Articles | Volume 9, issue 3
Research article
 | Highlight paper
23 Jul 2018
Research article | Highlight paper |  | 23 Jul 2018

Using network theory and machine learning to predict El Niño

Peter D. Nooteboom, Qing Yi Feng, Cristóbal López, Emilio Hernández-García, and Henk A. Dijkstra

Abstract. The skill of current predictions of the warm phase of the El Niño Southern Oscillation (ENSO) reduces significantly beyond a lag time of 6 months. In this paper, we aim to increase this prediction skill at lag times of up to 1 year. The new method combines a classical autoregressive integrated moving average technique with a modern machine learning approach (through an artificial neural network). The attributes in such a neural network are derived from knowledge of physical processes and topological properties of climate networks, and they are tested using a Zebiak–Cane-type model and observations. For predictions up to 6 months ahead, the results of the hybrid model give a slightly better skill than the CFSv2 ensemble prediction by the National Centers for Environmental Prediction (NCEP). Interestingly, results for a 12-month lead time prediction have a similar skill as the shorter lead time predictions.

Short summary
The prediction of the El Niño phenomenon, an increased sea surface temperature in the eastern Pacific, fascinates people for a long time. El Niño is associated with natural disasters, such as droughts and floods. Current methods can make a reliable prediction of this phenomenon up to 6 months ahead. However, this article presents a method which combines network theory and machine learning which predicts El Niño up to 1 year ahead.
Final-revised paper