194/essd-15-2295-2023, https://doi.org/10.5194/essd-15-2295-2023, 2023
Short summary
Short summary
This is a critical decade for climate action, but there is no annual tracking of the level of human-induced warming. We build on the Intergovernmental Panel on Climate Change assessment reports that are authoritative but published infrequently to create a set of key global climate indicators that can be tracked through time. Our hope is that this becomes an important annual publication that policymakers, media, scientists and the public can refer to.
Steven J. De Hertog, Felix Havermann, Inne Vanderkelen, Suqi Guo, Fei Luo, Iris Manola, Dim Coumou, Edouard L. Davin, Gregory Duveiller, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
Earth Syst. Dynam., 14, 629–667, https://doi.org/10.5194/esd-14-629-2023, https://doi.org/10.5194/esd-14-629-2023, 2023
Short summary
Short summary
Land cover and land management changes are important strategies for future land-based mitigation. We investigate the climate effects of cropland expansion, afforestation, irrigation and wood harvesting using three Earth system models. Results show that these have important implications for surface temperature where the land cover and/or management change occur and in remote areas. Idealized afforestation causes global warming, which might offset the cooling effect from enhanced carbon uptake.
Yann Quilcaille, Fulden Batibeniz, Andreia F. S. Ribeiro, Ryan S. Padrón, and Sonia I. Seneviratne
Earth Syst. Sci. Data, 15, 2153–2177, https://doi.org/10.5194/essd-15-2153-2023, https://doi.org/10.5194/essd-15-2153-2023, 2023
Short summary
Short summary
We present a new database of four annual fire weather indicators over 1850–2100 and over all land areas. In a 3°C warmer world with respect to preindustrial times, the mean fire weather would increase on average by at least 66% in both intensity and duration and even triple for 1-in-10-year events. The dataset is a freely available resource for fire danger studies and beyond, highlighting that the best course of action would require limiting global warming as much as possible.
Steven J. De Hertog, Carmen E. Lopez-Fabara, Ruud van der Ent, Jessica Keune, Diego G. Miralles, Raphael Portmann, Sebastian Schemm, Felix Havermann, Suqi Guo, Fei Luo, Iris Manola, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
EGUsphere, https://doi.org/10.5194/egusphere-2023-953, https://doi.org/10.5194/egusphere-2023-953, 2023
Preprint archived
Short summary
Short summary
Land cover and management changes can affect the climate and water availability. In this study we use climate model simulations of extreme global land cover changes (afforestation, deforestation) and land management changes (irrigation) to understand the effects on the global water cycle and local to continental water availability. We show that cropland expansion generally leads to higher evaporation and lower amounts of precipitation and afforestation and irrigation expansion to the opposite.
Francisco José Cuesta-Valero, Hugo Beltrami, Almudena García-García, Gerhard Krinner, Moritz Langer, Andrew H. MacDougall, Jan Nitzbon, Jian Peng, Karina von Schuckmann, Sonia I. Seneviratne, Wim Thiery, Inne Vanderkelen, and Tonghua Wu
Earth Syst. Dynam., 14, 609–627, https://doi.org/10.5194/esd-14-609-2023, https://doi.org/10.5194/esd-14-609-2023, 2023
Short summary
Short summary
Climate change is caused by the accumulated heat in the Earth system, with the land storing the second largest amount of this extra heat. Here, new estimates of continental heat storage are obtained, including changes in inland-water heat storage and permafrost heat storage in addition to changes in ground heat storage. We also argue that heat gains in all three components should be monitored independently of their magnitude due to heat-dependent processes affecting society and ecosystems.
Fulden Batibeniz, Mathias Hauser, and Sonia Isabelle Seneviratne
Earth Syst. Dynam., 14, 485–505, https://doi.org/10.5194/esd-14-485-2023, https://doi.org/10.5194/esd-14-485-2023, 2023
Short summary
Short summary
We study single and concurrent heatwaves, droughts, precipitation, and wind extremes. Globally, these extremes become more frequent and affect larger land areas under future warming, with several countries experiencing extreme events every single month. Concurrent heatwaves–droughts (precipitation–wind) are projected to increase the most in mid–high-latitude countries (tropics). Every mitigation action to avoid further warming will reduce the number of people exposed to extreme weather events.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Sjoukje Y. Philip, Sarah F. Kew, Geert Jan van Oldenborgh, Faron S. Anslow, Sonia I. Seneviratne, Robert Vautard, Dim Coumou, Kristie L. Ebi, Julie Arrighi, Roop Singh, Maarten van Aalst, Carolina Pereira Marghidan, Michael Wehner, Wenchang Yang, Sihan Li, Dominik L. Schumacher, Mathias Hauser, Rémy Bonnet, Linh N. Luu, Flavio Lehner, Nathan Gillett, Jordis S. Tradowsky, Gabriel A. Vecchi, Chris Rodell, Roland B. Stull, Rosie Howard, and Friederike E. L. Otto
Earth Syst. Dynam., 13, 1689–1713, https://doi.org/10.5194/esd-13-1689-2022, https://doi.org/10.5194/esd-13-1689-2022, 2022
Short summary
Short summary
In June 2021, the Pacific Northwest of the US and Canada saw record temperatures far exceeding those previously observed. This attribution study found such a severe heat wave would have been virtually impossible without human-induced climate change. Assuming no nonlinear interactions, such events have become at least 150 times more common, are about 2 °C hotter and will become even more common as warming continues. Therefore, adaptation and mitigation are urgently needed to prepare society.
Ryan S. Padrón, Lukas Gudmundsson, Laibao Liu, Vincent Humphrey, and Sonia I. Seneviratne
Biogeosciences, 19, 5435–5448, https://doi.org/10.5194/bg-19-5435-2022, https://doi.org/10.5194/bg-19-5435-2022, 2022
Short summary
Short summary
The answer to how much carbon land ecosystems are projected to remove from the atmosphere until 2100 is different for each Earth system model. We find that differences across models are primarily explained by the annual land carbon sink dependence on temperature and soil moisture, followed by the dependence on CO2 air concentration, and by average climate conditions. Our insights on why each model projects a relatively high or low land carbon sink can help to reduce the underlying uncertainty.
Steven J. De Hertog, Felix Havermann, Inne Vanderkelen, Suqi Guo, Fei Luo, Iris Manola, Dim Coumou, Edouard L. Davin, Gregory Duveiller, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
Earth Syst. Dynam., 13, 1305–1350, https://doi.org/10.5194/esd-13-1305-2022, https://doi.org/10.5194/esd-13-1305-2022, 2022
Short summary
Short summary
Land cover and land management changes are important strategies for future land-based mitigation. We investigate the climate effects of cropland expansion, afforestation, irrigation, and wood harvesting using three Earth system models. Results show that these have important implications for surface temperature where the land cover and/or management change occurs and in remote areas. Idealized afforestation causes global warming, which might offset the cooling effect from enhanced carbon uptake.
Kathrin Wehrli, Fei Luo, Mathias Hauser, Hideo Shiogama, Daisuke Tokuda, Hyungjun Kim, Dim Coumou, Wilhelm May, Philippe Le Sager, Frank Selten, Olivia Martius, Robert Vautard, and Sonia I. Seneviratne
Earth Syst. Dynam., 13, 1167–1196, https://doi.org/10.5194/esd-13-1167-2022, https://doi.org/10.5194/esd-13-1167-2022, 2022
Short summary
Short summary
The ExtremeX experiment was designed to unravel the contribution of processes leading to the occurrence of recent weather and climate extremes. Global climate simulations are carried out with three models. The results show that in constrained experiments, temperature anomalies during heatwaves are well represented, although climatological model biases remain. Further, a substantial contribution of both atmospheric circulation and soil moisture to heat extremes is identified.
Fei Luo, Frank Selten, Kathrin Wehrli, Kai Kornhuber, Philippe Le Sager, Wilhelm May, Thomas Reerink, Sonia I. Seneviratne, Hideo Shiogama, Daisuke Tokuda, Hyungjun Kim, and Dim Coumou
Weather Clim. Dynam., 3, 905–935, https://doi.org/10.5194/wcd-3-905-2022, https://doi.org/10.5194/wcd-3-905-2022, 2022
Short summary
Short summary
Recent studies have identified the weather systems in observational data, where wave patterns with high-magnitude values that circle around the whole globe in either wavenumber 5 or wavenumber 7 are responsible for the extreme events. In conclusion, we find that the climate models are able to reproduce the large-scale atmospheric circulation patterns as well as their associated surface variables such as temperature, precipitation, and sea level pressure.
Verena Bessenbacher, Sonia Isabelle Seneviratne, and Lukas Gudmundsson
Geosci. Model Dev., 15, 4569–4596, https://doi.org/10.5194/gmd-15-4569-2022, https://doi.org/10.5194/gmd-15-4569-2022, 2022
Short summary
Short summary
Earth observations have many missing values. They are often filled using information from spatial and temporal contexts that mostly ignore information from related observed variables. We propose the gap-filling method CLIMFILL that additionally uses information from related variables. We test CLIMFILL using gap-free reanalysis data of variables related to soil–moisture climate interactions. CLIMFILL creates estimates for the missing values that recover the original dependence structure.
Shruti Nath, Quentin Lejeune, Lea Beusch, Sonia I. Seneviratne, and Carl-Friedrich Schleussner
Earth Syst. Dynam., 13, 851–877, https://doi.org/10.5194/esd-13-851-2022, https://doi.org/10.5194/esd-13-851-2022, 2022
Short summary
Short summary
Uncertainty within climate model projections on inter-annual timescales is largely affected by natural climate variability. Emulators are valuable tools for approximating climate model runs, allowing for easy exploration of such uncertainty spaces. This study takes a first step at building a spatially resolved, monthly temperature emulator that takes local yearly temperatures as the sole input, thus providing monthly temperature distributions which are of critical value to impact assessments.
Ronny Meier, Edouard L. Davin, Gordon B. Bonan, David M. Lawrence, Xiaolong Hu, Gregory Duveiller, Catherine Prigent, and Sonia I. Seneviratne
Geosci. Model Dev., 15, 2365–2393, https://doi.org/10.5194/gmd-15-2365-2022, https://doi.org/10.5194/gmd-15-2365-2022, 2022
Short summary
Short summary
We revise the roughness of the land surface in the CESM climate model. Guided by observational data, we increase the surface roughness of forests and decrease that of bare soil, snow, ice, and crops. These modifications alter simulated temperatures and wind speeds at and above the land surface considerably, in particular over desert regions. The revised model represents the diurnal variability of the land surface temperature better compared to satellite observations over most regions.
Lea Beusch, Zebedee Nicholls, Lukas Gudmundsson, Mathias Hauser, Malte Meinshausen, and Sonia I. Seneviratne
Geosci. Model Dev., 15, 2085–2103, https://doi.org/10.5194/gmd-15-2085-2022, https://doi.org/10.5194/gmd-15-2085-2022, 2022
Short summary
Short summary
We introduce the first chain of computationally efficient Earth system model (ESM) emulators to translate user-defined greenhouse gas emission pathways into regional temperature change time series accounting for all major sources of climate change projection uncertainty. By combining the global mean emulator MAGICC with the spatially resolved emulator MESMER, we can derive ESM-specific and constrained probabilistic emulations to rapidly provide targeted climate information at the local scale.
Heye Reemt Bogena, Martin Schrön, Jannis Jakobi, Patrizia Ney, Steffen Zacharias, Mie Andreasen, Roland Baatz, David Boorman, Mustafa Berk Duygu, Miguel Angel Eguibar-Galán, Benjamin Fersch, Till Franke, Josie Geris, María González Sanchis, Yann Kerr, Tobias Korf, Zalalem Mengistu, Arnaud Mialon, Paolo Nasta, Jerzy Nitychoruk, Vassilios Pisinaras, Daniel Rasche, Rafael Rosolem, Hami Said, Paul Schattan, Marek Zreda, Stefan Achleitner, Eduardo Albentosa-Hernández, Zuhal Akyürek, Theresa Blume, Antonio del Campo, Davide Canone, Katya Dimitrova-Petrova, John G. Evans, Stefano Ferraris, Félix Frances, Davide Gisolo, Andreas Güntner, Frank Herrmann, Joost Iwema, Karsten H. Jensen, Harald Kunstmann, Antonio Lidón, Majken Caroline Looms, Sascha Oswald, Andreas Panagopoulos, Amol Patil, Daniel Power, Corinna Rebmann, Nunzio Romano, Lena Scheiffele, Sonia Seneviratne, Georg Weltin, and Harry Vereecken
Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022, https://doi.org/10.5194/essd-14-1125-2022, 2022
Short summary
Short summary
Monitoring of increasingly frequent droughts is a prerequisite for climate adaptation strategies. This data paper presents long-term soil moisture measurements recorded by 66 cosmic-ray neutron sensors (CRNS) operated by 24 institutions and distributed across major climate zones in Europe. Data processing followed harmonized protocols and state-of-the-art methods to generate consistent and comparable soil moisture products and to facilitate continental-scale analysis of hydrological extremes.
Aine M. Gormley-Gallagher, Sebastian Sterl, Annette L. Hirsch, Sonia I. Seneviratne, Edouard L. Davin, and Wim Thiery
Earth Syst. Dynam., 13, 419–438, https://doi.org/10.5194/esd-13-419-2022, https://doi.org/10.5194/esd-13-419-2022, 2022
Short summary
Short summary
Our results show that agricultural management can impact the local climate and highlight the need to evaluate land management in climate models. We use regression analysis on climate simulations and observations to assess irrigation and conservation agriculture impacts on warming trends. This allowed us to distinguish between the effects of land management and large-scale climate forcings such as rising CO2 concentrations and thus gain insight into the impacts under different climate regimes.
Sarah F. Kew, Sjoukje Y. Philip, Mathias Hauser, Mike Hobbins, Niko Wanders, Geert Jan van Oldenborgh, Karin van der Wiel, Ted I. E. Veldkamp, Joyce Kimutai, Chris Funk, and Friederike E. L. Otto
Earth Syst. Dynam., 12, 17–35, https://doi.org/10.5194/esd-12-17-2021, https://doi.org/10.5194/esd-12-17-2021, 2021
Short summary
Short summary
Motivated by the possible influence of rising temperatures, this study synthesises results from observations and climate models to explore trends (1900–2018) in eastern African (EA) drought measures. However, no discernible trends are found in annual soil moisture or precipitation. Positive trends in potential evaporation indicate that for irrigated regions more water is now required to counteract increased evaporation. Precipitation deficit is, however, the most useful indicator of EA drought.
Quentin Lejeune, Edouard L. Davin, Grégory Duveiller, Bas Crezee, Ronny Meier, Alessandro Cescatti, and Sonia I. Seneviratne
Earth Syst. Dynam., 11, 1209–1232, https://doi.org/10.5194/esd-11-1209-2020, https://doi.org/10.5194/esd-11-1209-2020, 2020
Short summary
Short summary
Trees are darker than crops or grasses; hence, they absorb more solar radiation. Therefore, land cover changes modify the fraction of solar radiation reflected by the land surface (its albedo), with consequences for the climate. We apply a new statistical method to simulations conducted with 15 recent climate models and find that albedo variations due to land cover changes since 1860 have led to a decrease in the net amount of energy entering the atmosphere by −0.09 W m2 on average.
Maialen Iturbide, José M. Gutiérrez, Lincoln M. Alves, Joaquín Bedia, Ruth Cerezo-Mota, Ezequiel Cimadevilla, Antonio S. Cofiño, Alejandro Di Luca, Sergio Henrique Faria, Irina V. Gorodetskaya, Mathias Hauser, Sixto Herrera, Kevin Hennessy, Helene T. Hewitt, Richard G. Jones, Svitlana Krakovska, Rodrigo Manzanas, Daniel Martínez-Castro, Gemma T. Narisma, Intan S. Nurhati, Izidine Pinto, Sonia I. Seneviratne, Bart van den Hurk, and Carolina S. Vera
Earth Syst. Sci. Data, 12, 2959–2970, https://doi.org/10.5194/essd-12-2959-2020, https://doi.org/10.5194/essd-12-2959-2020, 2020
Short summary
Short summary
We present an update of the IPCC WGI reference regions used in AR5 for the synthesis of climate change information. This revision was guided by the basic principles of climatic consistency and model representativeness (in particular for the new CMIP6 simulations). We also present a new dataset of monthly CMIP5 and CMIP6 spatially aggregated information using the new reference regions and describe a worked example of how to use this dataset to inform regional climate change studies.
Karina von Schuckmann, Lijing Cheng, Matthew D. Palmer, James Hansen, Caterina Tassone, Valentin Aich, Susheel Adusumilli, Hugo Beltrami, Tim Boyer, Francisco José Cuesta-Valero, Damien Desbruyères, Catia Domingues, Almudena García-García, Pierre Gentine, John Gilson, Maximilian Gorfer, Leopold Haimberger, Masayoshi Ishii, Gregory C. Johnson, Rachel Killick, Brian A. King, Gottfried Kirchengast, Nicolas Kolodziejczyk, John Lyman, Ben Marzeion, Michael Mayer, Maeva Monier, Didier Paolo Monselesan, Sarah Purkey, Dean Roemmich, Axel Schweiger, Sonia I. Seneviratne, Andrew Shepherd, Donald A. Slater, Andrea K. Steiner, Fiammetta Straneo, Mary-Louise Timmermans, and Susan E. Wijffels
Earth Syst. Sci. Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020, https://doi.org/10.5194/essd-12-2013-2020, 2020
Short summary
Short summary
Understanding how much and where the heat is distributed in the Earth system is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to obtain the Earth heat inventory over the period 1960–2018.
Cited articles
Alter, R. E., Douglas, H. C., Winter, J. M., and Eltahir, E. A. B.: Twentieth
century regional climate change during the summer in the central United
States attributed to agricultural intensification, Geophys. Res. Lett., 45, 1586–1594, https://doi.org/10.1002/2017GL075604, 2018. a, b, c
Barriopedro, D., Sousa, P. M., Trigo, R. M., García-Herrera, R., and
Ramos, A. M.: The exceptional Iberian heatwave of summer 2018, B. Am. Meteorol. Soc. USA, 101, S29–S34,
https://doi.org/10.1175/BAMS-D-19-0159.1, 2020. a, b, c
Cowtan, K. and Way, R. G.: Coverage bias in the HadCRUT4 temperature series
and its impact on recent temperature trends, Q. J. Roy. Meteor. Soc., 140, 1935–1944, https://doi.org/10.1002/qj.2297, 2014. a, b
Cowtan, K., Hausfather, Z., Hawkins, E., Jacobs, P., Mann, M. E., Miller,
S. K., Steinman, B. A., Stolpe, M. B., and Way, R. G.: Robust comparison of
climate models with observations using blended land air and ocean sea surface
temperatures, Geophys. Res. Lett., 42, 6526–6534,
https://doi.org/10.1002/2015GL064888, 2015. a, b, c, d
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park,
B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N., and
Vitart, F.: The ERA-Interim reanalysis: configuration and performance of
the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Déqué, M.: Frequency of precipitation and temperature extremes over
France in an anthropogenic scenario: model results and statistical correction
according to observed values, Global Planet. Change, 57, 16–26,
https://doi.org/10.1016/j.gloplacha.2006.11.030, 2007. a
Dlugokencky, E.: NOAA/ESRL, available at: https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/,
last access: 16 October 2019. a
Dlugokencky, E. and Tans, P.: NOAA/ESRL,
available at: https://www.esrl.noaa.gov/gmd/ccgg/trends/, last access: 16 October 2019. a
Donat, M. G., Pitman, A. J., and Seneviratne, S. I.: Regional warming of hot
extremes accelerated by surface energy fluxes, Geophys. Res. Lett., 44, 7011–7019, https://doi.org/10.1002/2017GL073733, 2017. a, b
Drouard, M., Kornhuber, K., and Woollings, T.: Disentangling dynamic
contributions to summer 2018 anomalous weather over Europe, Geophys. Res. Lett., 46, 12537–12546, https://doi.org/10.1029/2019GL084601, 2019. a, b, c
Fischer, E. M., Seneviratne, S. I., Vidale, P. L., Lüthi, D., and
Schär, C.: Soil moisture-atmosphere interactions during the 2003
European Summer Heat Wave, J. Climate, 20, 5081–5099,
https://doi.org/10.1175/JCLI4288.1, 2007. a
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L.,
Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert,
S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis
for Research and Applications, version 2 (MERRA-2), J. Climate, 30,
5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017. a
GISTEMP Team: GISS Surface Temperature Analysis (GISTEMP), version 4,
NASA Goddard Institute for Space Studies, available at: https://data.giss.nasa.gov/gistemp/, last access: 4 July 2020. a
Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset, Scient.
Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3, 2020. a
Hazeleger, W., van den Hurk, B. J. J. M., Min, E., van Oldenborgh, G. J.,
Petersen, A. C., Stainforth, D. A., Vasileiadou, E., and Smith, L. A.:
Tales of future weather, Nat. Clim. Change, 5, 107–113,
https://doi.org/10.1038/nclimate2450, 2015. a
Hurrell, J. W., Hack, J. J., Shea, D., Caron, J. M., and Rosinski, J.: A new
sea surface temperature and sea ice boundary dataset for the Community
Atmosphere Model, J. Climate, 21, 5145–5153,
https://doi.org/10.1175/2008JCLI2292.1, 2008. a, b, c, d
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner,
P. J., Lamarque, J.-F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb,
W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P.,
Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl,
J., and Marshall, S.: The Community Earth System Model: a framework for
collaborative research, B. Am. Meteorol. Soc.,
94, 1339–1360, https://doi.org/10.1175/BAMS-D-12-00121.1, 2013. a
Jones, P. W.: First- and second-order conservative remapping schemes for
grids in spherical coordinates, Mont. Weather Rev., 127, 2204–2210,
https://doi.org/10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2, 1999. a
KNMI: Zomer 2018 (juni, juli, augustus): extreem warm, zeer zonnig en
zeer droog, Koninklijk Nederlands Meteorologisch Instituut, available at: https://www.knmi.nl/nederland-nu/klimatologie/maand-en-seizoensoverzichten/2018/zomer, last access: 16 October 2020. a
Kooperman, G. J., Pritchard, M. S., Ghan, S. J., Wang, M., Somerville, R.
C. J., and Russell, L. M.: Constraining the influence of natural
variability to improve estimates of global aerosol indirect effects in a
nudged version of the Community Atmosphere Model 5, J. Geophys. Res.-Atmos., 117, d23204, https://doi.org/10.1029/2012JD018588, 2012. a
Kornhuber, K., Coumou, D., Vogel, E., Lesk, C., Donges, J. F., Lehmann, J., and
Horton, R. M.: Amplified Rossby waves enhance risk of concurrent heatwaves
in major breadbasket regions, Nat. Clim. Change, 10, 48–53,
https://doi.org/10.1038/s41558-019-0637-z, 2019a. a, b, c
Kotlarski, S.: SvenKotlarski/qmCH2018: qmCH2018 v1.0.1, Zenodo, https://doi.org/10.5281/zenodo.3275571, 2019. a
Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E., Swenson,
S. C., Lawrence, P. J., Zeng, X., Yang, Z.-L., Levis, S., Sakaguchi, K.,
Bonan, G. B., and Slater, A. G.: Parameterization improvements and
functional and structural advances in version 4 of the Community Land
Model, J. Adv. Model. Earth Sy., 3, M03001,
https://doi.org/10.1029/2011MS00045, 2011. a
Lenssen, N. J. L., Schmidt, G. A., Hansen, J. E., Menne, M. J., Persin, A.,
Ruedy, R., and Zyss, D.: Improvements in the GISTEMP uncertainty model,
J. Geophys. Res.-Atmos., 124, 6307–6326,
https://doi.org/10.1029/2018JD029522, 2019. a
Matthes, K., Funke, B., Andersson, M. E., Barnard, L., Beer, J., Charbonneau, P., Clilverd, M. A., Dudok de Wit, T., Haberreiter, M., Hendry, A., Jackman, C. H., Kretzschmar, M., Kruschke, T., Kunze, M., Langematz, U., Marsh, D. R., Maycock, A. C., Misios, S., Rodger, C. J., Scaife, A. A., Seppälä, A., Shangguan, M., Sinnhuber, M., Tourpali, K., Usoskin, I., van de Kamp, M., Verronen, P. T., and Versick, S.: Solar forcing for CMIP6 (v3.2), Geosci. Model Dev., 10, 2247–2302, https://doi.org/10.5194/gmd-10-2247-2017, 2017. a
Mitchell, D., AchutaRao, K., Allen, M., Bethke, I., Beyerle, U., Ciavarella, A., Forster, P. M., Fuglestvedt, J., Gillett, N., Haustein, K., Ingram, W., Iversen, T., Kharin, V., Klingaman, N., Massey, N., Fischer, E., Schleussner, C.-F., Scinocca, J., Seland, Ø., Shiogama, H., Shuckburgh, E., Sparrow, S., Stone, D., Uhe, P., Wallom, D., Wehner, M., and Zaaboul, R.: Half a degree additional warming, prognosis and projected impacts (HAPPI): background and experimental design, Geosci. Model Dev., 10, 571–583, https://doi.org/10.5194/gmd-10-571-2017, 2017. a
Morice, C. P., Kennedy, J. J., Rayner, N. A., and Jones, P. D.: Quantifying
uncertainties in global and regional temperature change using an ensemble of
observational estimates: the HadCRUT4 data set, J. Geophys. Res.-Atmos., 117, D08101, https://doi.org/10.1029/2011JD017187, 2012. a, b, c
Neale, R. B., Chen, C.-C., Gettelman, A., Lauritzen, P. H., Park, S.,
Williamson, D. L., Conley, A. J., Garcia, R., Kinnison, D., Lamarque, J.-F.,
Marsh, D., Mills, M., Smith, A. K., Tilmes, S., Vitt, F., Morrison, H.,
Cameron-Smith, P., Collins, W. D., Iacono, M. J., Easter, R. C., Ghan, S. J.,
Liu, X., Rasch, P. J., and Taylor, M. A.: Description of the NCAR Community
Atmosphere Model (CAM 5.0), Technical report, National Center for
Atmospheric Research, Boulder, Colorado, 2012. a
NOAA Earth System Research Laboratory: Combined nitrous oxide data from the
NOAA/ESRL Global Monitoring Division,
available at: ftp://ftp.cmdl.noaa.gov/hats/n2o/combined/HATS_global_N2O.txt, last access: 16 October 2019. a
Oleson, K. W., Lawrence, D. M., Bonan, G. B., Flanner, M. G., Kluzek, E.,
Lawrence, P. J., Levis, S., Swenson, S. C., Thornton, P. E., Dai, A., Decker,
M., Dickinson, R., Feddema, J., Heald, C. L., Hoffman, F., Lamarque, J.-F.,
Mahowald, N., Niu, G.-Y., Qian, T., Randerson, J., Running, S., Sakaguchi,
K., Slater, A., Stöckli, R., Wang, A., Yang, Z.-L., Zeng, X., and Zeng,
X.: Technical description of version 4.0 of the Community Land Model
(CLM), Technical report, National Center for Atmospheric Research. Boulder,
Colorado, 2010. a
Rajczak, J., Kotlarski, S., Salzmann, N., and Schär, C.: Robust climate
scenarios for sites with sparse observations: a two-step bias correction
approach, Int. J. Climatol., 36, 1226–1243,
https://doi.org/10.1002/joc.4417, 2016. a
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V.,
Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea surface
temperature, sea ice, and night marine air temperature since the late
nineteenth century, J. Geophys. Res.-Atmos., 108, 4407,
https://doi.org/10.1029/2002JD002670, 2003. a
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W.: An
improved in situ and satellite SST analysis for climate, J. Climate, 15, 1609–1625,
https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2, 2002. a
Richardson, M., Cowtan, K., Hawkins, E., and Stolpe, M. B.: Reconciled
climate response estimates from climate models and the energy budget of
Earth, Nat. Clim. Change, 6, 931–935, https://doi.org/10.1038/nclimate3066,
2016. a, b
Rohde, R., Muller, R. A., Jacobsen, R., Muller, E., Perlmutter, S., Rosenfeld,
A., Wurtele, J., Groom, D., and Wickham, C.: A new estimate of average
Earth surface land temperature spanning 1743 to 2011, Geoinformatics &
Geostatistics: An Overview, 1, 1, https://doi.org/10.4172/2327-4581.1000101,
2013a. a
Rohde, R., Muller, R. A., Jacobsen, R., Perlmutter, S., Rosenfeld, A., Wurtele,
J., Curry, J., Wickham, C., and Mosher, S.: Berkeley Earth temperature
averaging process, Geoinformatics & Geostatistics: An Overview, 1, 2,
https://doi.org/10.4172/2327-4581.1000103, 2013b. a
R Project: The R Project for Statistical Computing, available at: https://www.r-project.org/, last access: 16 October 2020. a
Seneviratne, S. I. and Hauser, M.: Regional climate sensitivity of climate
extremes in CMIP6 vs CMIP5 multi-model ensembles, Earth's Future, 8,
e2019EF001474, https://doi.org/10.1029/2019EF001474, 2020. a
Seneviratne, S. I., Luthi, D., Litschi, M., and Schar, C.: Land-atmosphere
coupling and climate change in Europe, Nature, 443, 205–209,
https://doi.org/10.1038/nature05095, 2006. a
Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B.,
Lehner, I., Orlowsky, B., and Teuling, A. J.: Investigating soil
moisture-climate interactions in a changing climate: a review,
Earth Sci. Rev., 99, 125–161, https://doi.org/10.1016/j.earscirev.2010.02.004,
2010. a
Seneviratne, S. I., Nicholls, N., Easterling, D., Goodess, C. M., Kanae, S.,
Kossin, J., Luo, Y., Marengo, J., Innes, K. M., Rahimi, M., Reichstein, M.,
Sorteberg, A., Vera, C., Zhang, X., Rusticucci, M., Semenov, V., Alexander,
L. V., Allen, S., Benito, G., Cavazos, T., Clague, J., Conway, D.,
Della-Marta, P. M., Gerber, M., Gong, S., Goswami, B. N., Hemer, M., Huggel,
C., den Hurk, B. V., Kharin, V. V., Kitoh, A., Tank, A. M. G. K., Li, G.,
Mason, S., Guire, W. M., Oldenborgh, G. J. V., Orlowsky, B., Smith, S.,
Thiaw, W., Velegrakis, A., Yiou, P., Zhang, T., Zhou, T., and Zwiers, F. W.:
Changes in climate extremes and their impacts on the natural physical
environment, in: Managing the Risks of Extreme Events and Disasters to
Advance Climate Change Adaptation, 109–230, edited by: Field, C. B., Barros, V., Stocker, T. F., and Dahe, Q., Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9781139177245.006, 2012. a
Seneviratne, S. I., Phipps, S. J., Pitman, A. J., Hirsch, A. L., Davin, E. L.,
Donat, M. G., Hirschi, M., Lenton, A., Wilhelm, M., and Kravitz, B.: Land
radiative management as contributor to regional-scale climate adaptation and
mitigation, Nat. Geosci., 11, 88–96, https://doi.org/10.1038/s41561-017-0057-5,
2018. a, b
Shepherd, T. G., Boyd, E., Calel, R. A., Chapman, S. C., Dessai, S., Dima-West,
I. M., Fowler, H. J., James, R., Maraun, D., Martius, O., Senior, C. A.,
Sobel, A. H., Stainforth, D. A., Tett, S. F. B., Trenberth, K. E., van den
Hurk, B. J. J. M., Watkins, N. W., Wilby, R. L., and Zenghelis, D. A.:
Storylines: an alternative approach to representing uncertainty in physical
aspects of climate change, Climatic Change, 151, 555–571,
https://doi.org/10.1007/s10584-018-2317-9, 2018. a
Sippel, S., Zscheischler, J., Mahecha, M. D., Orth, R., Reichstein, M., Vogel, M., and Seneviratne, S. I.: Refining multi-model projections of temperature extremes by evaluation against land–atmosphere coupling diagnostics, Earth Syst. Dynam., 8, 387–403, https://doi.org/10.5194/esd-8-387-2017, 2017. a
Stone, D. A., Christidis, N., Folland, C., Perkins-Kirkpatrick, S., Perlwitz,
J., Shiogama, H., Wehner, M. F., Wolski, P., Cholia, S., Krishnan, H.,
Murray, D., Angélil, O., Beyerle, U., Ciavarella, A., Dittus, A., Quan,
X.-W., and Tadross, M.: Experiment design of the International CLIVAR C20C+
Detection and Attribution project, Weather and Climate Extremes, 24,
100206, https://doi.org/10.1016/j.wace.2019.100206, 2019. a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and
the experiment design, B. Am. Meteorol. Soc., 93,
485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012. a
Themeßl, M. J., Gobiet, A., and Heinrich, G.: Empirical-statistical
downscaling and error correction of regional climate models and its impact on
the climate change signal, Climatic Change, 112, 449–468,
https://doi.org/10.1007/s10584-011-0224-4, 2012. a
Thiery, W., Visser, A. J., Fischer, E. M., Hauser, M., Hirsch, A. L., Lawrence,
D. M., Lejeune, Q., Davin, E. L., and Seneviratne, S. I.: Warming of hot
extremes alleviated by expanding irrigation, Nat. Commun., 11, 290,
https://doi.org/10.1038/s41467-019-14075-4, 2020. a
Toreti, A., Belward, A., Perez-Dominguez, I., Naumann, G., Luterbacher, J.,
Cronie, O., Seguini, L., Manfron, G., Lopez-Lozano, R., Baruth, B., van den
Berg, M., Dentener, F., Ceglar, A., Chatzopoulos, T., and Zampieri, M.: The
exceptional 2018 European water seesaw calls for action on adaptation,
Earth's Future, 7, 652–663, https://doi.org/10.1029/2019EF001170, 2019. a, b, c, d
van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard,
K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T.,
Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The
representative concentration pathways: an overview, Climatic Change, 109,
5–31, https://doi.org/10.1007/s10584-011-0148-z, 2011. a
Vogel, M. M., Zscheischler, J., and Seneviratne, S. I.: Varying soil moisture–atmosphere feedbacks explain divergent temperature extremes and precipitation projections in central Europe, Earth Syst. Dynam., 9, 1107–1125, https://doi.org/10.5194/esd-9-1107-2018, 2018. a
Wehrli, K., Guillod, B. P., Hauser, M., Leclair, M., and Seneviratne, S. I.:
Assessing the dynamic versus thermodynamic origin of climate model
biases, Geophys. Res. Lett., 45, 8471–8479,
https://doi.org/10.1029/2018GL079220, 2018. a, b, c, d
Wehrli, K., Guillod, B. P., Hauser, M., Leclair, M., and Seneviratne, S. I.:
Identifying key driving processes of major recent heat waves, J. Geophys. Res.-Atmos., 124, 11746–11765,
https://doi.org/10.1029/2019JD030635, 2019. a, b
Wuebbles, D. J., Fahey, D. W., Hibbard, K. A., Dokken, D. J., Stewart, B. C.,
Maycock, T. K., Easterling, D. R., Kunkel, K. E., Arnold, J. R., Knutson, T.,
LeGrande, A. N., Leung, L. R., Vose, R. S., Waliser, D. E., and Wehner,
M. F.: Precipitation change in the United States, 207–230, U.S.
Global Change Research Program, Washington, DC, USA, https://doi.org/10.7930/J0H993CC,
2017. a
Zhang, K., Wan, H., Liu, X., Ghan, S. J., Kooperman, G. J., Ma, P.-L., Rasch, P. J., Neubauer, D., and Lohmann, U.: Technical Note: On the use of nudging for aerosol–climate model intercomparison studies, Atmos. Chem. Phys., 14, 8631–8645, https://doi.org/10.5194/acp-14-8631-2014, 2014. a
Short summary
The 2018 summer was unusually hot for large areas in the Northern Hemisphere, and heatwaves on three continents led to major impacts on agriculture and society. This study investigates storylines for the extreme 2018 summer, given the observed atmospheric circulation but different levels of background global warming. The results reveal a strong contribution by the present-day level of global warming and show a dramatic outlook for similar events in a warmer climate.
The 2018 summer was unusually hot for large areas in the Northern Hemisphere, and heatwaves on...
Altmetrics
Final-revised paper
Preprint