Articles | Volume 10, issue 1
Earth Syst. Dynam., 10, 31–43, 2019
https://doi.org/10.5194/esd-10-31-2019
Earth Syst. Dynam., 10, 31–43, 2019
https://doi.org/10.5194/esd-10-31-2019

Research article 07 Jan 2019

Research article | 07 Jan 2019

The effect of univariate bias adjustment on multivariate hazard estimates

Jakob Zscheischler et al.

Related authors

The effects of varying drought-heat signatures on terrestrial carbon dynamics and vegetation composition
Elisabeth Tschumi, Sebastian Lienert, Karin van der Wiel, Fortunat Joos, and Jakob Zscheischler
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-191,https://doi.org/10.5194/bg-2021-191, 2021
Preprint under review for BG
Short summary
Towards a compound-event-oriented climate model evaluation: a decomposition of the underlying biases in multivariate fire and heat stress hazards
Roberto Villalobos-Herrera, Emanuele Bevacqua, Andreia F. S. Ribeiro, Graeme Auld, Laura Crocetti, Bilyana Mircheva, Minh Ha, Jakob Zscheischler, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 21, 1867–1885, https://doi.org/10.5194/nhess-21-1867-2021,https://doi.org/10.5194/nhess-21-1867-2021, 2021
Short summary
A standardized index for assessing sub-monthly compound dry and hot conditions with application in China
Jun Li, Zhaoli Wang, Xushu Wu, Jakob Zscheischler, Shenglian Guo, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 25, 1587–1601, https://doi.org/10.5194/hess-25-1587-2021,https://doi.org/10.5194/hess-25-1587-2021, 2021
Short summary
Compound high-temperature and low-chlorophyll extremes in the ocean over the satellite period
Natacha Le Grix, Jakob Zscheischler, Charlotte Laufkötter, Cecile S. Rousseaux, and Thomas L. Frölicher
Biogeosciences, 18, 2119–2137, https://doi.org/10.5194/bg-18-2119-2021,https://doi.org/10.5194/bg-18-2119-2021, 2021
Short summary
Identifying meteorological drivers of extreme impacts: an application to simulated crop yields
Johannes Vogel, Pauline Rivoire, Cristina Deidda, Leila Rahimi, Christoph A. Sauter, Elisabeth Tschumi, Karin van der Wiel, Tianyi Zhang, and Jakob Zscheischler
Earth Syst. Dynam., 12, 151–172, https://doi.org/10.5194/esd-12-151-2021,https://doi.org/10.5194/esd-12-151-2021, 2021
Short summary

Related subject area

Dynamics of the Earth system: models
The sensitivity of the El Niño–Southern Oscillation to volcanic aerosol spatial distribution in the MPI Grand Ensemble
Benjamin Ward, Francesco S. R. Pausata, and Nicola Maher
Earth Syst. Dynam., 12, 975–996, https://doi.org/10.5194/esd-12-975-2021,https://doi.org/10.5194/esd-12-975-2021, 2021
Short summary
Coupled regional Earth system modeling in the Baltic Sea region
Matthias Gröger, Christian Dieterich, Jari Haapala, Ha Thi Minh Ho-Hagemann, Stefan Hagemann, Jaromir Jakacki, Wilhelm May, H. E. Markus Meier, Paul A. Miller, Anna Rutgersson, and Lichuan Wu
Earth Syst. Dynam., 12, 939–973, https://doi.org/10.5194/esd-12-939-2021,https://doi.org/10.5194/esd-12-939-2021, 2021
Short summary
Climate change projections of terrestrial primary productivity over the Hindu Kush Himalayan forests
Halima Usman, Thomas A. M. Pugh, Anders Ahlström, and Sofia Baig
Earth Syst. Dynam., 12, 857–870, https://doi.org/10.5194/esd-12-857-2021,https://doi.org/10.5194/esd-12-857-2021, 2021
Short summary
Bookkeeping estimates of the net land-use change flux – a sensitivity study with the CMIP6 land-use dataset
Kerstin Hartung, Ana Bastos, Louise Chini, Raphael Ganzenmüller, Felix Havermann, George C. Hurtt, Tammas Loughran, Julia E. M. S. Nabel, Tobias Nützel, Wolfgang A. Obermeier, and Julia Pongratz
Earth Syst. Dynam., 12, 763–782, https://doi.org/10.5194/esd-12-763-2021,https://doi.org/10.5194/esd-12-763-2021, 2021
Short summary
Climate change in the High Mountain Asia in CMIP6
Mickaël Lalande, Martin Ménégoz, Gerhard Krinner, Kathrin Naegeli, and Stefan Wunderle
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2021-43,https://doi.org/10.5194/esd-2021-43, 2021
Revised manuscript accepted for ESD
Short summary

Cited articles

Addor, N. and Fischer, E. M.: The influence of natural variability and interpolation errors on bias characterization in RCM simulations, J. Geophys. Res.-Atmos., 120, 10180–10195, https://doi.org/10.1002/2014JD022824, 2015. a, b, c
Bosshard, T., Carambia, M., Goergen, K., Kotlarski, S., Krahe, P., Zappa, M., and Schär, C.: Quantifying uncertainty sources in an ensemble of hydrological climate-impact projections, Water Resour. Res., 49, 1523–1536, https://doi.org/10.1029/2011WR011533, 2013. a
Brando, P. M., Balch, J. K., Nepstad, D. C., Morton, D. C., Putz, F. E., Coe, M. T., Silvério, D., Macedo, M. N., Davidson, E. A., Nóbrega, C. C., Alencar, A., and Soares-Filho, B. S.: Abrupt increases in Amazonian tree mortality due to drought–fire interactions, P. Natl. Acad. Sci. USA, 111, 6347–6352, 2014. a
Bröde, P., Blazejczyk, K., Fiala, D., Havenith, G., Holmér, I., Jendritzky, G., Kuklane, K., and Kampmann, B.: The Universal Thermal Climate Index UTCI Compared to Ergonomics Standards for Assessing the Thermal Environment, Ind. Health, 51, 16–24, https://doi.org/10.2486/indhealth.2012-0098, 2013. a
Cannon, A. J.: Multivariate Bias Correction of Climate Model Output: Matching Marginal Distributions and Intervariable Dependence Structure, J. Climate, 29, 7045–7064, https://doi.org/10.1175/jcli-d-15-0679.1, 2016. a
Download
Short summary
Many climate models have biases in different variables throughout the world. Adjusting these biases is necessary for estimating climate impacts. Here we demonstrate that widely used univariate bias adjustment methods do not work well for multivariate impacts. We illustrate this problem using fire risk and heat stress as impact indicators. Using an approach that adjusts not only biases in the individual climate variables but also biases in the correlation between them can resolve these problems.
Altmetrics
Final-revised paper
Preprint