Articles | Volume 9, issue 3
Earth Syst. Dynam., 9, 969–983, 2018
Earth Syst. Dynam., 9, 969–983, 2018

Research article 23 Jul 2018

Research article | 23 Jul 2018

Using network theory and machine learning to predict El Niño

Peter D. Nooteboom et al.

Related authors

Sinking microplastics in the water column: simulations in the Mediterranean Sea
Rebeca de la Fuente, Gábor Drótos, Emilio Hernández-García, Cristóbal López, and Erik van Sebille
Ocean Sci., 17, 431–453,,, 2021
Short summary
Abrupt climate change as rate-dependent cascading tipping point
Johannes Lohmann, Daniele Castellana, Peter D. Ditlevsen, and Henk A. Dijkstra
Earth Syst. Dynam. Discuss.,,, 2021
Preprint under review for ESD
Short summary
Improvements to the use of the Trajectory-Adaptive Multilevel Sampling algorithm for the study of rare events
Pascal Wang, Daniele Castellana, and Henk A. Dijkstra
Nonlin. Processes Geophys., 28, 135–151,,, 2021
Short summary
Multidecadal polynya formation in a conceptual (box) model
Daan Boot, René M. van Westen, and Henk A. Dijkstra
Ocean Sci., 17, 335–350,,, 2021
Short summary
Ordering of trajectories reveals hierarchical finite-time coherent sets in Lagrangian particle data: detecting Agulhas rings in the South Atlantic Ocean
David Wichmann, Christian Kehl, Henk A. Dijkstra, and Erik van Sebille
Nonlin. Processes Geophys., 28, 43–59,,, 2021
Short summary

Related subject area

Dynamics of the Earth system: models
First assessment of the earth heat inventory within CMIP5 historical simulations
Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, and Joel Finnis
Earth Syst. Dynam., 12, 581–600,,, 2021
Short summary
The thermal response of small and shallow lakes to climate change: new insights from 3D hindcast modelling
Francesco Piccioni, Céline Casenave, Bruno Jacques Lemaire, Patrick Le Moigne, Philippe Dubois, and Brigitte Vinçon-Leite
Earth Syst. Dynam., 12, 439–456,,, 2021
Short summary
Labrador Sea subsurface density as a precursor of multidecadal variability in the North Atlantic: a multi-model study
Pablo Ortega, Jon I. Robson, Matthew Menary, Rowan T. Sutton, Adam Blaker, Agathe Germe, Jöel J.-M. Hirschi, Bablu Sinha, Leon Hermanson, and Stephen Yeager
Earth Syst. Dynam., 12, 419–438,,, 2021
Short summary
How modelling paradigms affect simulated future land use change
Calum Brown, Ian Holman, and Mark Rounsevell
Earth Syst. Dynam., 12, 211–231,,, 2021
Short summary
Space-time dependence of compound hot-dry events in the United States: assessment using a multi-site multi-variable weather generator
Manuela I. Brunner, Eric Gilleland, and Andrew W. Wood
Earth Syst. Dynam. Discuss.,,, 2021
Revised manuscript accepted for ESD
Short summary

Cited articles

Akaike, H.: A New Look at the Statistical Model Identification, IEEE T. Automat. Contr., AC-19, 716–723,, 1974.
Aladag, C. H., Egrioglu, E., and Kadilar, C.: Forecasting nonlinear time series with a hybrid methodology, Appl. Math. Lett., 22, 1467–1470,, 2009.
Al-Smadi, A. and Al-Zaben, A.: ARMA Model Order Determination Using Edge Detection: A New Perspective, Circuits, Systems Signal Processing, 24, 723–732, 2005.
Berezin, Y., Gozolchiani, A., Guez, O., and Havlin, S.: Stability of Climate Networks with Time, Sci. Rep.-UK, 2, 1–8,, 2012.
Bergmeir, C. and Benítez, J. M.: On the use of cross-validation for time series predictor evaluation, Inf. Sci. (Ny)., 191, 192–213,, 2012.
Short summary
The prediction of the El Niño phenomenon, an increased sea surface temperature in the eastern Pacific, fascinates people for a long time. El Niño is associated with natural disasters, such as droughts and floods. Current methods can make a reliable prediction of this phenomenon up to 6 months ahead. However, this article presents a method which combines network theory and machine learning which predicts El Niño up to 1 year ahead.
Final-revised paper