Journal cover Journal topic
Earth System Dynamics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.866
IF3.866
IF 5-year value: 4.135
IF 5-year
4.135
CiteScore value: 7.0
CiteScore
7.0
SNIP value: 1.182
SNIP1.182
IPP value: 3.86
IPP3.86
SJR value: 1.883
SJR1.883
Scimago H <br class='widget-line-break'>index value: 33
Scimago H
index
33
h5-index value: 30
h5-index30
Download
Short summary
The prediction of the El Niño phenomenon, an increased sea surface temperature in the eastern Pacific, fascinates people for a long time. El Niño is associated with natural disasters, such as droughts and floods. Current methods can make a reliable prediction of this phenomenon up to 6 months ahead. However, this article presents a method which combines network theory and machine learning which predicts El Niño up to 1 year ahead.
Altmetrics
Final-revised paper
Preprint
Articles | Volume 9, issue 3
Earth Syst. Dynam., 9, 969–983, 2018
https://doi.org/10.5194/esd-9-969-2018
Earth Syst. Dynam., 9, 969–983, 2018
https://doi.org/10.5194/esd-9-969-2018

Research article 23 Jul 2018

Research article | 23 Jul 2018

Using network theory and machine learning to predict El Niño

Peter D. Nooteboom et al.

Related authors

Global dataset of thermohaline staircases obtained from Argo floats and Ice-Tethered Profilers
Carine G. van der Boog, J. Otto Koetsier, Henk A. Dijkstra, Julie D. Pietrzak, and Caroline A. Katsman
Earth Syst. Sci. Data, 13, 43–61, https://doi.org/10.5194/essd-13-43-2021,https://doi.org/10.5194/essd-13-43-2021, 2021
Short summary
The middle to late Eocene greenhouse climate modelled using the CESM 1.0.5
Michiel Baatsen, Anna S. von der Heydt, Matthew Huber, Michael A. Kliphuis, Peter K. Bijl, Appy Sluijs, and Henk A. Dijkstra
Clim. Past, 16, 2573–2597, https://doi.org/10.5194/cp-16-2573-2020,https://doi.org/10.5194/cp-16-2573-2020, 2020
Short summary
Multidecadal preconditioning of the Maud Rise polynya region
René M. van Westen and Henk A. Dijkstra
Ocean Sci., 16, 1443–1457, https://doi.org/10.5194/os-16-1443-2020,https://doi.org/10.5194/os-16-1443-2020, 2020
Short summary
Detecting flow features in scarce trajectory data using networks derived from symbolic itineraries: an application to surface drifters in the North Atlantic
David Wichmann, Christian Kehl, Henk A. Dijkstra, and Erik van Sebille
Nonlin. Processes Geophys., 27, 501–518, https://doi.org/10.5194/npg-27-501-2020,https://doi.org/10.5194/npg-27-501-2020, 2020
Short summary
Sinking microplastics in the water column: simulations in the Mediterranean Sea
Rebeca de la Fuente, Gábor Drótos, Emilio Hernández García, Cristóbal López, and Erik van Sebille
Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-95,https://doi.org/10.5194/os-2020-95, 2020
Revised manuscript under review for OS
Short summary

Related subject area

Dynamics of the Earth system: models
Evaluating the dependence structure of compound precipitation and wind speed extremes
Jakob Zscheischler, Philippe Naveau, Olivia Martius, Sebastian Engelke, and Christoph C. Raible
Earth Syst. Dynam., 12, 1–16, https://doi.org/10.5194/esd-12-1-2021,https://doi.org/10.5194/esd-12-1-2021, 2021
Short summary
Future sea level contribution from Antarctica inferred from CMIP5 model forcing and its dependence on precipitation ansatz
Christian B. Rodehacke, Madlene Pfeiffer, Tido Semmler, Özgür Gurses, and Thomas Kleiner
Earth Syst. Dynam., 11, 1153–1194, https://doi.org/10.5194/esd-11-1153-2020,https://doi.org/10.5194/esd-11-1153-2020, 2020
Short summary
The extremely warm summer of 2018 in Sweden – set in a historical context
Renate Anna Irma Wilcke, Erik Kjellström, Changgui Lin, Daniela Matei, Anders Moberg, and Evangelos Tyrlis
Earth Syst. Dynam., 11, 1107–1121, https://doi.org/10.5194/esd-11-1107-2020,https://doi.org/10.5194/esd-11-1107-2020, 2020
Short summary
Effect of changing ocean circulation on deep ocean temperature in the last millennium
Jeemijn Scheen and Thomas F. Stocker
Earth Syst. Dynam., 11, 925–951, https://doi.org/10.5194/esd-11-925-2020,https://doi.org/10.5194/esd-11-925-2020, 2020
Short summary
How large does a large ensemble need to be?
Sebastian Milinski, Nicola Maher, and Dirk Olonscheck
Earth Syst. Dynam., 11, 885–901, https://doi.org/10.5194/esd-11-885-2020,https://doi.org/10.5194/esd-11-885-2020, 2020
Short summary

Cited articles

Akaike, H.: A New Look at the Statistical Model Identification, IEEE T. Automat. Contr., AC-19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974.
Aladag, C. H., Egrioglu, E., and Kadilar, C.: Forecasting nonlinear time series with a hybrid methodology, Appl. Math. Lett., 22, 1467–1470, https://doi.org/10.1016/j.aml.2009.02.006, 2009.
Al-Smadi, A. and Al-Zaben, A.: ARMA Model Order Determination Using Edge Detection: A New Perspective, Circuits, Systems Signal Processing, 24, 723–732, 2005.
Berezin, Y., Gozolchiani, A., Guez, O., and Havlin, S.: Stability of Climate Networks with Time, Sci. Rep.-UK, 2, 1–8, https://doi.org/10.1038/srep00666, 2012.
Bergmeir, C. and Benítez, J. M.: On the use of cross-validation for time series predictor evaluation, Inf. Sci. (Ny)., 191, 192–213, https://doi.org/10.1016/j.ins.2011.12.028, 2012.
Publications Copernicus
Download
Short summary
The prediction of the El Niño phenomenon, an increased sea surface temperature in the eastern Pacific, fascinates people for a long time. El Niño is associated with natural disasters, such as droughts and floods. Current methods can make a reliable prediction of this phenomenon up to 6 months ahead. However, this article presents a method which combines network theory and machine learning which predicts El Niño up to 1 year ahead.
Citation
Altmetrics
Final-revised paper
Preprint