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Abstract. For sectors like agriculture, hydrology and ecology, increasing interannual variability (IAV) can have
larger impacts than changes in the mean state, whereas decreasing IAV in winter implies that the coldest seasons
warm more than the mean. IAV is difficult to reliably quantify in single realizations of climate (observations and
single-model realizations) as they are too short, and represent a combination of external forcing and IAV. Single-
model initial-condition large ensembles (SMILEs) are powerful tools to overcome this problem, as they provide
many realizations of past and future climate and thus a larger sample size to robustly evaluate and quantify
changes in IAV. We use three SMILE-based regional climate models (CanESM-CRCM, ECEARTH-RACMO
and CESM-CCLM) to investigate downscaled changes in IAV of summer and winter temperature and precipita-
tion, the number of heat waves, and the maximum length of dry periods over Europe. An evaluation against the
observational data set E-OBS reveals that all models reproduce observational IAV reasonably well, although both
under- and overestimation of observational IAV occur in all models in a few cases. We further demonstrate that
SMILEs are essential to robustly quantify changes in IAV since some individual realizations show significant
IAV changes, whereas others do not. Thus, a large sample size, i.e., information from all members of SMILEs, is
needed to robustly quantify the significance of IAV changes. Projected IAV changes in temperature over Europe
are in line with existing literature: increasing variability in summer and stable to decreasing variability in win-
ter. Here, we further show that summer and winter precipitation, as well as the two summer extreme indicators
mostly also show these seasonal changes.

1 Introduction

In addition to the changes in mean climatological states, the
variability of the climate system is an important feature of
climate change. This variability of the climate system is sub-
ject to various drivers. Variability can be caused by natural
forcings on different timescales, such as changes in solar ra-
diation or volcanic eruptions. Variability of single compo-
nents of the climate system can also be caused by the redis-
tribution of heat and momentum between and within differ-
ent components (e.g., ocean and atmosphere) of the coupled

climate system, referred to as unforced internal variability.
Next to these variations, anthropogenic changes in green-
house gas concentrations contribute to a changing climate.
Climate variability can be sampled on different timescales
from hours and days up to multi-decadal variations.

For impact analysis of climate change, the future develop-
ment of interannual variability (IAV) is of utmost importance
in addition to changes in the mean climate state. Particularly
increases in the IAV can be crucial for many impact sectors,
as this makes it much harder for stakeholders to plan from
year to year. In this study, daily data are used to calculate six
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indicators (summer and winter mean surface air temperature
(tas) and accumulated seasonal precipitation (pr)) and two
indicators for climatological extremes with high societal im-
pact: the number of heat waves per year (tas-HW-Nr) and the
maximum length of dry periods per year (pr-DP-MAX); see
Table 1 for definitions. Heat waves can cause an increase in
health problems and even fatalities among the population, as
well as damage to infrastructure (e.g., highways) and ecolog-
ical problems, as seen during the most recent heat waves in
Europe (e.g., 2003, 2018, 2019). Long dry periods can have
major impacts on ecology, forestry, agriculture, drinking wa-
ter supply, power plant cooling outages, transport on rivers
and many more. All these sectors should implement adapta-
tion strategies to face changing climatic conditions, including
IAV.

Early studies with regional climate models from PRU-
DENCE showed a distinct increase in IAV for the 21st cen-
tury in summer temperatures (Fischer and Schär, 2009, 2010;
Vidale et al., 2007) as well as decreasing winter temperature
variability (Vidale et al., 2007). Later work with ENSEM-
BLES models revealed a less pronounced increase in sum-
mer temperature variability (Fischer et al., 2012). Analysis
of SMILEs also showed future increases in variability of Eu-
ropean summer temperatures with increasing global warming
(Suarez-Gutierrez et al., 2018; Yettella et al., 2018). Holmes
et al. (2016) and Tamarin-Brodsky et al. (2020) also find in-
creasing temperature variability in summer and decreasing
variability in winter for the future. European winter tem-
perature variability has already today decreased since the
pre-industrial era in another large climate model ensemble
(Bengtsson and Hodges, 2019).

For large areas of the globe, including Europe, an in-
crease in precipitation variability from daily to multi-decadal
timescales is expected due to higher temperatures (Pender-
grass et al., 2017). However, Ferguson et al. (2018) find sig-
nificant changes in the IAV of monthly precipitation only in a
small fraction of CMIP5 models for a western European do-
main until the end of the 21st century. Earlier analysis with
regional climate models revealed future increases in summer
and decreases in winter for IAV of precipitation over similar
domains as used in this study (Giorgi et al., 2004).

Uncertainty of future climate projections can stem from
at least three sources (Hawkins and Sutton, 2009): emission
scenario, model response to a selected forcing and internal
variability of the climate system. Internal variability is often
referred to as “irreducible uncertainty” at timescales beyond
seasons to decades. While scenario and model response un-
certainty have been referred to in many climate simulation
experiments (CMIP and CORDEX), the internal variability
component had received less attention for many years. In re-
cent years, a new tool for the assessment of internal variabil-
ity has become quite popular: single-model initial-condition
large ensembles (SMILEs), where the same model is forced
with the same emission scenario several times – with the runs
(members) just differing in their initial conditions. This setup

is able to isolate the internal variability component from the
scenario and model response uncertainty for the respective
model. Based on SMILEs, it has been shown that the contri-
bution of internal variability to the total uncertainty of multi-
model ensembles (CMIP, CORDEX) can be large, especially
for mid-term projections and precipitation (Kumar and Gan-
guly, 2018; von Trentini et al., 2019) at the regional level.

The terms large ensemble (LE) and SMILE usually de-
scribe the same thing, but we prefer SMILE as it incorpo-
rates the type of large ensemble which is built upon differ-
ent initial conditions. Up to now, a number of large ensem-
bles have been produced. Deser et al. (2020) give the latest
overview of the different SMILEs available. However, most
studies only use one SMILE for their analysis and the rare
comparisons are usually just between two ensembles: similar
patterns of internal variability of temperature and precipita-
tion trends for the middle of the 21st century were found for
a CCSM3 and an ECHAM5 ensemble over North America
by Deser et al. (2014). Martel et al. (2018) showed a consen-
sus of the IAV of annual mean and extreme precipitation in
a CanESM2 large ensemble (which is also used for bound-
ary conditions of the CRCM5 in this study; see Sect. 2) and
CESM-LE with two global observational data sets.

All these simulations were performed with global cli-
mate models (GCMs), and only a few were dynamically
downscaled with regional climate models (RCMs). Here, we
compare three dynamically downscaled large ensembles, all
forced by the Representative Concentration Pathway (RCP)
8.5, for Europe. It is the first time that regional large en-
sembles are compared with respect to forced changes and
their internal variability. The added value of RCM simula-
tions is well documented for EURO-CORDEX (Giorgi et al.,
2009; Torma et al., 2015; Sørland et al., 2018; Giorgi, 2019).
Downscaled climate data are also a necessity for impact mod-
eling at regional to local scales (e.g., for hydrology, agricul-
ture, biodiversity research) due to their more accurate repre-
sentation of topography, complex coastlines and the hetero-
geneity of land surface properties.

Terminology in the context of climate variability is not al-
ways clear in the literature, as the terms natural variability,
internal variability, IAV and inter-member variability (IMV)
are often used synonymously or mixed up. Here, the term in-
ternal variability describes the variability at timescales from
seconds up to multiple decades caused by unforced internal
effects of a model or the real world due to the chaotic nature
of the climate system only, without incorporating naturally
forced variability due to volcanic eruptions and solar forc-
ing. Anthropogenic changes in greenhouse gas and aerosol
concentrations as well as natural solar and volcanic forcing
can cause changes in the mean climate state that are super-
imposed by internal variability. Moreover, higher greenhouse
gas concentrations can cause changes in the internal variabil-
ity itself in the future as well – adding another component to
climate change effects.
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Table 1. Indicators and their definitions.

Indicator Used variable Definition

tas-JJA tas Summer mean temperature (June–August)

tas-DJF tas Winter mean temperature (December–February)

tas-HW-Nr tas Number of heat waves per year; a heat wave is defined as a
minimum of 3 d above the 95th percentile of daily mean tem-
perature of the reference period; no filtering on summer months
is applied at any stage; however, by definition the heat waves
will occur during summer in the reference period. They might,
however, extend to spring and fall under RCP8.5.

pr-JJA pr Summer precipitation sum (June–August)

pr-DJF pr Winter precipitation sum (December–February)

pr-DP-MAX pr Maximum length of a dry period per year; dry periods are a
minimum of 11 consecutive days with every day showing less
than 1 mm of precipitation; no filtering on summer months is
applied at any stage; the periods can thus also occur in winter
(but this is rather unlikely in Europe).

In this study, IAV is calculated as the standard deviation of
anomalies of each member from the ensemble mean (EM),
which represents an estimate of the forced response of the
respective model. SMILEs have the advantage that the EM is
a much better estimate of the forced response than a trend fit-
ted to single members. After removing the forced response,
the residual IAV equals the total unforced internal variability
– including low-frequency variations. We will show that IAV
can be well estimated by the IMV of a SMILE in many cases,
as both metrics sample the unforced internal variability of a
SMILE, just on different dimensions: IAV is sampled on the
time dimension of a single member, while IMV is sampled
on the member dimension for each year (see Sect. 3.4). Both
IAV and IMV are terms used to describe the more general
term “internal variability” throughout this paper. Also, note
that the EM of each SMILE can be regarded as the change
signal with the highest probability, but which specific mem-
ber would become realized depends on internal variability.

The usage of three RCM-SMILEs has some advantages
compared to multi-model ensembles consisting of single re-
alizations that enable us to go beyond the current literature on
IAV changes. First, we can better evaluate the models against
observations as (a) the forced response of the model is bet-
ter estimated by the EM and (b) we thus reduce the prob-
lem of having only one realization of climate to the observa-
tional data side of the evaluation. Second, we can more reli-
ably quantify changes in the IAV and rule out that potential
changes only occur as a result of sampling uncertainty. Ad-
ditionally, we can better demonstrate when changes are sig-
nificantly different from historical conditions. In recent liter-
ature, often no significance test of detected changes in inter-
annual variability is performed (e.g., Bengtsson and Hodges,
2019). Many studies just provide information about the ro-

bustness of change (e.g., by stippling in maps), measured by
the accordance in the sign of change of (usually) 67 % of the
models of multi-model ensembles (e.g., Holmes et al., 2016).
This does, however, not allow information about the signifi-
cance compared to a reference climate. Third, SMILEs allow
a better separation of models as they are not only described
by one member each. Additionally, we combine these gen-
eral SMILE advantages with the higher resolution of RCMs.

The remaining paper is structured as follows: First, the
model ensembles and the observational data set E-OBS are
briefly presented. Then, the change in mean temperature and
precipitation together with the inter-member spread of pro-
jected changes is analyzed for each ensemble, as the mean
changes are important baseline information for variability
changes. Next, the IAV of the three regional large ensem-
bles is evaluated against E-OBS to assess the abilities of the
models to represent observed IAV for the selected indicators.
Finally, IAV in historical climate and future changes in IAV
are compared between SMILEs. This includes a discussion
on different methods to estimate IAV and detect significant
changes in IAV. In the main text, most results will only be
presented for mid-Europe (ME), with references to the other
regions and their figures in the Supplement.

2 Data

The climate model ensembles each consist of a GCM single-
model initial-condition large ensemble, which has been dy-
namically downscaled over Europe with a single regional
climate model: a 50-member CanESM2-CRCM5 ensem-
ble (Kirchmeier-Young et al., 2017; Leduc et al., 2019), a
21-member CESM-CCLM ensemble (Fischer et al., 2013;
Addor and Fischer, 2015; Brönnimann et al., 2018) and a
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Table 2. Specifications of the three ensembles used in this study.

CRCM CCLM RACMO

Scenario RCP8.5 RCP8.5 RCP8.5
GCM CanESM2 CESM 1.0.4 EC-EARTH 2.3
GCM resolution 2.8◦ 2.0◦ 1.0◦

RCM CRCM5 CCLM4-18-7 RACMO22E
RCM resolution 0.11◦ 0.44◦ 0.11◦

No. of members 50 21 16

16-member EC-EARTH-RACMO ensemble (Aalbers et al.,
2018), all forced with the RCP8.5 scenario, resolved on dif-
ferent spatial resolutions (Table 2). Hereafter we indicate
the GCM-RCM combinations with the RCM names only
(CRCM, RACMO and CCLM). This setup with a shared sce-
nario but different models enables us to analyze differences
in internal variability between the three ensembles. Differ-
ences in variability may stem from the differences in the
resolution of both GCMs and RCMs, the different domain
sizes, the different models, and differences in aerosol forc-
ing in the RCM simulations (constant in CCLM and CRCM,
transient in RACMO) and in the application of an ocean slab
model in the EC-EARTH-RACMO ensemble. RACMO also
uses slightly different grid specifications. The domain size of
CCLM equals the EURO-CORDEX domain, while CRCM
uses a slightly smaller domain, and RACMO only captures
central and northeastern Europe (Fig. 1). The initialization is
carried out differently in the three driving GCM-SMILEs:
CanESM2 builds on a hybrid approach, where five mem-
bers with different ocean conditions starting in 1850 were di-
vided into 10 members each using atmospheric perturbations
during the initialization in 1950 (see Leduc et al., 2019 for
details). The CESM members stem from small atmospheric
perturbations of the order of 10−13 on 1 January 1950 (Fis-
cher et al., 2013). EC-EARTH uses the first 16 d in the year
1850 of an initial run to start the 16 members (Aalbers et al.,
2018). These climate model data sets will be compared but
will also be compared to observations: the gridded observa-
tional data set E-OBS has daily precipitation and tempera-
ture available for Europe (version v12.0, spatial resolution of
0.22◦ on a rotated pole grid). We use the E-OBS data set be-
cause of its availability for Europe and it has similar spatial
resolution to the regional climate models under considera-
tion. We accept the known weaknesses of the data set (mostly
caused by inhomogeneities in the sparse station network; E-
OBS is also known for rather low precipitation fields; see
Hofstra et al., 2009) and assume that it is nonetheless suit-
able for the purpose of this study.

3 Methods and results

3.1 Spatial aggregation

All indicators (Table 1) are calculated on a grid basis for
each ensemble. For comparison, the indicators are spatially
aggregated to four regions in Europe, for which all three
RCM domains overlap (Fig. 1): the British Isles (BI), France
(FR), mid-Europe (ME) and the Alps (AL). These regions
are well known from other European climate model stud-
ies (Lenderink, 2010; Lorenz and Jacob, 2010; Kotlarski et
al., 2014; von Trentini et al., 2019) and were introduced by
Christensen and Christensen (2007). The procedure of cal-
culating the indicators on the grid level and spatially aggre-
gating them afterwards has the advantage that no regridding
of data is needed. However, the different spatial resolutions
of the models alone can potentially lead to higher variabil-
ity in the 0.11◦ data (CRCM and RACMO), compared to
the 0.22◦ (E-OBS) and 0.44◦ (CCLM) data. This is espe-
cially the case for spatially heterogeneous variables and indi-
cators (Giorgi, 2002; Kendon et al., 2008). The indicators in
this study, however, have relatively low spatial heterogeneity
(seasonal temperature and precipitation, heat waves, and dry
periods are rather large-scale phenomena), where the range
of spatial resolutions of the data used here (between 0.11 and
0.44◦) is not expected to be significantly sensitive. The effect
of regridding before the calculation of indicators is shown
by a short experimental analysis, where 1 year of five mem-
bers of the 0.11◦ CRCM data is regridded to 0.44◦ (simply
averaging 4×4 grid cells each), before the indicators are cal-
culated. The results show that the effect of regridding on the
IMV is indeed minor for the indicators considered (Fig. S1).
The approach of direct regional aggregation of the indicators
calculated on the grid level is therefore applied for the further
analysis of this study.

3.2 Ensemble spread of projected mean climate change

Before analysis of IAV, simple scatterplots of the changes
in the mean climatological states of each member for tem-
perature and precipitation for summer and winter between
1980–2009 and 2070–2099 are shown for ME; see Figs. 2
and 3. They give a first impression on the spread of projected
changes between the members of SMILEs and on the dif-
ferences in the mean changes between models. We test the
similarity of means between all models with a two-sample t
test (α = 0.05) and the similarity of spreads with a Brown–
Forsythe test (BF test with α = 0.05) on equal variances. The
BF test does not show significant differences in variance for
both temperature and precipitation in winter and summer for
all model combinations. The spread of signals between mem-
bers of one SMILE can be solely attributed to the internal
variability of the respective model.

In summer in ME, all models show decreasing precipita-
tion; between −3 % and −16 % for RACMO and −14 % to
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Figure 1. Domains of the three RCMs and the boundaries of the four analysis regions; BI: the British Isles; FR: France; ME: mid-Europe;
AL: Alps; the CCLM domain matches the EURO-CORDEX domain.

−35 % for CRCM and CCLM (Fig. 2). Increases in summer
temperature between 3 and 5 ◦C are projected by RACMO
and CCLM, while CRCM shows much higher changes be-
tween 5 ◦C and more than 6 ◦C. Thus, RACMO and CCLM
show similar changes in temperature (although statistically
different in their means), while CCLM and CRCM show
similar changes in precipitation. The spread of changes for
both temperature and precipitation of RACMO and CRCM
are similar, both in terms of standard deviation and total
range, while CCLM shows a higher standard deviation and
total range (Table 3). Similar results as discussed here for
mid-Europe (mean changes and spread) are found for France
and the Alps (not shown), with the largest decrease in sum-
mer precipitation over France and the strongest warming over
the Alps. The British Isles region shows less pronounced
changes for both temperature and precipitation (although
they are consistent in sign). CRCM shows a closer similar-
ity of precipitation decreases to RACMO in BI rather than to
CCLM, as is the case for the other three regions ME, FR and
AL.

In winter, all models project increasing precipitation (1 %–
32 %) and temperature increases between 1.4 and 5 ◦C by the
end of the 21st century (Fig. 3). RACMO and CRCM show a
similar standard deviation and range of temperature and pre-
cipitation changes again, together with similar mean changes
as well (significant for temperature but not for precipitation).
CCLM shows distinctly smaller changes in combination with
a smaller spread of changes (Table 3). Similar results also ap-
pear for FR, AL and BI, although some members of CCLM
and CRCM also project a slight decrease in precipitation in
these regions.

3.3 Evaluation against E-OBS

For the evaluation of the models’ IAV against E-OBS, we ap-
ply an approach proposed by Suarez-Gutierrez et al. (2018)
and Maher et al. (2019). For the observations and for each
model and member separately, the anomalies relative to the
reference period 1961–1990 are calculated for the years
1957–2099 and 1957–2015 in E-OBS, respectively (Fig. 4).
Model mean state biases of the indicators, which can be
quite large (see Fig. S2) are thereby removed. For each year,
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Table 3. Standard deviation and total range for changes in Figs. 2 and 3.

tas (◦C) pr (%)

CRCM RACMO CCLM CRCM RACMO CCLM

Summer SD 0.27 0.28 0.39 4.2 3.8 5.1
Summer range 1.16 0.96 1.59 16.2 13.2 21.1
Winter SD 0.37 0.38 0.30 5.5 5.3 4.2
Winter range 1.87 1.47 1.33 26.1 21.2 12.9

Figure 2. Change in mean summer temperature and precipitation
for every member of the three ensembles in mid-Europe (2070–
2099 against 1980–2009). Changes are relative to each members’
value in 1980–2009 for precipitation, while temperature changes
are absolute.

we then plot the ensemble median, minimum and maximum
member, the area between the 12.5th and 87.5th percentile,
within which 75 % of the members are situated, and the E-
OBS data. For a perfect model, the E-OBS data are expected
to occur normally distributed within the range spanned by
the ensemble and are concentrated in the inner 75 %, sev-
eral years situated in between the minimum and maximum
of members, but also outside this range from time to time.
If the E-OBS data are concentrated too much inside the total
range or even the 75 % area, the variability of the ensem-
ble overestimates the observational variability. By contrast,
if too many E-OBS data points exceed the ensemble spread,
SMILE underestimates observational variability. To quantify
this further, the probability density function of the anoma-
lies in the period 1957–2015 is plotted for each member and
E-OBS separately. The functions are estimated probability

Figure 3. Change in winter temperature and precipitation for every
member of the three ensembles in mid-Europe (2070–2099 against
1980–2009). Changes are relative to each members’ value in 1980–
2009 for precipitation, while temperature changes are absolute.

densities based on a normal kernel function, similar to an ap-
proach by Lehner et al. (2018).

The forced response (ensemble median) increases for all
indicators analyzed, except for summer precipitation, which
decreases in all models, and there is no clear change in pr-
DP-MAX in RACMO. Note that this approach does not only
compare the IAV of the models and E-OBS, but also the
forced response in the historical period. Differences in the
distributions can thus also arise from a false representation
of the forced response in a model, compared to the trend in
E-OBS. On the other hand, if the modeled and observed dis-
tributions largely coincide, both the forced response and the
IAV are well represented by a model. All three models gen-
erally seem to reproduce the forced response in the historical
part quite well, as the models are consistent with the trends
of the E-OBS points (e.g., increase in tas-JJA). Only for sum-
mer precipitation (pr-JJA) do all models show a decrease in
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Figure 4. Anomalies from 1961 to 1990 of the six indicators in mid-Europe (ME) for E-OBS (circles 1957–2015) and the three ensembles
(1957–2099), represented by the median, minimum and maximum (solid lines) of the ensemble and an area from the 12.5th and 87.5th
percentile, spanning the range of the inner 75 % of the members (shading). Black lines show the linear trend for the E-OBS points. The
indicator names are in bold when the trend is significant using a Mann–Kendall test (α = 0.05).

the forced response, whereas E-OBS shows no significant
negative trend. However, in all ensembles, not all members
show decreasing trends. The observations may thus still be
consistent with the simulated forced response.

The comparison of E-OBS and the three SMILEs during
the historical period from 1957 from 2015 in ME shows
largely good representations of IAV in the ensembles, as
seen by well distributed E-OBS points within the 75 % range
(12.5 %–87.5 % quantile) and minimum and maximum range
of the ensembles (Fig. 4). However, too a strong clustering
of the E-OBS points in the 75 % area occurs for winter pre-
cipitation in CRCM (97 % fall inside) and number of heat
waves in CCLM (90 %), meaning the simulated IAV is too

high. On the other hand, too many outliers beyond the min-
imum and maximum members appear in winter temperature
in CCLM (22 % outside of total range), winter precipitation
in RACMO (17 %) and maximum duration of dry periods
in CRCM (10 %), i.e., for these models and indicators the
simulated IAV is too low. To demonstrate this further we cal-
culate probability density functions of the annual anomalies
for each member and E-OBS (Fig. 5). Note that probability
density functions could also be somewhat inflated by the un-
derlying mean trend, but we expect this effect to be small be-
cause trends in the observational period are small and largely
consistent between models and observations. To evaluate the
ability of SMILEs to represent observational IAV, we test
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whether the E-OBS distribution looks like a possible mem-
ber of the respective ensemble. The observations are not ex-
pected to fall near the ensemble median but rather should be
ideally indistinguishable from a random additional member
of the ensemble, since E-OBS only represents one possible
realization of historical climate. Significant differences can
be seen for the examples already mentioned: the distribution
of CRCM in winter precipitation is much broader than the
E-OBS distribution, whereas the winter temperature distri-
bution for CCLM is concentrated too much in the middle
compared to E-OBS.

Similar results as in ME can be found in the other three re-
gions as well (Figs. S3–S5), with only a few cases where the
E-OBS distributions show a distinctly different shape than all
members of the ensembles (Fig. 6 for AL and Figs. S6 and S7
for BI and FR, respectively), especially for the maximum du-
ration of dry periods of CCLM in France. This is not too
surprising, as the maximum duration of dry periods is an ex-
tremely sensitive indicator because of its potentially extreme
differences in magnitude between (model) years/members
(one wet day can make a huge difference). The other two
SMILEs are able to represent the E-OBS variability for this
indicator in France though. Other remarkable features are the
underestimation of variability in RACMO for all six indica-
tors in the British Isles region (Fig. S6), as well as the rela-
tively good performance of the models for the Alps (Fig. 6),
which is probably the most difficult region for a model to
represent correctly due to the strong spatial heterogeneity.
However, the Alps show some “outlier-members” with dis-
tinctly different distributions in the ensembles (e.g., winter
precipitation in CRCM), which cannot be found in the other
regions – at least not this pronounced. These outliers demon-
strate how large the influence of internal variability between
members can be in a single realization of climate, as these
outlier members just deviate from all other members by their
initial conditions. Estimating the IAV of a model thus needs
a large number of members, as even with 49 members that
give a uniform range of distributions (pr-DJF in CRCM5 in
the Alps, Fig. 6), one single additional member can change
the picture and add more information on the range of IAV for
the respective model. The evaluation of E-OBS gets rather
difficult in these cases, as the methodology is based on the as-
sumption that the E-OBS distribution should somehow “fit”
to the uniform range of distributions of the model. If the E-
OBS data showed such an outlier behavior, it means that the
one realization of climate variability as seen by the E-OBS
data might still be part of a SMILE’s range of possible vari-
ability manifestations. However, from a probability perspec-
tive, the conclusion of similar variabilities becomes rather
unlikely. It just makes it harder to prove that E-OBS has a
different distribution than all members of a SMILE.

3.4 Projected changes in internal variability and the
connection between IAV and IMV

The temporal development of the internal variability is im-
portant information along with the underlying forced re-
sponse (change in the EM) for a better understanding of
changing climatic conditions. We discuss three possible ways
to describe changes in the internal variability on annual
timescales within a SMILE. All three methods are based on
the application of a BF test on equal variances. While IAV
and IMV are expressed as standard deviations (SDs), the BF
test analyses differences in the variance, which is just the
square of SD. In the cases of IAV (methods 1 and 3), moving
time periods of 30-year length, shifted by 1 year each (1961–
1990, 1962–1991, . . . , 2070–2099) are used. For the second
method, IMV is sampled over the dimension of the ensemble
size per year. Thereby we test whether the internal variability
changes significantly over time. Differences in the methods
arise from the different data samples used for the testing.

The first method is based on the methodology that one
would choose for single members and observations. By look-
ing at the IAV for different periods within one member,
changes in IAV can be detected. Usually the forced response
is taken out of the data by fitting a polynomial to the data and
only using the residuals. However, the estimate of the forced
response of a model based on only one member may deviate
from the true forced response (Lehner et al., 2020). There-
fore, we choose the EM as an estimate of the forced response
and use the residuals from each member with respect to the
EM for the BF test. The BF test results is Boolean informa-
tion for each member and each moving period on whether
the variance has significantly changed with respect to a refer-
ence period (here: 1961–1990) or not. This information can
be used to show the percentage of members with a signif-
icant change (separated for positive and negative changes)
in each period. The advantage of SMILEs within this ap-
proach is the better estimate of the forced response and a
more robust detection of changes, as they are built on mul-
tiple members. One member alone could be an outlier in its
representation of (changes in) IAV just as it could be for the
trend. The method is sensitive to the chosen reference period
of course, as the variance of this period determines the base-
line variance. Since we use moving periods, the results do not
change significantly when using different periods starting in
the 1960s.

For the second method, we make use of the assumption
that the IMV for a given year is a good approximation for
the IAV in a period around that year (e.g., ±15 years to get
a sample size of the typical 30 years for climate analysis).
The sampling of variability is thus not based on consecutive
time series within each member but on a compound of an-
nual data for 1 year from all members of a SMILE. The IMV
is also based on residuals from the EM as for IAV. Under
the assumption of small influence of low-frequency variabil-
ity, IMV should be a good estimate of total unforced IAV, as
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Figure 5. Probability density functions of the annual anomalies during the period 1957–2015 in E-OBS and each ensemble member for all
six indicators in mid-Europe (ME).

both sample the annual variability during a similar state of
climate for a given time horizon. This concept is particularly
relevant in the presence of non-linear forcing. For instance,
the response to a volcanic eruption cannot be separated eas-
ily from unforced IAV. In addition, the anthropogenic forc-
ing since 1950 has not been linear in time. Using IMV is an
elegant way to get around this challenge. Some recent pub-
lications support the concept of using IMV as an approxi-
mation of IAV, although the two have different background
meanings: while IAV has a physical meaning and represents
the variability of a consecutive sequence of weather phenom-
ena, IMV is a measure of variability without a direct physical
meaning (Nikiéma et al., 2018).

In Leduc et al. (2019) the authors state that “In the case of a
climate system under transient forcing, the use of [IMV equa-
tion] to assess temporal variability using the inter-member
spread involves weaker assumptions than calculating the

residual temporal variability from detrended time series.”
(Leduc et al., 2019, p. 681), based on the study by Nikiéma
et al. (2018). A recent publication by Wang et al. (2019) even
concludes that the IMV of winter sea level pressure over
Eurasia in a SMILE is driven by the same mechanisms as
observed IAV via an EOF analysis. Another example is the
analysis of seasonal mean and heavy precipitation in Europe
where long-term variations are small compared to the IAV in
the RACMO ensemble (Aalbers et al., 2018). A comparison
of IAV and IMV in each ensemble is carried out by compar-
ing the means and standard deviations of these two variability
metrics – calculated over different dimensions of the ensem-
ble data. The IAV is calculated for each member during a
30-year reference period (1980–2009) and three future pe-
riods. The mean and standard deviation of these 50, 21 and
16 values is calculated for IAV. The IMV is calculated for
each of the 30 years of the respective period between the 50,

https://doi.org/10.5194/esd-11-1013-2020 Earth Syst. Dynam., 11, 1013–1031, 2020



1022 F. von Trentini et al.: Comparing interannual variability

Figure 6. Probability density functions of the annual anomalies for all six indicators in the Alps (AL). For details, see Fig. 5.

21 and 16 members, leading to a mean and standard devi-
ation, calculated from these 30 values. The mean and stan-
dard deviation of IAV and IMV are indeed very similar for
all indicators, periods and regions (exemplarily shown for
winter temperature in Fig. 7). Especially the similarity in fu-
ture changes suggests a similar response to external forcing
for the two variability metrics IAV and IMV. The IMV has
the advantage that it is insensitive to inflation effects of the
variability due to an existing trend and forced effects like
cooling after volcanic eruptions for example. However, al-
though IAV and IMV seem to be similar in many cases (see
also literature above), they can potentially also differ under
special circumstances in the external forcing like volcanic
eruptions. Note that according to our results IMV is always
slightly larger than IAV. This may be caused by two factors.
First, detrending the time series is more likely to remove than
to add some of the variability, and it affects only IAV. Sec-
ond, also without detrending the data, in the presence of low-

frequency variability, IAV is likely smaller than IMV, which
has no auto-correlation in the underlying data. For the vari-
ables considered here, differences are small though, implying
that the low-frequency variability is indeed small compared
to the high-frequency variability.

Given the similarity of IAV and IMV, the third approach
pools together the annual anomalies from the EM from all
members for a given 30-year period (30 times the ensemble
size, e.g., 30× 21 values for CCLM). It is therefore a mixture
of IAV and IMV, enabling a more robust BF test result for
changes in variance by a larger sample size.

While the interpretation of temperature-based indicators is
always based on absolute anomalies from the EM, it can be
useful to look at both absolute and relative anomalies from
the EM for precipitation-based indicators (in contrast to the
previous evaluation against E-OBS, where they were only ab-
solute anomalies). Relative anomalies thus give information
on how much the standard deviation changes with respect
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Figure 7. IAV and IMV of winter temperature in the three ensembles for the reference period (1980–2009) and three future periods. Bars:
mean over the variability of each member (IAV) or year (IMV). Error bars: ± standard deviation (members or years); IMV: 16/21/50 mem-
bers; IAV: 30 years of the respective period.

to changes in the EM. For example, a stable IMV in abso-
lute terms will result in a decrease in the relative IMV when
the EM increases. Increasing relative IMV, together with an
increasing EM on the other hand means that the internal vari-
ability is increasing even more than the mean.

The percentage of members with significant changes in
IAV as a function of time is shown in Fig. 8 for all indica-
tors, for mid-Europe. Significantly decreasing IAV for win-
ter temperature and increases for summer temperature and
heat waves are found, but only for a minority (<50 %) of
the members for all models, even at the end of the 21st cen-
tury. While all three models point to the same direction of
change, percentages differ substantially. For winter and sum-
mer precipitation, an even smaller percentage of members
shows significant changes in IAV, and there is no clear direc-
tion of change in any model. Only CRCM for pr-JJA shows
an increasing number of members with significant positive
changes throughout the second half of the 21st century. For
dry periods, RACMO has a very small number of members
showing significant changes in both directions, while CRCM
and CCLM show marked increases in the number of mem-
bers with significant positive changes in IAV throughout the
21st century. For the last period 2070–2099, even all mem-
bers of CCLM show significant increases.

The temporal evolution of IMV (relative to the EM for
precipitation-based indicators, Fig. 9) generally supports the
direction of changes as seen by the method using the percent-
age of members with significant changes in IAV. However,
when testing for significant changes in the variance between
members, hardly any of the changes are significant. CRCM
shows significant changes in the majority of years for tas-
DJF from 2040 on, for tas-JJA from 2080 on and for pr-JJA
from 2060 on. As the IMV is calculated for each year, the
plot shows the noise in the IMV per year, which can be large.

Figure 10 shows the change in variability determined from
the pooled annual anomalies from the EM for moving 30-
year periods from all members. This means, all 30 anomalies
from all members are pooled together before calculating the
standard deviation (i. e. pooled IAV) and tested for significant
changes in the variance with a Brown–Forsythe test. Given
the much larger sample size per 30-year period, in contrast to
the two former methods, we can now see significant changes
in many combinations of indicator and model (Fig. 10). As
expected from the previous two methods, internal variabil-
ity decreases for winter temperature and increases for sum-
mer temperature and the number of heat waves. In contrast
to the former methods, however, significant changes can be
detected earlier. In these cases, the internal variability has
already changed significantly in the historical simulations
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Figure 8. Percentage of members with significantly different variance (Brown–Forsythe test with α = 0.05) with respect to the reference
period 1961–1990 in mid-Europe. The analysis is based on residuals after removing the EM from each member. The years on the x axis
denote to the starting year of moving 30-year periods.

of SMILEs or it changes in the present/near future around
2020. The internal variability in the number of heat waves
increases until about 2010–2030, reaches a plateau for about
30–40 years and then decreases again. This behavior can
be explained by the forced response of the indicator, which
shows strong increases until around 2060, when the number
of heat waves stabilizes around 6 (and even decreases after-
wards in CRCM, Fig. S2), because the heat waves become
so long that their number per year cannot increase anymore.
This is especially true for CRCM, where the mean duration
of heat waves at the end of the 21st century is much longer
than for CCLM and RACMO and about 16 d (not shown),

leading to a rough estimate of 6× 16= 96 heat wave days
per year, equal to about 3 months. Since heat waves are de-
fined by the 95th percentile of temperature in the reference
period (thus describing extreme conditions), the former ex-
treme heat becomes a regular condition during the summer
months at the end of the 21st century in CRCM. For the
pooled IAV, both absolute and relative changes in IAV are
shown for precipitation-based indicators to demonstrate the
effect of the two different approaches. For pr-DJF, CRCM
does not show any change in absolute IAV, while this stable
behavior in combination with the increase in pr-DJF in the
EM leads to a decreasing relative IAV, which is significant
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Figure 9. IMV per year sampled on the dimension of the respective ensemble size (50, 21 and 16) for mid-Europe. The analysis is based on
residuals after removing the EM from each member. The markers highlight years with a significantly different variance than the reference
year 1961. Precipitation-based indicators are shown with their relative anomalies from the ensemble mean (percentage).

from the early 21st century onwards. CCLM and RACMO
show increasing variability in absolute terms, but changes are
significant for RACMO only, from∼ 2060 onwards. For both
CCLM and RACMO there is no clear change in IAV relative
to the change in EM for pr-DJF. Note that while RACMO
shows the lowest absolute IAV it shows the highest relative
IAV. This originates from the lower EM for winter precip-
itation in RACMO compared to CRCM and CCLM, which
both have quite distinct wet biases (Fig. S2). For summer
precipitation, absolute IAV increases according to all mod-
els, while EM decreases. Changes in absolute IAV are largest
and significant for CRCM and RACMO from ∼ 2000, re-
spectively∼ 2045 onwards. For CCLM, changes are not sig-

nificant. Owing to the decreasing EM, increases in relative
IAV are significant for all models and significant changes oc-
cur earlier in time (∼ 1970 for CCLM, ∼ 1990 for CRCM
and ∼ 2040 for RACMO). The changes in EM and IAV in
both summer and winter have also been detected by Pen-
dergrass et al. (2017) for CMIP5 and CESM-LE precipita-
tion data in extratropical regions. IAV of pr-DP-MAX does
not change according to RACMO, while CRCM and CCLM
show distinct increases that go hand in hand with increases in
the EM that is also much stronger in these two models than
in RACMO (Fig. 4). The changes are significant for relative
IAV later in time than for absolute IAV.
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Figure 10. “Pooled IAV” for mid-Europe. The analysis is based on residuals, pooled together from all members, after removing the EM from
each member. Temperature-based indicators are shown in absolute terms (a–c). Precipitation-based indicators are shown both in absolute
terms (d–f) and relative to the ensemble mean (g–i). The change from dashed to solid lines marks the point in time when all following periods
show significant changes in variance (BF Test with α = 0.0.5).

The abovementioned results are mostly valid for the other
regions as well. Differences in the magnitudes of variability
and its changes are briefly discussed in the following (see
Figs. S8–S10): ME shows higher winter temperature vari-
ability than the other three regions, especially than BI. Lower
levels of variability compared to the other regions occur over
the British Isles for winter temperature and winter precipi-
tation (relative to EM). The Alps show a smaller variabil-
ity for the number of heat waves than the other regions. The
variability of pr-DP-MAX for all three ensembles is similar
to ME in AL, while BI and FR hardly show any significant

changes. If all regions are considered, RACMO generally has
the highest internal variability in winter and the lowest vari-
ability in summer for temperature and precipitation (relative
to EM), while CCLM has the highest internal variability for
summer temperature and precipitation (relative to EM) as
well as for heat waves and dry periods (both absolute and
relative to EM). Significant changes generally occur similar
to ME for winter and summer temperature and precipitation
(both absolute and relative to EM). Changes in the number of
heat waves are not significant in CCLM in all three regions
and in RACMO in AL.
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The first method, testing the percentage of members with
significant changes in IAV, gives a good overview of the be-
havior of the members in general. It can, however, only in-
form about the direction of change in IAV. Additional infor-
mation on the magnitude of the changes in IAV is needed to
get the whole picture. The second method using IMV is in
general agreement with the first method when looking at the
direction of change. It incorporates the magnitude of internal
variability and can show significant changes in the IMV in
the same figure. The variations in IMV from year to year are
relatively large. Therefore, the BF test results also largely de-
pend on the choice of a reference year to test all other years
against. Changes from one year to the next can give very
different results. Unstable significance testing is the result.
Method 1 is less sensitive to the reference given the overlap-
ping periods. Considering the sample sizes in this study, the
best results can be obtained with method 3, where sensitivity
can be tested with a much larger sample size. For method 1 it
is 30 values per period, for method 2 it is 16/21/50 values per
year, and for method 3 it is the product of both 30 years and
the ensemble size of the respective ensemble. However, if the
sample size was larger for the first two methods, they would
probably also result in the detection of significant changes,
e.g., when using more members.

To see how the ensemble size impacts the results for the
pooled IAV, we reduce the largest ensemble (CRCM with
50 members) to the size of the other ensembles (16 and 21)
and repeat the analysis for ME. Even after reducing the en-
semble size to only 16 members, the changes at the end of
the 21st century in CRCM are still significant for indicators
that already showed significant changes for all 50 members.
However, the detection of significant changes is only possi-
ble at a later time horizon (Fig. S11) for changes in tas-DJF
(around 40 years later), relative changes in pr-DJF (20), ab-
solute changes in pr-JJA (20) and relative changes in pr-DP-
MAX (15). Tests with a number of ensemble sizes suggest
that around 10 members are sufficient to detect the signifi-
cance of changes and around 20 are sufficient to detect the
timing of these significant changes additionally.

4 Discussion

The number of SMILEs available for the quantification of
internal variability in this study is still relatively small – we
only used three GCM-RCM combinations (to the knowledge
of the authors these three ensembles are the only regionally
downscaled SMILEs over Europe). More simulations with
RCM-SMILEs could help to make results even more robust
– especially for winter precipitation and dry periods, where
the three ensembles do not agree on the change in variability.

The effect of regional aggregation after the calculation of
indicators on the grid level and the potential effects of the
original resolution of different data sets on the internal vari-
ability seem to be minor for the selected indicators, as seen in

the experimental analysis conducted on a subset of the data
(Fig. S1). This estimate of sensitivity to differing spatial res-
olutions might be conservative, however. Nevertheless, the
methodology seems to be suitable for the selected indicators
of this study.

Methods based on anomalies from the EM are chosen in
order to compare results despite different biases in histori-
cal and future mean climate states. It can, however, not be
ruled out that differences in the variability may originate
from mean state biases of the models. CRCM for example
shows much higher precipitation sums than the other two en-
sembles, leading to higher variability in absolute terms. The
normalization with the ensemble mean covers these differ-
ences in absolute amounts. In the end it largely depends on
the definition of variability: is one interested in absolute de-
viations (mm) or in the fluctuations in relative terms (%)?
Results are sensitive to a relative versus an absolute defini-
tion or vice versa. The relative approach has the advantage
that it allows for a fair comparison of models with different
mean precipitation amounts. This is also why a recent publi-
cation by Giorgi et al. (2019) gave preference to the relative
definition, for example.

The scatterplots of projected changes for seasonal temper-
ature and precipitation (Figs. 2 and 3) show both agreement
and dissent, but usually at least two of the three models show
similar ranges for one variable. Better agreement might be
possible when comparing the data sets not for a fixed period
but for periods with the same global warming level in each
driving GCM.

We find that the large ensembles analyzed here generally
represent observed IAV correctly, but care needs to be taken
during the analysis for specific regions and indicators. Cases
of many individual members showing both higher and lower
variability compared to observational IAV can be found for
all ensembles for specific indicators and regions. However,
the single observed realization of historical climate makes
it difficult to evaluate systematic errors of the ensembles, as
the E-OBS distribution is not necessarily representative of
the perfectly sampled IAV. It would be interesting to com-
pare large ensembles against an observational large ensem-
ble as proposed by McKinnon and Deser (2018) to better see
systematic deficiencies of large ensembles compared to ob-
servations.

The results found for changes in IAV are generally in line
with existing literature on Europe. We likewise find increas-
ing variability for the summer indicators tas-JJA and pr-JJA
(Fischer and Schär, 2009, 2010; Vidale et al., 2007; Yet-
tella et al., 2018; Suarez-Gutierrez et al., 2018) and decreas-
ing variability for the winter indicators tas-DJF and pr-DJF
(Bengtsson and Hodges, 2019; Holmes et al., 2016). The
summer extreme indicators tas-HW-Nr and pr-DP-MAX also
show increased variability in two of the three models, in con-
junction with increases in their mean states. Several mecha-
nisms contribute to the changes in all indicators. For changes
in the summer temperature IAV, land–atmosphere coupling
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is becoming more important in central or northern Europe
in the future because the transitional zone between dry and
wet climates moves northwards from the Mediterranean re-
gion, leading to enhanced alternation of dry and wet summer
soil moisture (Seneviratne et al., 2006; Fischer et al., 2011).
Moreover, stronger warming over land than over the oceans
causes the land–ocean temperature gradient in summer to in-
crease. This results in increased variability in thermal ad-
vection, which is suggested to play a role in the increase
in temperature variability in Europe as well (Holmes et al.,
2016). Analysis of observations shows that in the Mediter-
ranean more than half of summer temperature variability can
be explained by large-scale atmospheric circulations and sea
surface temperatures (Xoplaki et al., 2003). The decrease
in winter temperature IAV is suggested to be influenced by
changing circulation patterns (Vautard and Yiou, 2009), and
a decrease in variability of advected heat due to the decrease
in the winter land–ocean temperature gradient (Holmes et
al., 2016) and arctic amplification and sea ice loss (Screen,
2014; Sun et al., 2015; Tamarin-Brodsky et al., 2020), even
under unchanged circulation variability (Holmes et al., 2016;
Tamarin-Brodsky et al., 2020).

The increase in summer precipitation variability that
would not be expected under decreasing mean summer pre-
cipitation might be caused by a reduction in the number of
wet days (>1 mm) that exists in all three ensembles (not
shown), as discussed by Räisänen (2002). A reduction in wet
days implies an increase in variability since the seasonal pre-
cipitation sum becomes more dependent on individual pre-
cipitation events.

Land–atmosphere feedback mechanisms are not yet fully
understood, and there are still improvements needed in their
implementation in earth system models and regional climate
models (Vogel et al., 2018). Uncertainties in the future re-
gional development of heat waves and dry periods are thus
rather large (Miralles et al., 2019). Nevertheless, increasing
frequency, intensity and variability in the number of heat
waves as projected by SMILEs using RCP8.5 in this study
seem plausible, although the magnitudes can be uncertain.
The strong increase in the maximum length of dry periods
in two of the models is not necessarily what could be ex-
pected. While the length of severe dry periods increases in
the future for southern Europe, central and northern Europe
do not show any change in the EURO-CORDEX data for dry
period length (Jacob et al., 2014). Analysis of precipitation
changes shows that both CRCM and CCLM (the RCM itself,
not SMILE) are on the dry end of projections for summer
precipitation (von Trentini et al., 2019). This might be re-
lated to sensitive implementations of land surface modules
in these two RCMs. RACMO does not show an increase in
the maximum length of dry periods.

Although beyond the scope of this paper, which only ana-
lyzed the manifestations of internal model variability in sur-
face variables (tas, pr and associated indicators), there is a
need for a better understanding of the mechanisms leading to

the model-inherent characteristics of internal variability and
why differences between the models appear (e.g., circulation
patterns, ocean characteristics).

Using SMILEs for studying changes in IAV allows for
much more robust statements on the direction, magnitude
and emergence of changes, when using a certain model and
RCP scenario. Analyzing the individual members, significant
changes in IAV are found in less than half of the members for
almost all indicators and ensembles, even at the end of the
21st century (Fig. 8). However, pooling the data of all ensem-
ble members, all three ensembles show significant changes in
internal variability of most indicators and often from early in
the 21st century onwards (Fig. 10).

Thompson et al. (2015) showed that a statistical model
based on a historical period could be as good as a SMILE
for predicting future variability of seasonal temperature and
precipitation trends up to 2060. The detection of significant
increases in internal variability in summer and winter tem-
perature much earlier than 2060 (Fig. 10) challenges this as-
sumption of stable variability. For precipitation (especially
absolute changes), however, the changes are often not signif-
icant before 2060, confirming the results of Thompson et al.
(2015).

5 Conclusions

There is an increasing interest on the part of the scien-
tific community to use single-model initial-condition large
ensembles in a wide variety of applications, ranging from
deeper levels of understanding of natural climate variability
to impact assessments in different fields. The rich data basis
which these ensembles provide for the analysis of internal
variability is very valuable and enables new insights into this
critical part of the climate system. Future changes, in partic-
ular, can be better set into context. The effects of dynamical
downscaling of GCM large ensembles with regional climate
models are not yet sufficiently explored. Further research is
needed in this direction to see whether and by how much
the internal variability is altered in the RCM simulations of
a respective GCM large ensemble. However, downscaling is
an important step to make climate simulation information at-
tractive for local adaptation research and impact modellers.
The results from this study can be helpful for these research
communities to better understand and quantify the role of
IAV in the climate system. In particular, increases in variabil-
ity as seen for summer temperature, relative summer precip-
itation, heat waves and dry periods in most regions and mod-
els can be a huge burden for sectors like agriculture, ecology
and hydrology.

The evaluation and comparison of the three RCM-SMILEs
in this study gives a first overview of the agreement of
SMILEs with observations and among each other. The gener-
ally high agreement with observations suggest that the inter-
nal variabilities of the RCM-SMILEs at the regional scale
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are useful approximations of the observed IAV of the cli-
mate system in Europe. The direction of changes in internal
variability is also mostly the same between the ensembles,
suggesting a relatively robust signal. While the “summer in-
dicators” mostly show increasing variability in the future,
winter temperature and precipitation show decreasing vari-
ability or no change. The change in variability is potentially
impact-relevant as it suggests that the most extreme summers
and winters may warm more strongly than the corresponding
mean.

Despite an increasing number of studies that compare
SMILEs (Deser et al., 2014; Martel et al., 2018; Rondeau-
Genesse and Braun, 2019; Deser et al., 2020; Lehner et al.,
2020), one limitation of many publications using SMILEs is
the use of only one model and thereby one estimate of in-
ternal variability, leaving it unclear how representative the
results are. Although the respective SMILE is usually evalu-
ated against observations in these studies, the uncertainty in
future changes in IAV cannot be quantified in the same way
as in this study. A further challenge is also the fact that low-
frequency variability at decadal and multi-decadal timescales
remains uncertain and cannot be rigorously evaluated against
observations due to the relatively short observational record
and the difficulty of separating forced changes from unforced
internal variability in observations.

Overall our results underline the great potential of SMILEs
in quantifying the changes in IAV and when they become
significant, also at the regional scale.
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