Articles | Volume 9, issue 3
Earth Syst. Dynam., 9, 969–983, 2018
https://doi.org/10.5194/esd-9-969-2018
Earth Syst. Dynam., 9, 969–983, 2018
https://doi.org/10.5194/esd-9-969-2018

Research article 23 Jul 2018

Research article | 23 Jul 2018

Using network theory and machine learning to predict El Niño

Peter D. Nooteboom et al.

Related authors

Effect of the Atlantic Meridional Overturning Circulation on Atmospheric pCO2 Variations
Daan Boot, Anna S. Von Der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2021-42,https://doi.org/10.5194/esd-2021-42, 2021
Preprint under review for ESD
Short summary
Reduced El Niño variability in the mid-Pliocene according to the PlioMIP2 ensemble
Arthur Merlijn Oldeman, Michiel L. J. Baatsen, Anna S. von der Heydt, Henk A. Dijkstra, Julia C. Tindall, Ayako Abe-Ouchi, Alice R. Booth, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Mark A. Chandler, Camille Contoux, Ran Feng, Chuncheng Guo, Alan M. Haywood, Stephen J. Hunter, Youichi Kamae, Qiang Li, Xiangyu Li, Gerrit Lohmann, Daniel J. Lunt, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Gabriel M. Pontes, Gilles Ramstein, Linda E. Sohl, Christian Stepanek, Ning Tan, Qiong Zhang, Zhongshi Zhang, Ilana Wainer, and Charles J. R. Williams
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-58,https://doi.org/10.5194/cp-2021-58, 2021
Preprint under review for CP
Short summary
The Atlantic's freshwater budget under climate change in the Community Earth System Model with strongly eddying oceans
André Jüling, Xun Zhang, Daniele Castellana, Anna S. von der Heydt, and Henk A. Dijkstra
Ocean Sci., 17, 729–754, https://doi.org/10.5194/os-17-729-2021,https://doi.org/10.5194/os-17-729-2021, 2021
Short summary
Sinking microplastics in the water column: simulations in the Mediterranean Sea
Rebeca de la Fuente, Gábor Drótos, Emilio Hernández-García, Cristóbal López, and Erik van Sebille
Ocean Sci., 17, 431–453, https://doi.org/10.5194/os-17-431-2021,https://doi.org/10.5194/os-17-431-2021, 2021
Short summary
Abrupt climate change as rate-dependent cascading tipping point
Johannes Lohmann, Daniele Castellana, Peter D. Ditlevsen, and Henk A. Dijkstra
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2021-7,https://doi.org/10.5194/esd-2021-7, 2021
Revised manuscript accepted for ESD
Short summary

Related subject area

Dynamics of the Earth system: models
Bookkeeping estimates of the net land-use change flux – a sensitivity study with the CMIP6 land-use dataset
Kerstin Hartung, Ana Bastos, Louise Chini, Raphael Ganzenmüller, Felix Havermann, George C. Hurtt, Tammas Loughran, Julia E. M. S. Nabel, Tobias Nützel, Wolfgang A. Obermeier, and Julia Pongratz
Earth Syst. Dynam., 12, 763–782, https://doi.org/10.5194/esd-12-763-2021,https://doi.org/10.5194/esd-12-763-2021, 2021
Short summary
Climate-controlled root zone parameters show potential to improve water flux simulations by land surface models
Fransje van Oorschot, Ruud J. van der Ent, Markus Hrachowitz, and Andrea Alessandri
Earth Syst. Dynam., 12, 725–743, https://doi.org/10.5194/esd-12-725-2021,https://doi.org/10.5194/esd-12-725-2021, 2021
Short summary
Space–time dependence of compound hot–dry events in the United States: assessment using a multi-site multi-variable weather generator
Manuela I. Brunner, Eric Gilleland, and Andrew W. Wood
Earth Syst. Dynam., 12, 621–634, https://doi.org/10.5194/esd-12-621-2021,https://doi.org/10.5194/esd-12-621-2021, 2021
Short summary
First assessment of the earth heat inventory within CMIP5 historical simulations
Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, and Joel Finnis
Earth Syst. Dynam., 12, 581–600, https://doi.org/10.5194/esd-12-581-2021,https://doi.org/10.5194/esd-12-581-2021, 2021
Short summary
The thermal response of small and shallow lakes to climate change: new insights from 3D hindcast modelling
Francesco Piccioni, Céline Casenave, Bruno Jacques Lemaire, Patrick Le Moigne, Philippe Dubois, and Brigitte Vinçon-Leite
Earth Syst. Dynam., 12, 439–456, https://doi.org/10.5194/esd-12-439-2021,https://doi.org/10.5194/esd-12-439-2021, 2021
Short summary

Cited articles

Akaike, H.: A New Look at the Statistical Model Identification, IEEE T. Automat. Contr., AC-19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974.
Aladag, C. H., Egrioglu, E., and Kadilar, C.: Forecasting nonlinear time series with a hybrid methodology, Appl. Math. Lett., 22, 1467–1470, https://doi.org/10.1016/j.aml.2009.02.006, 2009.
Al-Smadi, A. and Al-Zaben, A.: ARMA Model Order Determination Using Edge Detection: A New Perspective, Circuits, Systems Signal Processing, 24, 723–732, 2005.
Berezin, Y., Gozolchiani, A., Guez, O., and Havlin, S.: Stability of Climate Networks with Time, Sci. Rep.-UK, 2, 1–8, https://doi.org/10.1038/srep00666, 2012.
Bergmeir, C. and Benítez, J. M.: On the use of cross-validation for time series predictor evaluation, Inf. Sci. (Ny)., 191, 192–213, https://doi.org/10.1016/j.ins.2011.12.028, 2012.
Download
Short summary
The prediction of the El Niño phenomenon, an increased sea surface temperature in the eastern Pacific, fascinates people for a long time. El Niño is associated with natural disasters, such as droughts and floods. Current methods can make a reliable prediction of this phenomenon up to 6 months ahead. However, this article presents a method which combines network theory and machine learning which predicts El Niño up to 1 year ahead.
Altmetrics
Final-revised paper
Preprint