Articles | Volume 9, issue 3
Earth Syst. Dynam., 9, 969–983, 2018
https://doi.org/10.5194/esd-9-969-2018
Earth Syst. Dynam., 9, 969–983, 2018
https://doi.org/10.5194/esd-9-969-2018

Research article 23 Jul 2018

Research article | 23 Jul 2018

Using network theory and machine learning to predict El Niño

Peter D. Nooteboom et al.

Related authors

Sinking microplastics in the water column: simulations in the Mediterranean Sea
Rebeca de la Fuente, Gábor Drótos, Emilio Hernández-García, Cristóbal López, and Erik van Sebille
Ocean Sci., 17, 431–453, https://doi.org/10.5194/os-17-431-2021,https://doi.org/10.5194/os-17-431-2021, 2021
Short summary
Abrupt climate change as rate-dependent cascading tipping point
Johannes Lohmann, Daniele Castellana, Peter D. Ditlevsen, and Henk A. Dijkstra
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2021-7,https://doi.org/10.5194/esd-2021-7, 2021
Preprint under review for ESD
Short summary
Improvements to the use of the Trajectory-Adaptive Multilevel Sampling algorithm for the study of rare events
Pascal Wang, Daniele Castellana, and Henk A. Dijkstra
Nonlin. Processes Geophys., 28, 135–151, https://doi.org/10.5194/npg-28-135-2021,https://doi.org/10.5194/npg-28-135-2021, 2021
Short summary
Multidecadal polynya formation in a conceptual (box) model
Daan Boot, René M. van Westen, and Henk A. Dijkstra
Ocean Sci., 17, 335–350, https://doi.org/10.5194/os-17-335-2021,https://doi.org/10.5194/os-17-335-2021, 2021
Short summary
Ordering of trajectories reveals hierarchical finite-time coherent sets in Lagrangian particle data: detecting Agulhas rings in the South Atlantic Ocean
David Wichmann, Christian Kehl, Henk A. Dijkstra, and Erik van Sebille
Nonlin. Processes Geophys., 28, 43–59, https://doi.org/10.5194/npg-28-43-2021,https://doi.org/10.5194/npg-28-43-2021, 2021
Short summary

Related subject area

Dynamics of the Earth system: models
First assessment of the earth heat inventory within CMIP5 historical simulations
Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, and Joel Finnis
Earth Syst. Dynam., 12, 581–600, https://doi.org/10.5194/esd-12-581-2021,https://doi.org/10.5194/esd-12-581-2021, 2021
Short summary
The thermal response of small and shallow lakes to climate change: new insights from 3D hindcast modelling
Francesco Piccioni, Céline Casenave, Bruno Jacques Lemaire, Patrick Le Moigne, Philippe Dubois, and Brigitte Vinçon-Leite
Earth Syst. Dynam., 12, 439–456, https://doi.org/10.5194/esd-12-439-2021,https://doi.org/10.5194/esd-12-439-2021, 2021
Short summary
Labrador Sea subsurface density as a precursor of multidecadal variability in the North Atlantic: a multi-model study
Pablo Ortega, Jon I. Robson, Matthew Menary, Rowan T. Sutton, Adam Blaker, Agathe Germe, Jöel J.-M. Hirschi, Bablu Sinha, Leon Hermanson, and Stephen Yeager
Earth Syst. Dynam., 12, 419–438, https://doi.org/10.5194/esd-12-419-2021,https://doi.org/10.5194/esd-12-419-2021, 2021
Short summary
How modelling paradigms affect simulated future land use change
Calum Brown, Ian Holman, and Mark Rounsevell
Earth Syst. Dynam., 12, 211–231, https://doi.org/10.5194/esd-12-211-2021,https://doi.org/10.5194/esd-12-211-2021, 2021
Short summary
Space-time dependence of compound hot-dry events in the United States: assessment using a multi-site multi-variable weather generator
Manuela I. Brunner, Eric Gilleland, and Andrew W. Wood
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2021-5,https://doi.org/10.5194/esd-2021-5, 2021
Revised manuscript accepted for ESD
Short summary

Cited articles

Akaike, H.: A New Look at the Statistical Model Identification, IEEE T. Automat. Contr., AC-19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974.
Aladag, C. H., Egrioglu, E., and Kadilar, C.: Forecasting nonlinear time series with a hybrid methodology, Appl. Math. Lett., 22, 1467–1470, https://doi.org/10.1016/j.aml.2009.02.006, 2009.
Al-Smadi, A. and Al-Zaben, A.: ARMA Model Order Determination Using Edge Detection: A New Perspective, Circuits, Systems Signal Processing, 24, 723–732, 2005.
Berezin, Y., Gozolchiani, A., Guez, O., and Havlin, S.: Stability of Climate Networks with Time, Sci. Rep.-UK, 2, 1–8, https://doi.org/10.1038/srep00666, 2012.
Bergmeir, C. and Benítez, J. M.: On the use of cross-validation for time series predictor evaluation, Inf. Sci. (Ny)., 191, 192–213, https://doi.org/10.1016/j.ins.2011.12.028, 2012.
Download
Short summary
The prediction of the El Niño phenomenon, an increased sea surface temperature in the eastern Pacific, fascinates people for a long time. El Niño is associated with natural disasters, such as droughts and floods. Current methods can make a reliable prediction of this phenomenon up to 6 months ahead. However, this article presents a method which combines network theory and machine learning which predicts El Niño up to 1 year ahead.
Altmetrics
Final-revised paper
Preprint