Articles | Volume 11, issue 4
https://doi.org/10.5194/esd-11-1013-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-11-1013-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comparing interannual variability in three regional single-model initial-condition large ensembles (SMILEs) over Europe
Fabian von Trentini
CORRESPONDING AUTHOR
Department of Geography, Ludwig-Maximilians-Universität, Munich,
80333, Germany
Emma E. Aalbers
Royal Netherlands Meteorological Institute (KNMI), P.O. Box 201, 3730 AE
De Bilt, the Netherlands
Institute for Environmental Studies (IVM), Vrije Universiteit,
Amsterdam, 1081 HV, the Netherlands
Erich M. Fischer
Institute for Atmospheric and Climate Science, ETH Zurich, Zurich,
8092, Switzerland
Ralf Ludwig
Department of Geography, Ludwig-Maximilians-Universität, Munich,
80333, Germany
Related authors
No articles found.
Benjamin Poschlod, Laura Sailer, Alexander Sasse, Anastasia Vogelbacher, and Ralf Ludwig
EGUsphere, https://doi.org/10.5194/egusphere-2025-2483, https://doi.org/10.5194/egusphere-2025-2483, 2025
Short summary
Short summary
Europe was hit by severe droughts in recent years resulting in extreme low flow conditions in rivers. Here, we investigate future climate change effects on river droughts in Bavaria. We find increasing severity for the low peak discharge and low flow duration in a warmer climate. This is caused by hotter and drier summers, where the joint occurrence of heat and drought intensifies. Further, we show that conditions in the year before the drought gain more importance in a warmer climate.
Luna Bloin-Wibe, Robin Noyelle, Vincent Humphrey, Urs Beyerle, Reto Knutti, and Erich Fischer
EGUsphere, https://doi.org/10.5194/egusphere-2025-525, https://doi.org/10.5194/egusphere-2025-525, 2025
Short summary
Short summary
Weather extremes have become more frequent due to climate change. It is therefore crucial to understand them, but since they are rarer than average weather, they are challenging to study. Ensemble Boosting (EB) is a tool that generates extreme climate model events efficiently, but without directly estimating their probability. Here, we present a method to recover these probabilities for a global climate model. EB can thus now be used to find extremes with meaningful statistical information.
Hans Segura, Xabier Pedruzo-Bagazgoitia, Philipp Weiss, Sebastian K. Müller, Thomas Rackow, Junhong Lee, Edgar Dolores-Tesillos, Imme Benedict, Matthias Aengenheyster, Razvan Aguridan, Gabriele Arduini, Alexander J. Baker, Jiawei Bao, Swantje Bastin, Eulàlia Baulenas, Tobias Becker, Sebastian Beyer, Hendryk Bockelmann, Nils Brüggemann, Lukas Brunner, Suvarchal K. Cheedela, Sushant Das, Jasper Denissen, Ian Dragaud, Piotr Dziekan, Madeleine Ekblom, Jan Frederik Engels, Monika Esch, Richard Forbes, Claudia Frauen, Lilli Freischem, Diego García-Maroto, Philipp Geier, Paul Gierz, Álvaro González-Cervera, Katherine Grayson, Matthew Griffith, Oliver Gutjahr, Helmuth Haak, Ioan Hadade, Kerstin Haslehner, Shabeh ul Hasson, Jan Hegewald, Lukas Kluft, Aleksei Koldunov, Nikolay Koldunov, Tobias Kölling, Shunya Koseki, Sergey Kosukhin, Josh Kousal, Peter Kuma, Arjun U. Kumar, Rumeng Li, Nicolas Maury, Maximilian Meindl, Sebastian Milinski, Kristian Mogensen, Bimochan Niraula, Jakub Nowak, Divya Sri Praturi, Ulrike Proske, Dian Putrasahan, René Redler, David Santuy, Domokos Sármány, Reiner Schnur, Patrick Scholz, Dmitry Sidorenko, Dorian Spät, Birgit Sützl, Daisuke Takasuka, Adrian Tompkins, Alejandro Uribe, Mirco Valentini, Menno Veerman, Aiko Voigt, Sarah Warnau, Fabian Wachsmann, Marta Wacławczyk, Nils Wedi, Karl-Hermann Wieners, Jonathan Wille, Marius Winkler, Yuting Wu, Florian Ziemen, Janos Zimmermann, Frida A.-M. Bender, Dragana Bojovic, Sandrine Bony, Simona Bordoni, Patrice Brehmer, Marcus Dengler, Emanuel Dutra, Saliou Faye, Erich Fischer, Chiel van Heerwaarden, Cathy Hohenegger, Heikki Järvinen, Markus Jochum, Thomas Jung, Johann H. Jungclaus, Noel S. Keenlyside, Daniel Klocke, Heike Konow, Martina Klose, Szymon Malinowski, Olivia Martius, Thorsten Mauritsen, Juan Pedro Mellado, Theresa Mieslinger, Elsa Mohino, Hanna Pawłowska, Karsten Peters-von Gehlen, Abdoulaye Sarré, Pajam Sobhani, Philip Stier, Lauri Tuppi, Pier Luigi Vidale, Irina Sandu, and Bjorn Stevens
EGUsphere, https://doi.org/10.5194/egusphere-2025-509, https://doi.org/10.5194/egusphere-2025-509, 2025
Short summary
Short summary
The nextGEMS project developed two Earth system models that resolve processes of the order of 10 km, giving more fidelity to the representation of local phenomena, globally. In its fourth cycle, nextGEMS performed simulations with coupled ocean, land, and atmosphere over the 2020–2049 period under the SSP3-7.0 scenario. Here, we provide an overview of nextGEMS, insights into the model development, and the realism of multi-decadal, kilometer-scale simulations.
Carolin Boos, Sophie Reinermann, Raul Wood, Ralf Ludwig, Anne Schucknecht, David Kraus, and Ralf Kiese
EGUsphere, https://doi.org/10.5194/egusphere-2024-2864, https://doi.org/10.5194/egusphere-2024-2864, 2024
Preprint archived
Short summary
Short summary
We applied a biogeochemical model on grasslands in the pre-Alpine Ammer region in Germany and analyzed the influence of soil and climate on annual yields. In drought affected years, total yields were decreased by 4 %. Overall, yields decrease with rising elevation, but less so in drier and hotter years, whereas soil organic carbon has a positive impact on yields, especially in drier years. Our findings imply, that adapted management in the region allows to mitigate yield losses from drought.
Sebastian Sippel, Clair Barnes, Camille Cadiou, Erich Fischer, Sarah Kew, Marlene Kretschmer, Sjoukje Philip, Theodore G. Shepherd, Jitendra Singh, Robert Vautard, and Pascal Yiou
Weather Clim. Dynam., 5, 943–957, https://doi.org/10.5194/wcd-5-943-2024, https://doi.org/10.5194/wcd-5-943-2024, 2024
Short summary
Short summary
Winter temperatures in central Europe have increased. But cold winters can still cause problems for energy systems, infrastructure, or human health. Here we tested whether a record-cold winter, such as the one observed in 1963 over central Europe, could still occur despite climate change. The answer is yes: it is possible, but it is very unlikely. Our results rely on climate model simulations and statistical rare event analysis. In conclusion, society must be prepared for such cold winters.
Florian Willkofer, Raul R. Wood, and Ralf Ludwig
Hydrol. Earth Syst. Sci., 28, 2969–2989, https://doi.org/10.5194/hess-28-2969-2024, https://doi.org/10.5194/hess-28-2969-2024, 2024
Short summary
Short summary
Severe flood events pose a threat to riverine areas, yet robust estimates of the dynamics of these events in the future due to climate change are rarely available. Hence, this study uses data from a regional climate model, SMILE, to drive a high-resolution hydrological model for 98 catchments of hydrological Bavaria and exploits the large database to derive robust values for the 100-year flood events. Results indicate an increase in frequency and intensity for most catchments in the future.
Malte Meinshausen, Carl-Friedrich Schleussner, Kathleen Beyer, Greg Bodeker, Olivier Boucher, Josep G. Canadell, John S. Daniel, Aïda Diongue-Niang, Fatima Driouech, Erich Fischer, Piers Forster, Michael Grose, Gerrit Hansen, Zeke Hausfather, Tatiana Ilyina, Jarmo S. Kikstra, Joyce Kimutai, Andrew D. King, June-Yi Lee, Chris Lennard, Tabea Lissner, Alexander Nauels, Glen P. Peters, Anna Pirani, Gian-Kasper Plattner, Hans Pörtner, Joeri Rogelj, Maisa Rojas, Joyashree Roy, Bjørn H. Samset, Benjamin M. Sanderson, Roland Séférian, Sonia Seneviratne, Christopher J. Smith, Sophie Szopa, Adelle Thomas, Diana Urge-Vorsatz, Guus J. M. Velders, Tokuta Yokohata, Tilo Ziehn, and Zebedee Nicholls
Geosci. Model Dev., 17, 4533–4559, https://doi.org/10.5194/gmd-17-4533-2024, https://doi.org/10.5194/gmd-17-4533-2024, 2024
Short summary
Short summary
The scientific community is considering new scenarios to succeed RCPs and SSPs for the next generation of Earth system model runs to project future climate change. To contribute to that effort, we reflect on relevant policy and scientific research questions and suggest categories for representative emission pathways. These categories are tailored to the Paris Agreement long-term temperature goal, high-risk outcomes in the absence of further climate policy and worlds “that could have been”.
Julia Miller, Andrea Böhnisch, Ralf Ludwig, and Manuela I. Brunner
Nat. Hazards Earth Syst. Sci., 24, 411–428, https://doi.org/10.5194/nhess-24-411-2024, https://doi.org/10.5194/nhess-24-411-2024, 2024
Short summary
Short summary
We assess the impacts of climate change on fire danger for 1980–2099 in different landscapes of central Europe, using the Canadian Forest Fire Weather Index (FWI) as a fire danger indicator. We find that today's 100-year FWI event will occur every 30 years by 2050 and every 10 years by 2099. High fire danger (FWI > 21.3) becomes the mean condition by 2099 under an RCP8.5 scenario. This study highlights the potential for severe fire events in central Europe from a meteorological perspective.
Joel Zeder and Erich M. Fischer
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 83–102, https://doi.org/10.5194/ascmo-9-83-2023, https://doi.org/10.5194/ascmo-9-83-2023, 2023
Short summary
Short summary
The intensities of recent heatwave events, such as the record-breaking heatwave in early June 2021 in the Pacific Northwest area, are substantially altered by climate change. We further quantify the contribution of the local weather situation and the land surface conditions with a statistical model suited for extreme data. Based on this method, we can answer
what ifquestions, such as estimating the change in the 2021 heatwave temperature if it happened in a world without climate change.
Emma E. Aalbers, Erik van Meijgaard, Geert Lenderink, Hylke de Vries, and Bart J. J. M. van den Hurk
Nat. Hazards Earth Syst. Sci., 23, 1921–1946, https://doi.org/10.5194/nhess-23-1921-2023, https://doi.org/10.5194/nhess-23-1921-2023, 2023
Short summary
Short summary
To examine the impact of global warming on west-central European droughts, we have constructed future analogues of recent summers. Extreme droughts like 2018 further intensify, and the local temperature rise is much larger than in most summers. Years that went hardly noticed in the present-day climate may emerge as very dry and hot in a warmer world. The changes can be directly linked to real-world events, which makes the results very tangible and hence useful for climate change communication.
Laurène J. E. Bouaziz, Emma E. Aalbers, Albrecht H. Weerts, Mark Hegnauer, Hendrik Buiteveld, Rita Lammersen, Jasper Stam, Eric Sprokkereef, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 26, 1295–1318, https://doi.org/10.5194/hess-26-1295-2022, https://doi.org/10.5194/hess-26-1295-2022, 2022
Short summary
Short summary
Assuming stationarity of hydrological systems is no longer appropriate when considering land use and climate change. We tested the sensitivity of hydrological predictions to changes in model parameters that reflect ecosystem adaptation to climate and potential land use change. We estimated a 34 % increase in the root zone storage parameter under +2 K global warming, resulting in up to 15 % less streamflow in autumn, due to 14 % higher summer evaporation, compared to a stationary system.
Elizaveta Felsche and Ralf Ludwig
Nat. Hazards Earth Syst. Sci., 21, 3679–3691, https://doi.org/10.5194/nhess-21-3679-2021, https://doi.org/10.5194/nhess-21-3679-2021, 2021
Short summary
Short summary
This study applies artificial neural networks to predict drought occurrence in Munich and Lisbon, with a lead time of 1 month. An analysis of the variables that have the highest impact on the prediction is performed. The study shows that the North Atlantic Oscillation index and air pressure 1 month before the event have the highest importance for the prediction. Moreover, it shows that seasonality strongly influences the goodness of prediction for the Lisbon domain.
Nicola Maher, Sebastian Milinski, and Ralf Ludwig
Earth Syst. Dynam., 12, 401–418, https://doi.org/10.5194/esd-12-401-2021, https://doi.org/10.5194/esd-12-401-2021, 2021
Benjamin Poschlod, Ralf Ludwig, and Jana Sillmann
Earth Syst. Sci. Data, 13, 983–1003, https://doi.org/10.5194/essd-13-983-2021, https://doi.org/10.5194/essd-13-983-2021, 2021
Short summary
Short summary
This study provides a homogeneous data set of 10-year rainfall return levels based on 50 simulations of the Canadian Regional Climate Model v5 (CRCM5). In order to evaluate its quality, the return levels are compared to those of observation-based rainfall of 16 European countries from 32 different sources. The CRCM5 is able to capture the general spatial pattern of observed extreme precipitation, and also the intensity is reproduced in 77 % of the area for rainfall durations of 3 h and longer.
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
Fabian Willibald, Sven Kotlarski, Adrienne Grêt-Regamey, and Ralf Ludwig
The Cryosphere, 14, 2909–2924, https://doi.org/10.5194/tc-14-2909-2020, https://doi.org/10.5194/tc-14-2909-2020, 2020
Short summary
Short summary
Climate change will significantly reduce snow cover, but the extent remains disputed. We use regional climate model data as a driver for a snow model to investigate the impacts of climate change and climate variability on snow. We show that natural climate variability is a dominant source of uncertainty in future snow trends. We show that anthropogenic climate change will change the interannual variability of snow. Those factors will increase the vulnerabilities of snow-dependent economies.
Cited articles
Aalbers, E. E., Lenderink, G., van Meijgaard, E., and van den Hurk, B. J.
J. M.: Local-scale changes in mean and heavy precipitation in Western
Europe, climate change or internal variability?, Clim. Dynam., 50,
4745–4766, https://doi.org/10.1007/s00382-017-3901-9, 2018.
Addor, N. and Fischer, E. M.: The influence of natural variability and
interpolation errors on bias characterization in RCM simulations, J.
Geophys. Res. Atmos., 120, 10180–10195, https://doi.org/10.1002/2014JD022824, 2015.
Bengtsson, L. and Hodges, K. I.: Can an ensemble climate simulation be used
to separate climate change signals from internal unforced variability?, Clim.
Dynam., 52, 3553–3573, https://doi.org/10.1007/s00382-018-4343-8, 2019.
Brönnimann, S., Rajczak, J., Fischer, E. M., Raible, C. C., Rohrer, M., and Schär, C.: Changing seasonality of moderate and extreme precipitation events in the Alps, Nat. Hazards Earth Syst. Sci., 18, 2047–2056, https://doi.org/10.5194/nhess-18-2047-2018, 2018.
Christensen, J. H. and Christensen, O. B.: A summary of the PRUDENCE model
projections of changes in European climate by the end of this century,
Climatic Change, 81, 7–30, https://doi.org/10.1007/s10584-006-9210-7, 2007.
Deser, C., Phillips, A. S., Alexander, M. A., and Smoliak, B. V.: Projecting
North American Climate over the Next 50 Years: Uncertainty due to Internal
Variability, J. Climate, 27, 2271–2296, https://doi.org/10.1175/JCLI-D-13-00451.1,
2014.
Deser, C., Lehner, F., Rodgers, K. B., Ault, T., Delworth, T. L., DiNezio,
P. N., Fiore, A., Frankignoul, C., Fyfe, J. C., Horton, D. E., Kay, J. E.,
Knutti, R., Lovenduski, N. S., Marotzke, J., McKinnon, K. A., Minobe, S.,
Randerson, J., Screen, J. A., Simpson, I. R., and Ting, M.: Insights from
Earth system model initial-condition large ensembles and future prospects,
Nat. Clim. Chang., 10, 277–286, https://doi.org/10.1038/s41558-020-0731-2, 2020.
Ferguson, C. R., Pan, M., and Oki, T.: The Effect of Global Warming on
Future Water Availability: CMIP5 Synthesis, Water Resour. Res., 54,
7791–7819, https://doi.org/10.1029/2018WR022792, 2018.
Fischer, E. M. and Schär, C.: Future changes in daily summer temperature
variability: driving processes and role for temperature extremes, Clim. Dynam.,
33, 917–935, https://doi.org/10.1007/s00382-008-0473-8, 2009.
Fischer, E. M. and Schär, C.: Consistent geographical patterns of
changes in high-impact European heatwaves, Nat. Geosci., 3, 398–403,
https://doi.org/10.1038/ngeo866, 2010.
Fischer, E. M., Lawrence, D. M., and Sanderson, B. M.: Quantifying
uncertainties in projections of extremes – a perturbed land surface
parameter experiment, Clim. Dynam., 37, 1381–1398,
https://doi.org/10.1007/s00382-010-0915-y, 2011.
Fischer, E. M., Rajczak, J., and Schär, C.: Changes in European summer
temperature variability revisited, Geophys. Res. Lett., 39, L19702,
https://doi.org/10.1029/2012GL052730, 2012.
Fischer, E. M., Beyerle, U., and Knutti, R.: Robust spatially aggregated
projections of climate extremes, Nat. Clim. Change, 3, 1033–1038,
https://doi.org/10.1038/nclimate2051, 2013.
Giorgi, F.: Dependence of the surface climate interannual variability on
spatial scale, Geophys. Res. Lett., 29, 16-1–16-4, https://doi.org/10.1029/2002GL016175,
2002.
Giorgi, F.: Thirty Years of Regional Climate Modeling: Where Are We and
Where Are We Going next?, J. Geophys. Res.-Atmos., 124, 5696–5723,
https://doi.org/10.1029/2018JD030094, 2019.
Giorgi, F., Bi, X., and Pal, J.: Mean, interannual variability and trends in
a regional climate change experiment over Europe. II: climate change
scenarios (2071–2100), Clim. Dynam., 23, 839–858,
https://doi.org/10.1007/s00382-004-0467-0, 2004.
Giorgi, F., Jones, C., and Asrar, G. R.: Addressing climate information
needs at the regional level: the CORDEX framework, WMO Bulletin, 58,
175–183, 2009.
Giorgi, F., Raffaele, F., and Coppola, E.: The response of precipitation characteristics to global warming from climate projections, Earth Syst. Dynam., 10, 73–89, https://doi.org/10.5194/esd-10-73-2019, 2019.
Hawkins, E. and Sutton, R.: The Potential to Narrow Uncertainty in Regional
Climate Predictions, B. Am. Meteorol. Soc., 90, 1095–1107,
https://doi.org/10.1175/2009BAMS2607.1, 2009.
Hofstra, N., Haylock, M., New, M., and Jones, P. D.: Testing E-OBS European
high-resolution gridded data set of daily precipitation and surface
temperature, J. Geophys. Rese.-Atmos., 114, D21101,
https://doi.org/10.1029/2009JD011799, 2009.
Holmes, C. R., Woollings, T., Hawkins, E., and de Vries, H.: Robust Future
Changes in Temperature Variability under Greenhouse Gas Forcing and the
Relationship with Thermal Advection, J. Climate, 29, 2221–2236,
https://doi.org/10.1175/JCLI-D-14-00735.1, 2016.
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer,
L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G.,
Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A.,
Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N.,
Kotlarski, S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C.,
Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D.,
Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C.,
Valentini, R., Vautard, R., Weber, B., and Yiou, P.: EURO-CORDEX: New
high-resolution climate change projections for European impact research, Reg.
Environ. Change, 14, 563–578, https://doi.org/10.1007/s10113-013-0499-2, 2014.
Kendon, E. J., Rowell, D. P., Jones, R. G., and Buonomo, E.: Robustness of
Future Changes in Local Precipitation Extremes, J. Climate, 21, 4280–4297,
https://doi.org/10.1175/2008JCLI2082.1, 2008.
Kirchmeier-Young, M. C., Zwiers, F. W., and Gillett, N. P.: Attribution of
Extreme Events in Arctic Sea Ice Extent, J. Climate, 30, 553–571,
https://doi.org/10.1175/JCLI-D-16-0412.1, 2017.
Kotlarski, S., Keuler, K., Christensen, O. B., Colette, A., Déqué, M., Gobiet, A., Goergen, K., Jacob, D., Lüthi, D., van Meijgaard, E., Nikulin, G., Schär, C., Teichmann, C., Vautard, R., Warrach-Sagi, K., and Wulfmeyer, V.: Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble, Geosci. Model Dev., 7, 1297–1333, https://doi.org/10.5194/gmd-7-1297-2014, 2014.
Kumar, D. and Ganguly, A. R.: Intercomparison of model response and internal
variability across climate model ensembles, Clim. Dynam., 51, 207–219,
https://doi.org/10.1007/s00382-017-3914-4, 2018.
Leduc, M., Mailhot, A., Frigon, A., Martel, J.-L., Ludwig, R., Brietzke, G.
B., Giguére, M., Brissette, F., Turcotte, R., Braun, M., and Scinocca,
J.: ClimEx project: a 50-member ensemble of climate change projections at
12-km resolution over Europe and northeastern North America with the
Canadian Regional Climate Model (CRCM5), J. Appl. Meteorol.
Clim., https://doi.org/10.1175/JAMC-D-18-0021.1, 2019.
Lehner, F., Deser, C., and Sanderson, B. M.: Future risk of record-breaking
summer temperatures and its mitigation, Climatic Change, 146, 363–375,
https://doi.org/10.1007/s10584-016-1616-2, 2018.
Lehner, F., Deser, C., Maher, N., Marotzke, J., Fischer, E. M., Brunner, L., Knutti, R., and Hawkins, E.: Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6, Earth Syst. Dynam., 11, 491–508, https://doi.org/10.5194/esd-11-491-2020, 2020.
Lenderink, G.: Exploring metrics of extreme daily precipitation in a large
ensemble of regional climate model simulations, Clim. Res., 44, 151–166,
https://doi.org/10.3354/cr00946, 2010.
Lorenz, P. and Jacob, D.: Validation of temperature trends in the ENSEMBLES
regional climate model runs driven by ERA40, Clim. Res., 44, 167–177,
https://doi.org/10.3354/cr00973, 2010.
Maher, N., Milinski, S., Suarez-Gutierrez, L., Botzet, M., Dobrynin, M.,
Kornblueh, L., Kröger, J., Takano, Y., Ghosh, R., Hedemann, C., Li, C.,
Li, H., Manzini, E., Notz, D., Putrasahan, D., Boysen, L., Claussen, M.,
Ilyina, T., Olonscheck, D., Raddatz, T., Stevens, B., and Marotzke, J.: The
Max Planck Institute Grand Ensemble: Enabling the Exploration of Climate
System Variability, J. Adv. Model. Earth Sy., 11, 2050–2069,
https://doi.org/10.1029/2019MS001639, 2019.
Martel, J.-L., Mailhot, A., Brissette, F., and Caya, D.: Role of Natural
Climate Variability in the Detection of Anthropogenic Climate Change Signal
for Mean and Extreme Precipitation at Local and Regional Scales, J. Climate,
31, 4241–4263, https://doi.org/10.1175/JCLI-D-17-0282.1, 2018.
McKinnon, K. A. and Deser, C.: Internal Variability and Regional Climate
Trends in an Observational Large Ensemble, J. Climate, 31, 6783–6802,
https://doi.org/10.1175/JCLI-D-17-0901.1, 2018.
Miralles, D. G., Gentine, P., Seneviratne, S. I., and Teuling, A. J.:
Land-atmospheric feedbacks during droughts and heatwaves: state of the
science and current challenges, Ann. NY Acad. Sci.,
1436, 19–35, https://doi.org/10.1111/nyas.13912, 2019.
Nikiéma, O., Laprise, R., and Dugas, B.: Energetics of transient-eddy
and inter-member variabilities in global and regional climate model
simulations, Clim. Dynam., 51, 249–268, https://doi.org/10.1007/s00382-017-3918-0, 2018.
Ouranos: CRCM5-LE, ClimEx, available at: https://climex-data.srv.lrz.de/Public/CanESM2_driven_50_members/, last access: 16 November 2020.
Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C., and Sanderson, B. M.:
Precipitation variability increases in a warmer climate, Sci. Rep.,
7, 17966, https://doi.org/10.1038/s41598-017-17966-y, 2017.
Räisänen, J.: CO2-Induced Changes in Interannual Temperature and
Precipitation Variability in 19 CMIP2 Experiments, J. Climate, 15,
2395–2411, https://doi.org/10.1175/1520-0442(2002)015<2395:CICIIT>2.0.CO;2, 2002.
Rondeau-Genesse, G. and Braun, M.: Impact of internal variability on climate
change for the upcoming decades: analysis of the CanESM2-LE and CESM-LE
large ensembles, Climatic Change, 156, 299–314, https://doi.org/10.1007/s10584-019-02550-2,
2019.
Screen, J. A.: Arctic amplification decreases temperature variance in
northern mid- to high-latitudes, Nat. Clim. Change, 4, 577–582,
https://doi.org/10.1038/nclimate2268, 2014.
Seneviratne, S. I., Lüthi, D., Litschi, M., and Schär, C.:
Land-atmosphere coupling and climate change in Europe, Nature, 443,
205–209, https://doi.org/10.1038/nature05095, 2006.
Sørland, S. L., Schär, C., Lüthi, D., and Kjellström, E.:
Bias patterns and climate change signals in GCM-RCM model chains, Environ.
Res. Lett., 13, 74017, https://doi.org/10.1088/1748-9326/aacc77, 2018.
Suarez-Gutierrez, L., Li, C., Müller, W. A., and Marotzke, J.: Internal
variability in European summer temperatures at 1.5 ∘C and 2 ∘C of global warming, Environ. Res. Lett., 13, 64026,
https://doi.org/10.1088/1748-9326/aaba58, 2018.
Sun, L., Deser, C., and Tomas, R. A.: Mechanisms of Stratospheric and
Tropospheric Circulation Response to Projected Arctic Sea Ice Loss, J.
Climate, 28, 7824–7845, https://doi.org/10.1175/JCLI-D-15-0169.1, 2015.
Tamarin-Brodsky, T., Hodges, K., Hoskins, B. J., and Shepherd, T. G.:
Changes in Northern Hemisphere temperature variability shaped by regional
warming patterns, Nat. Geosci., 13, 414–421, https://doi.org/10.1038/s41561-020-0576-3,
2020.
Thompson, D. W. J., Barnes, E. A., Deser, C., Foust, W. E., and Phillips, A.
S.: Quantifying the Role of Internal Climate Variability in Future Climate
Trends, J. Climate, 28, 6443–6456, https://doi.org/10.1175/JCLI-D-14-00830.1, 2015.
Torma, C., Giorgi, F., and Coppola, E.: Added value of regional climate
modeling over areas characterized by complex terrain-Precipitation over the
Alps, J. Geophys. Res.-Atmos., 120, 3957–3972, https://doi.org/10.1002/2014JD022781,
2015.
Vautard, R. and Yiou, P.: Control of recent European surface climate change
by atmospheric flow, Geophys. Res. Lett., 36, 231, L22702, https://doi.org/10.1029/2009GL040480,
2009.
Vidale, P. L., Lüthi, D., Wegmann, R., and Schär, C.: European
summer climate variability in a heterogeneous multi-model ensemble, Climatic
Change, 81, 209–232, https://doi.org/10.1007/s10584-006-9218-z, 2007.
Vogel, M. M., Zscheischler, J., and Seneviratne, S. I.: Varying soil moisture–atmosphere feedbacks explain divergent temperature extremes and precipitation projections in central Europe, Earth Syst. Dynam., 9, 1107–1125, https://doi.org/10.5194/esd-9-1107-2018, 2018.
von Trentini, F., Leduc, M., and Ludwig, R.: Assessing natural variability
in RCM signals: comparison of a multi model EURO-CORDEX ensemble with a
50-member single model large ensemble, Clim. Dynam., 53, 1963–1979,
https://doi.org/10.1007/s00382-019-04755-8, 2019.
Wang, L., Deng, A., and Huang, R.: Wintertime internal climate variability
over Eurasia in the CESM large ensemble, Clim. Dynam., 52, 6735–6748,
https://doi.org/10.1007/s00382-018-4542-3, 2019.
Xoplaki, E., González-Rouco, J. F., Luterbacher, J., and Wanner, H.:
Mediterranean summer air temperature variability and its connection to the
large-scale atmospheric circulation and SSTs, Clim. Dynam., 20,
723–739, https://doi.org/10.1007/s00382-003-0304-x, 2003.
Yettella, V., Weiss, J. B., Kay, J. E., and Pendergrass, A. G.: An Ensemble
Covariance Framework for Quantifying Forced Climate Variability and Its Time
of Emergence, J. Climate, 31, 4117–4133, https://doi.org/10.1175/JCLI-D-17-0719.1,
2018.
Short summary
We compare the inter-annual variability of three single-model initial-condition large ensembles (SMILEs), downscaled with three regional climate models over Europe for seasonal temperature and precipitation, the number of heatwaves, and maximum length of dry periods. They all show good consistency with observational data. The magnitude of variability and the future development are similar in many cases. In general, variability increases for summer indicators and decreases for winter indicators.
We compare the inter-annual variability of three single-model initial-condition large ensembles...
Altmetrics
Final-revised paper
Preprint