Journal cover Journal topic
Earth System Dynamics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.866 IF 3.866
  • IF 5-year value: 4.135 IF 5-year
    4.135
  • CiteScore value: 7.0 CiteScore
    7.0
  • SNIP value: 1.182 SNIP 1.182
  • IPP value: 3.86 IPP 3.86
  • SJR value: 1.883 SJR 1.883
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 33 Scimago H
    index 33
  • h5-index value: 30 h5-index 30
Volume 7, issue 4
Earth Syst. Dynam., 7, 917–935, 2016
https://doi.org/10.5194/esd-7-917-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Earth Syst. Dynam., 7, 917–935, 2016
https://doi.org/10.5194/esd-7-917-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 24 Nov 2016

Research article | 24 Nov 2016

The impact of structural error on parameter constraint in a climate model

Doug McNeall et al.

Related authors

Correcting a bias in a climate model with an augmented emulator
Doug McNeall, Jonny Williams, Richard Betts, Ben Booth, Peter Challenor, Peter Good, and Andy Wiltshire
Geosci. Model Dev., 13, 2487–2509, https://doi.org/10.5194/gmd-13-2487-2020,https://doi.org/10.5194/gmd-13-2487-2020, 2020
Short summary
The mechanisms of North Atlantic CO2 uptake in a large Earth System Model ensemble
P. R. Halloran, B. B. B. Booth, C. D. Jones, F. H. Lambert, D. J. McNeall, I. J. Totterdell, and C. Völker
Biogeosciences, 12, 4497–4508, https://doi.org/10.5194/bg-12-4497-2015,https://doi.org/10.5194/bg-12-4497-2015, 2015
Short summary
The potential of an observational data set for calibration of a computationally expensive computer model
D. J. McNeall, P. G. Challenor, J. R. Gattiker, and E. J. Stone
Geosci. Model Dev., 6, 1715–1728, https://doi.org/10.5194/gmd-6-1715-2013,https://doi.org/10.5194/gmd-6-1715-2013, 2013
The impact of climate mitigation on projections of future drought
I. H. Taylor, E. Burke, L. McColl, P. D. Falloon, G. R. Harris, and D. McNeall
Hydrol. Earth Syst. Sci., 17, 2339–2358, https://doi.org/10.5194/hess-17-2339-2013,https://doi.org/10.5194/hess-17-2339-2013, 2013
Scenario and modelling uncertainty in global mean temperature change derived from emission-driven global climate models
B. B. B. Booth, D. Bernie, D. McNeall, E. Hawkins, J. Caesar, C. Boulton, P. Friedlingstein, and D. M. H. Sexton
Earth Syst. Dynam., 4, 95–108, https://doi.org/10.5194/esd-4-95-2013,https://doi.org/10.5194/esd-4-95-2013, 2013

Related subject area

Dynamics of the Earth system: models
Variability of surface climate in simulations of past and future
Kira Rehfeld, Raphaël Hébert, Juan M. Lora, Marcus Lofverstrom, and Chris M. Brierley
Earth Syst. Dynam., 11, 447–468, https://doi.org/10.5194/esd-11-447-2020,https://doi.org/10.5194/esd-11-447-2020, 2020
Short summary
Statistical estimation of global surface temperature response to forcing under the assumption of temporal scaling
Eirik Myrvoll-Nilsen, Sigrunn Holbek Sørbye, Hege-Beate Fredriksen, Håvard Rue, and Martin Rypdal
Earth Syst. Dynam., 11, 329–345, https://doi.org/10.5194/esd-11-329-2020,https://doi.org/10.5194/esd-11-329-2020, 2020
Short summary
Emulating Earth system model temperatures with MESMER: from global mean temperature trajectories to grid-point-level realizations on land
Lea Beusch, Lukas Gudmundsson, and Sonia I. Seneviratne
Earth Syst. Dynam., 11, 139–159, https://doi.org/10.5194/esd-11-139-2020,https://doi.org/10.5194/esd-11-139-2020, 2020
Short summary
A global semi-empirical glacial isostatic adjustment (GIA) model based on Gravity Recovery and Climate Experiment (GRACE) data
Yu Sun and Riccardo E. M. Riva
Earth Syst. Dynam., 11, 129–137, https://doi.org/10.5194/esd-11-129-2020,https://doi.org/10.5194/esd-11-129-2020, 2020
Short summary
What could we learn about climate sensitivity from variability in the surface temperature record?
James Douglas Annan, Julia Catherine Hargreaves, Thorsten Mauritsen, and Bjorn Stevens
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2019-90,https://doi.org/10.5194/esd-2019-90, 2020
Revised manuscript accepted for ESD
Short summary

Cited articles

Abramowitz, G.: Towards a public, standardized, diagnostic benchmarking system for land surface models, Geosci. Model Dev., 5, 819–827, https://doi.org/10.5194/gmd-5-819-2012, 2012.
Booth, B. B. B., Jones, C. D., Collins, M., Totterdell, I. J., Cox, P. M., Sitch, S., Huntingford, C., Betts, R. A., Harris, G. R., and Lloyd, J.: High sensitivity of future global warming to land carbon cycle processes, Environ. Res. Lett., 7, 024002, https://doi.org/10.1088/1748-9326/7/2/024002, 2012.
Booth, B. B. B., Bernie, D., McNeall, D., Hawkins, E., Caesar, J., Boulton, C., Friedlingstein, P., and Sexton, D. M. H.: Scenario and modelling uncertainty in global mean temperature change derived from emission-driven global climate models, Earth Syst. Dynam., 4, 95–108, https://doi.org/10.5194/esd-4-95-2013, 2013.
Bounceur, N., Crucifix, M., and Wilkinson, R. D.: Global sensitivity analysis of the climate–vegetation system to astronomical forcing: an emulator-based approach, Earth Syst. Dynam., 6, 205–224, https://doi.org/10.5194/esd-6-205-2015, 2015.
Brynjarsdóttir, J. and O'Hagan, A.: Learning about physical parameters: the importance of model discrepancy, Inverse Problems, 30, 114007, https://doi.org/10.1088/0266-5611/30/11/114007, 2014.
Publications Copernicus
Download
Short summary
We compare simulated with observed forests to constrain uncertain input parameters of the land surface component of a climate model. We find that the model is unlikely to be able to simulate the Amazon and other major forests simultaneously at any one parameter set, suggesting a bias in the model's representation of the Amazon. We find we cannot constrain parameters individually, but we can rule out large areas of joint parameter space.
We compare simulated with observed forests to constrain uncertain input parameters of the land...
Citation