Journal cover Journal topic
Earth System Dynamics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.866 IF 3.866
  • IF 5-year value: 4.135 IF 5-year
    4.135
  • CiteScore value: 7.0 CiteScore
    7.0
  • SNIP value: 1.182 SNIP 1.182
  • IPP value: 3.86 IPP 3.86
  • SJR value: 1.883 SJR 1.883
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 33 Scimago H
    index 33
  • h5-index value: 30 h5-index 30
Volume 9, issue 3
Earth Syst. Dynam., 9, 969–983, 2018
https://doi.org/10.5194/esd-9-969-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Earth Syst. Dynam., 9, 969–983, 2018
https://doi.org/10.5194/esd-9-969-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 23 Jul 2018

Research article | 23 Jul 2018

Using network theory and machine learning to predict El Niño

Peter D. Nooteboom et al.

Related authors

Ordering of trajectories reveals hierarchical finite-time coherent sets in Lagrangian particle data: detecting Agulhas rings in the South Atlantic Ocean
David Wichmann, Christian Kehl, Henk A. Dijkstra, and Erik van Sebille
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2020-28,https://doi.org/10.5194/npg-2020-28, 2020
Preprint under review for NPG
Short summary
Detecting flow features in scarce trajectory data using networks derived from symbolic itineraries: an application to surface drifters in the North Atlantic
David Wichmann, Christian Kehl, Henk A. Dijkstra, and Erik van Sebille
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2020-18,https://doi.org/10.5194/npg-2020-18, 2020
Preprint under review for NPG
Short summary
Subsurface Initiation of Deep Convection near Maud Rise
René M. van Westen and Henk A. Dijkstra
Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-33,https://doi.org/10.5194/os-2020-33, 2020
Preprint under review for OS
Short summary
Phase synchronisation in the Kuroshio Current System
Ann Kristin Klose, René M. van Westen, and Henk A. Dijkstra
Ocean Sci., 16, 435–449, https://doi.org/10.5194/os-16-435-2020,https://doi.org/10.5194/os-16-435-2020, 2020
Short summary
Multidecadal Preconditioning of the Maud Rise Polynya Region
René M. van Westen and Henk A. Dijkstra
Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-25,https://doi.org/10.5194/os-2020-25, 2020
Preprint under review for OS
Short summary

Related subject area

Dynamics of the Earth system: models
Variability of surface climate in simulations of past and future
Kira Rehfeld, Raphaël Hébert, Juan M. Lora, Marcus Lofverstrom, and Chris M. Brierley
Earth Syst. Dynam., 11, 447–468, https://doi.org/10.5194/esd-11-447-2020,https://doi.org/10.5194/esd-11-447-2020, 2020
Short summary
Statistical estimation of global surface temperature response to forcing under the assumption of temporal scaling
Eirik Myrvoll-Nilsen, Sigrunn Holbek Sørbye, Hege-Beate Fredriksen, Håvard Rue, and Martin Rypdal
Earth Syst. Dynam., 11, 329–345, https://doi.org/10.5194/esd-11-329-2020,https://doi.org/10.5194/esd-11-329-2020, 2020
Short summary
Emulating Earth system model temperatures with MESMER: from global mean temperature trajectories to grid-point-level realizations on land
Lea Beusch, Lukas Gudmundsson, and Sonia I. Seneviratne
Earth Syst. Dynam., 11, 139–159, https://doi.org/10.5194/esd-11-139-2020,https://doi.org/10.5194/esd-11-139-2020, 2020
Short summary
A global semi-empirical glacial isostatic adjustment (GIA) model based on Gravity Recovery and Climate Experiment (GRACE) data
Yu Sun and Riccardo E. M. Riva
Earth Syst. Dynam., 11, 129–137, https://doi.org/10.5194/esd-11-129-2020,https://doi.org/10.5194/esd-11-129-2020, 2020
Short summary
What could we learn about climate sensitivity from variability in the surface temperature record?
James Douglas Annan, Julia Catherine Hargreaves, Thorsten Mauritsen, and Bjorn Stevens
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2019-90,https://doi.org/10.5194/esd-2019-90, 2020
Revised manuscript accepted for ESD
Short summary

Cited articles

Akaike, H.: A New Look at the Statistical Model Identification, IEEE T. Automat. Contr., AC-19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974.
Aladag, C. H., Egrioglu, E., and Kadilar, C.: Forecasting nonlinear time series with a hybrid methodology, Appl. Math. Lett., 22, 1467–1470, https://doi.org/10.1016/j.aml.2009.02.006, 2009.
Al-Smadi, A. and Al-Zaben, A.: ARMA Model Order Determination Using Edge Detection: A New Perspective, Circuits, Systems Signal Processing, 24, 723–732, 2005.
Berezin, Y., Gozolchiani, A., Guez, O., and Havlin, S.: Stability of Climate Networks with Time, Sci. Rep.-UK, 2, 1–8, https://doi.org/10.1038/srep00666, 2012.
Bergmeir, C. and Benítez, J. M.: On the use of cross-validation for time series predictor evaluation, Inf. Sci. (Ny)., 191, 192–213, https://doi.org/10.1016/j.ins.2011.12.028, 2012.
Publications Copernicus
Download
Short summary
The prediction of the El Niño phenomenon, an increased sea surface temperature in the eastern Pacific, fascinates people for a long time. El Niño is associated with natural disasters, such as droughts and floods. Current methods can make a reliable prediction of this phenomenon up to 6 months ahead. However, this article presents a method which combines network theory and machine learning which predicts El Niño up to 1 year ahead.
The prediction of the El Niño phenomenon, an increased sea surface temperature in the eastern...
Citation