Articles | Volume 14, issue 2
https://doi.org/10.5194/esd-14-485-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-14-485-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Countries most exposed to individual and concurrent extremes and near-permanent extreme conditions at different global warming levels
Fulden Batibeniz
CORRESPONDING AUTHOR
Institute for Atmospheric and Climate Science, Department of
Environmental Systems Science, ETH Zurich, Zurich, Switzerland
Mathias Hauser
Institute for Atmospheric and Climate Science, Department of
Environmental Systems Science, ETH Zurich, Zurich, Switzerland
Sonia Isabelle Seneviratne
Institute for Atmospheric and Climate Science, Department of
Environmental Systems Science, ETH Zurich, Zurich, Switzerland
Related authors
Yann Quilcaille, Fulden Batibeniz, Andreia F. S. Ribeiro, Ryan S. Padrón, and Sonia I. Seneviratne
Earth Syst. Sci. Data, 15, 2153–2177, https://doi.org/10.5194/essd-15-2153-2023, https://doi.org/10.5194/essd-15-2153-2023, 2023
Short summary
Short summary
We present a new database of four annual fire weather indicators over 1850–2100 and over all land areas. In a 3°C warmer world with respect to preindustrial times, the mean fire weather would increase on average by at least 66% in both intensity and duration and even triple for 1-in-10-year events. The dataset is a freely available resource for fire danger studies and beyond, highlighting that the best course of action would require limiting global warming as much as possible.
Hao Pan, Lukas Gudmundsson, Mathias Hauser, Jonas Schwaab, Yann Quilcaille, and Sonia I. Seneviratne
EGUsphere, https://doi.org/10.5194/egusphere-2025-3052, https://doi.org/10.5194/egusphere-2025-3052, 2025
This preprint is open for discussion and under review for Nonlinear Processes in Geophysics (NPG).
Short summary
Short summary
Regional climate models (RCMs) provide critical detailed information about the local climate. However, running RCM simulations requires powerful computers and is computationally expensive. This study present a probabilistic RCM emulator, MESMER-RCM, a data-driven statistical model. MESMER-RCM can generate large ensembles of synthetic, yet physically plausible fine-scale 2-meter temperature projections spanning multiple decades at negligible computational overhead.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Christophe Cassou, Mathias Hauser, Zeke Hausfather, June-Yi Lee, Matthew D. Palmer, Karina von Schuckmann, Aimée B. A. Slangen, Sophie Szopa, Blair Trewin, Jeongeun Yun, Nathan P. Gillett, Stuart Jenkins, H. Damon Matthews, Krishnan Raghavan, Aurélien Ribes, Joeri Rogelj, Debbie Rosen, Xuebin Zhang, Myles Allen, Lara Aleluia Reis, Robbie M. Andrew, Richard A. Betts, Alex Borger, Jiddu A. Broersma, Samantha N. Burgess, Lijing Cheng, Pierre Friedlingstein, Catia M. Domingues, Marco Gambarini, Thomas Gasser, Johannes Gütschow, Masayoshi Ishii, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Aurélien Liné, Didier P. Monselesan, Colin Morice, Jens Mühle, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Jan C. Minx, Matthew Rigby, Robert Rohde, Abhishek Savita, Sonia I. Seneviratne, Peter Thorne, Christopher Wells, Luke M. Western, Guido R. van der Werf, Susan E. Wijffels, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 17, 2641–2680, https://doi.org/10.5194/essd-17-2641-2025, https://doi.org/10.5194/essd-17-2641-2025, 2025
Short summary
Short summary
In a rapidly changing climate, evidence-based decision-making benefits from up-to-date and timely information. Here we compile monitoring datasets to track real-world changes over time. To make our work relevant to policymakers, we follow methods from the Intergovernmental Panel on Climate Change (IPCC). Human activities are increasing the Earth's energy imbalance and driving faster sea-level rise compared to the IPCC assessment.
Basil Kraft, Michael Schirmer, William H. Aeberhard, Massimiliano Zappa, Sonia I. Seneviratne, and Lukas Gudmundsson
Hydrol. Earth Syst. Sci., 29, 1061–1082, https://doi.org/10.5194/hess-29-1061-2025, https://doi.org/10.5194/hess-29-1061-2025, 2025
Short summary
Short summary
This study reconstructs daily runoff in Switzerland (1962–2023) using a deep-learning model, providing a spatially contiguous dataset on a medium-sized catchment grid. The model outperforms traditional hydrological methods, revealing shifts in Swiss water resources, including more frequent dry years and declining summer runoff. The reconstruction is publicly available.
Martin Hirschi, Pietro Stradiotti, Bas Crezee, Wouter Dorigo, and Sonia I. Seneviratne
Hydrol. Earth Syst. Sci., 29, 397–425, https://doi.org/10.5194/hess-29-397-2025, https://doi.org/10.5194/hess-29-397-2025, 2025
Short summary
Short summary
We investigate the potential of long-term satellite and reanalysis products for characterising soil drying by analysing their 2000–2022 soil moisture trends and their representation of agroecological drought events of this period. Soil moisture trends are globally diverse and partly contradictory between products. This also affects the products' drought-detection capacity. Based on the best-estimate products, consistent soil drying is observed over more than 40 % of the land area covered.
Sarah Schöngart, Lukas Gudmundsson, Mathias Hauser, Peter Pfleiderer, Quentin Lejeune, Shruti Nath, Sonia Isabelle Seneviratne, and Carl-Friedrich Schleussner
Geosci. Model Dev., 17, 8283–8320, https://doi.org/10.5194/gmd-17-8283-2024, https://doi.org/10.5194/gmd-17-8283-2024, 2024
Short summary
Short summary
Precipitation and temperature are two of the most impact-relevant climatic variables. Yet, projecting future precipitation and temperature data under different emission scenarios relies on complex models that are computationally expensive. In this study, we propose a method that allows us to generate monthly means of local precipitation and temperature at low computational costs. Our modelling framework is particularly useful for all downstream applications of climate model data.
Felix Jäger, Jonas Schwaab, Yann Quilcaille, Michael Windisch, Jonathan Doelman, Stefan Frank, Mykola Gusti, Petr Havlik, Florian Humpenöder, Andrey Lessa Derci Augustynczik, Christoph Müller, Kanishka Balu Narayan, Ryan Sebastian Padrón, Alexander Popp, Detlef van Vuuren, Michael Wögerer, and Sonia Isabelle Seneviratne
Earth Syst. Dynam., 15, 1055–1071, https://doi.org/10.5194/esd-15-1055-2024, https://doi.org/10.5194/esd-15-1055-2024, 2024
Short summary
Short summary
Climate change mitigation strategies developed with socioeconomic models rely on the widespread (re)planting of trees to limit global warming below 2°. However, most of these models neglect climate-driven shifts in forest damage like fires. By assessing existing mitigation scenarios, we show the exposure of projected forestation areas to fire-promoting weather conditions. Our study highlights the problem of ignoring climate-driven shifts in forest damage and ways to address it.
Malte Meinshausen, Carl-Friedrich Schleussner, Kathleen Beyer, Greg Bodeker, Olivier Boucher, Josep G. Canadell, John S. Daniel, Aïda Diongue-Niang, Fatima Driouech, Erich Fischer, Piers Forster, Michael Grose, Gerrit Hansen, Zeke Hausfather, Tatiana Ilyina, Jarmo S. Kikstra, Joyce Kimutai, Andrew D. King, June-Yi Lee, Chris Lennard, Tabea Lissner, Alexander Nauels, Glen P. Peters, Anna Pirani, Gian-Kasper Plattner, Hans Pörtner, Joeri Rogelj, Maisa Rojas, Joyashree Roy, Bjørn H. Samset, Benjamin M. Sanderson, Roland Séférian, Sonia Seneviratne, Christopher J. Smith, Sophie Szopa, Adelle Thomas, Diana Urge-Vorsatz, Guus J. M. Velders, Tokuta Yokohata, Tilo Ziehn, and Zebedee Nicholls
Geosci. Model Dev., 17, 4533–4559, https://doi.org/10.5194/gmd-17-4533-2024, https://doi.org/10.5194/gmd-17-4533-2024, 2024
Short summary
Short summary
The scientific community is considering new scenarios to succeed RCPs and SSPs for the next generation of Earth system model runs to project future climate change. To contribute to that effort, we reflect on relevant policy and scientific research questions and suggest categories for representative emission pathways. These categories are tailored to the Paris Agreement long-term temperature goal, high-risk outcomes in the absence of further climate policy and worlds “that could have been”.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Bradley Hall, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan P. Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Blair Trewin, Myles Allen, Robbie Andrew, Richard A. Betts, Alex Borger, Tim Boyer, Jiddu A. Broersma, Carlo Buontempo, Samantha Burgess, Chiara Cagnazzo, Lijing Cheng, Pierre Friedlingstein, Andrew Gettelman, Johannes Gütschow, Masayoshi Ishii, Stuart Jenkins, Xin Lan, Colin Morice, Jens Mühle, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Jan C. Minx, Gunnar Myhre, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, Sophie Szopa, Peter Thorne, Mahesh V. M. Kovilakam, Elisa Majamäki, Jukka-Pekka Jalkanen, Margreet van Marle, Rachel M. Hoesly, Robert Rohde, Dominik Schumacher, Guido van der Werf, Russell Vose, Kirsten Zickfeld, Xuebin Zhang, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 16, 2625–2658, https://doi.org/10.5194/essd-16-2625-2024, https://doi.org/10.5194/essd-16-2625-2024, 2024
Short summary
Short summary
This paper tracks some key indicators of global warming through time, from 1850 through to the end of 2023. It is designed to give an authoritative estimate of global warming to date and its causes. We find that in 2023, global warming reached 1.3 °C and is increasing at over 0.2 °C per decade. This is caused by all-time-high greenhouse gas emissions.
Steven J. De Hertog, Carmen E. Lopez-Fabara, Ruud van der Ent, Jessica Keune, Diego G. Miralles, Raphael Portmann, Sebastian Schemm, Felix Havermann, Suqi Guo, Fei Luo, Iris Manola, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
Earth Syst. Dynam., 15, 265–291, https://doi.org/10.5194/esd-15-265-2024, https://doi.org/10.5194/esd-15-265-2024, 2024
Short summary
Short summary
Changes in land use are crucial to achieve lower global warming. However, despite their importance, the effects of these changes on moisture fluxes are poorly understood. We analyse land cover and management scenarios in three climate models involving cropland expansion, afforestation, and irrigation. Results show largely consistent influences on moisture fluxes, with cropland expansion causing a drying and reduced local moisture recycling, while afforestation and irrigation show the opposite.
Dominik L. Schumacher, Mariam Zachariah, Friederike Otto, Clair Barnes, Sjoukje Philip, Sarah Kew, Maja Vahlberg, Roop Singh, Dorothy Heinrich, Julie Arrighi, Maarten van Aalst, Mathias Hauser, Martin Hirschi, Verena Bessenbacher, Lukas Gudmundsson, Hiroko K. Beaudoing, Matthew Rodell, Sihan Li, Wenchang Yang, Gabriel A. Vecchi, Luke J. Harrington, Flavio Lehner, Gianpaolo Balsamo, and Sonia I. Seneviratne
Earth Syst. Dynam., 15, 131–154, https://doi.org/10.5194/esd-15-131-2024, https://doi.org/10.5194/esd-15-131-2024, 2024
Short summary
Short summary
The 2022 summer was accompanied by widespread soil moisture deficits, including an unprecedented drought in Europe. Combining several observation-based estimates and models, we find that such an event has become at least 5 and 20 times more likely due to human-induced climate change in western Europe and the northern extratropics, respectively. Strong regional warming fuels soil desiccation; hence, projections indicate even more potent future droughts as we progress towards a 2 °C warmer world.
Yann Quilcaille, Lukas Gudmundsson, and Sonia I. Seneviratne
Earth Syst. Dynam., 14, 1333–1362, https://doi.org/10.5194/esd-14-1333-2023, https://doi.org/10.5194/esd-14-1333-2023, 2023
Short summary
Short summary
Climate models are powerful tools, but they have high computational costs, hindering their use in exploring future climate extremes. We demonstrate MESMER-X, the only existing emulator for spatial climate extremes (heatwaves, fires, droughts) that mimics all of their relevant properties. Thanks to its negligible computational cost, MESMER-X may greatly accelerate the exploration of future climate extremes or enable the integration of climate extremes in economic and financial models.
Shruti Nath, Lukas Gudmundsson, Jonas Schwaab, Gregory Duveiller, Steven J. De Hertog, Suqi Guo, Felix Havermann, Fei Luo, Iris Manola, Julia Pongratz, Sonia I. Seneviratne, Carl F. Schleussner, Wim Thiery, and Quentin Lejeune
Geosci. Model Dev., 16, 4283–4313, https://doi.org/10.5194/gmd-16-4283-2023, https://doi.org/10.5194/gmd-16-4283-2023, 2023
Short summary
Short summary
Tree cover changes play a significant role in climate mitigation and adaptation. Their regional impacts are key in informing national-level decisions and prioritising areas for conservation efforts. We present a first step towards exploring these regional impacts using a simple statistical device, i.e. emulator. The emulator only needs to train on climate model outputs representing the maximal impacts of aff-, re-, and deforestation, from which it explores plausible in-between outcomes itself.
Piers M. Forster, Christopher J. Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Sonia I. Seneviratne, Blair Trewin, Xuebin Zhang, Myles Allen, Robbie Andrew, Arlene Birt, Alex Borger, Tim Boyer, Jiddu A. Broersma, Lijing Cheng, Frank Dentener, Pierre Friedlingstein, José M. Gutiérrez, Johannes Gütschow, Bradley Hall, Masayoshi Ishii, Stuart Jenkins, Xin Lan, June-Yi Lee, Colin Morice, Christopher Kadow, John Kennedy, Rachel Killick, Jan C. Minx, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sophie Szopa, Peter Thorne, Robert Rohde, Maisa Rojas Corradi, Dominik Schumacher, Russell Vose, Kirsten Zickfeld, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 15, 2295–2327, https://doi.org/10.5194/essd-15-2295-2023, https://doi.org/10.5194/essd-15-2295-2023, 2023
Short summary
Short summary
This is a critical decade for climate action, but there is no annual tracking of the level of human-induced warming. We build on the Intergovernmental Panel on Climate Change assessment reports that are authoritative but published infrequently to create a set of key global climate indicators that can be tracked through time. Our hope is that this becomes an important annual publication that policymakers, media, scientists and the public can refer to.
Steven J. De Hertog, Felix Havermann, Inne Vanderkelen, Suqi Guo, Fei Luo, Iris Manola, Dim Coumou, Edouard L. Davin, Gregory Duveiller, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
Earth Syst. Dynam., 14, 629–667, https://doi.org/10.5194/esd-14-629-2023, https://doi.org/10.5194/esd-14-629-2023, 2023
Short summary
Short summary
Land cover and land management changes are important strategies for future land-based mitigation. We investigate the climate effects of cropland expansion, afforestation, irrigation and wood harvesting using three Earth system models. Results show that these have important implications for surface temperature where the land cover and/or management change occur and in remote areas. Idealized afforestation causes global warming, which might offset the cooling effect from enhanced carbon uptake.
Yann Quilcaille, Fulden Batibeniz, Andreia F. S. Ribeiro, Ryan S. Padrón, and Sonia I. Seneviratne
Earth Syst. Sci. Data, 15, 2153–2177, https://doi.org/10.5194/essd-15-2153-2023, https://doi.org/10.5194/essd-15-2153-2023, 2023
Short summary
Short summary
We present a new database of four annual fire weather indicators over 1850–2100 and over all land areas. In a 3°C warmer world with respect to preindustrial times, the mean fire weather would increase on average by at least 66% in both intensity and duration and even triple for 1-in-10-year events. The dataset is a freely available resource for fire danger studies and beyond, highlighting that the best course of action would require limiting global warming as much as possible.
Steven J. De Hertog, Carmen E. Lopez-Fabara, Ruud van der Ent, Jessica Keune, Diego G. Miralles, Raphael Portmann, Sebastian Schemm, Felix Havermann, Suqi Guo, Fei Luo, Iris Manola, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
EGUsphere, https://doi.org/10.5194/egusphere-2023-953, https://doi.org/10.5194/egusphere-2023-953, 2023
Preprint archived
Short summary
Short summary
Land cover and management changes can affect the climate and water availability. In this study we use climate model simulations of extreme global land cover changes (afforestation, deforestation) and land management changes (irrigation) to understand the effects on the global water cycle and local to continental water availability. We show that cropland expansion generally leads to higher evaporation and lower amounts of precipitation and afforestation and irrigation expansion to the opposite.
Francisco José Cuesta-Valero, Hugo Beltrami, Almudena García-García, Gerhard Krinner, Moritz Langer, Andrew H. MacDougall, Jan Nitzbon, Jian Peng, Karina von Schuckmann, Sonia I. Seneviratne, Wim Thiery, Inne Vanderkelen, and Tonghua Wu
Earth Syst. Dynam., 14, 609–627, https://doi.org/10.5194/esd-14-609-2023, https://doi.org/10.5194/esd-14-609-2023, 2023
Short summary
Short summary
Climate change is caused by the accumulated heat in the Earth system, with the land storing the second largest amount of this extra heat. Here, new estimates of continental heat storage are obtained, including changes in inland-water heat storage and permafrost heat storage in addition to changes in ground heat storage. We also argue that heat gains in all three components should be monitored independently of their magnitude due to heat-dependent processes affecting society and ecosystems.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Sjoukje Y. Philip, Sarah F. Kew, Geert Jan van Oldenborgh, Faron S. Anslow, Sonia I. Seneviratne, Robert Vautard, Dim Coumou, Kristie L. Ebi, Julie Arrighi, Roop Singh, Maarten van Aalst, Carolina Pereira Marghidan, Michael Wehner, Wenchang Yang, Sihan Li, Dominik L. Schumacher, Mathias Hauser, Rémy Bonnet, Linh N. Luu, Flavio Lehner, Nathan Gillett, Jordis S. Tradowsky, Gabriel A. Vecchi, Chris Rodell, Roland B. Stull, Rosie Howard, and Friederike E. L. Otto
Earth Syst. Dynam., 13, 1689–1713, https://doi.org/10.5194/esd-13-1689-2022, https://doi.org/10.5194/esd-13-1689-2022, 2022
Short summary
Short summary
In June 2021, the Pacific Northwest of the US and Canada saw record temperatures far exceeding those previously observed. This attribution study found such a severe heat wave would have been virtually impossible without human-induced climate change. Assuming no nonlinear interactions, such events have become at least 150 times more common, are about 2 °C hotter and will become even more common as warming continues. Therefore, adaptation and mitigation are urgently needed to prepare society.
Ryan S. Padrón, Lukas Gudmundsson, Laibao Liu, Vincent Humphrey, and Sonia I. Seneviratne
Biogeosciences, 19, 5435–5448, https://doi.org/10.5194/bg-19-5435-2022, https://doi.org/10.5194/bg-19-5435-2022, 2022
Short summary
Short summary
The answer to how much carbon land ecosystems are projected to remove from the atmosphere until 2100 is different for each Earth system model. We find that differences across models are primarily explained by the annual land carbon sink dependence on temperature and soil moisture, followed by the dependence on CO2 air concentration, and by average climate conditions. Our insights on why each model projects a relatively high or low land carbon sink can help to reduce the underlying uncertainty.
Steven J. De Hertog, Felix Havermann, Inne Vanderkelen, Suqi Guo, Fei Luo, Iris Manola, Dim Coumou, Edouard L. Davin, Gregory Duveiller, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
Earth Syst. Dynam., 13, 1305–1350, https://doi.org/10.5194/esd-13-1305-2022, https://doi.org/10.5194/esd-13-1305-2022, 2022
Short summary
Short summary
Land cover and land management changes are important strategies for future land-based mitigation. We investigate the climate effects of cropland expansion, afforestation, irrigation, and wood harvesting using three Earth system models. Results show that these have important implications for surface temperature where the land cover and/or management change occurs and in remote areas. Idealized afforestation causes global warming, which might offset the cooling effect from enhanced carbon uptake.
Kathrin Wehrli, Fei Luo, Mathias Hauser, Hideo Shiogama, Daisuke Tokuda, Hyungjun Kim, Dim Coumou, Wilhelm May, Philippe Le Sager, Frank Selten, Olivia Martius, Robert Vautard, and Sonia I. Seneviratne
Earth Syst. Dynam., 13, 1167–1196, https://doi.org/10.5194/esd-13-1167-2022, https://doi.org/10.5194/esd-13-1167-2022, 2022
Short summary
Short summary
The ExtremeX experiment was designed to unravel the contribution of processes leading to the occurrence of recent weather and climate extremes. Global climate simulations are carried out with three models. The results show that in constrained experiments, temperature anomalies during heatwaves are well represented, although climatological model biases remain. Further, a substantial contribution of both atmospheric circulation and soil moisture to heat extremes is identified.
Fei Luo, Frank Selten, Kathrin Wehrli, Kai Kornhuber, Philippe Le Sager, Wilhelm May, Thomas Reerink, Sonia I. Seneviratne, Hideo Shiogama, Daisuke Tokuda, Hyungjun Kim, and Dim Coumou
Weather Clim. Dynam., 3, 905–935, https://doi.org/10.5194/wcd-3-905-2022, https://doi.org/10.5194/wcd-3-905-2022, 2022
Short summary
Short summary
Recent studies have identified the weather systems in observational data, where wave patterns with high-magnitude values that circle around the whole globe in either wavenumber 5 or wavenumber 7 are responsible for the extreme events. In conclusion, we find that the climate models are able to reproduce the large-scale atmospheric circulation patterns as well as their associated surface variables such as temperature, precipitation, and sea level pressure.
Verena Bessenbacher, Sonia Isabelle Seneviratne, and Lukas Gudmundsson
Geosci. Model Dev., 15, 4569–4596, https://doi.org/10.5194/gmd-15-4569-2022, https://doi.org/10.5194/gmd-15-4569-2022, 2022
Short summary
Short summary
Earth observations have many missing values. They are often filled using information from spatial and temporal contexts that mostly ignore information from related observed variables. We propose the gap-filling method CLIMFILL that additionally uses information from related variables. We test CLIMFILL using gap-free reanalysis data of variables related to soil–moisture climate interactions. CLIMFILL creates estimates for the missing values that recover the original dependence structure.
Shruti Nath, Quentin Lejeune, Lea Beusch, Sonia I. Seneviratne, and Carl-Friedrich Schleussner
Earth Syst. Dynam., 13, 851–877, https://doi.org/10.5194/esd-13-851-2022, https://doi.org/10.5194/esd-13-851-2022, 2022
Short summary
Short summary
Uncertainty within climate model projections on inter-annual timescales is largely affected by natural climate variability. Emulators are valuable tools for approximating climate model runs, allowing for easy exploration of such uncertainty spaces. This study takes a first step at building a spatially resolved, monthly temperature emulator that takes local yearly temperatures as the sole input, thus providing monthly temperature distributions which are of critical value to impact assessments.
Ronny Meier, Edouard L. Davin, Gordon B. Bonan, David M. Lawrence, Xiaolong Hu, Gregory Duveiller, Catherine Prigent, and Sonia I. Seneviratne
Geosci. Model Dev., 15, 2365–2393, https://doi.org/10.5194/gmd-15-2365-2022, https://doi.org/10.5194/gmd-15-2365-2022, 2022
Short summary
Short summary
We revise the roughness of the land surface in the CESM climate model. Guided by observational data, we increase the surface roughness of forests and decrease that of bare soil, snow, ice, and crops. These modifications alter simulated temperatures and wind speeds at and above the land surface considerably, in particular over desert regions. The revised model represents the diurnal variability of the land surface temperature better compared to satellite observations over most regions.
Lea Beusch, Zebedee Nicholls, Lukas Gudmundsson, Mathias Hauser, Malte Meinshausen, and Sonia I. Seneviratne
Geosci. Model Dev., 15, 2085–2103, https://doi.org/10.5194/gmd-15-2085-2022, https://doi.org/10.5194/gmd-15-2085-2022, 2022
Short summary
Short summary
We introduce the first chain of computationally efficient Earth system model (ESM) emulators to translate user-defined greenhouse gas emission pathways into regional temperature change time series accounting for all major sources of climate change projection uncertainty. By combining the global mean emulator MAGICC with the spatially resolved emulator MESMER, we can derive ESM-specific and constrained probabilistic emulations to rapidly provide targeted climate information at the local scale.
Heye Reemt Bogena, Martin Schrön, Jannis Jakobi, Patrizia Ney, Steffen Zacharias, Mie Andreasen, Roland Baatz, David Boorman, Mustafa Berk Duygu, Miguel Angel Eguibar-Galán, Benjamin Fersch, Till Franke, Josie Geris, María González Sanchis, Yann Kerr, Tobias Korf, Zalalem Mengistu, Arnaud Mialon, Paolo Nasta, Jerzy Nitychoruk, Vassilios Pisinaras, Daniel Rasche, Rafael Rosolem, Hami Said, Paul Schattan, Marek Zreda, Stefan Achleitner, Eduardo Albentosa-Hernández, Zuhal Akyürek, Theresa Blume, Antonio del Campo, Davide Canone, Katya Dimitrova-Petrova, John G. Evans, Stefano Ferraris, Félix Frances, Davide Gisolo, Andreas Güntner, Frank Herrmann, Joost Iwema, Karsten H. Jensen, Harald Kunstmann, Antonio Lidón, Majken Caroline Looms, Sascha Oswald, Andreas Panagopoulos, Amol Patil, Daniel Power, Corinna Rebmann, Nunzio Romano, Lena Scheiffele, Sonia Seneviratne, Georg Weltin, and Harry Vereecken
Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022, https://doi.org/10.5194/essd-14-1125-2022, 2022
Short summary
Short summary
Monitoring of increasingly frequent droughts is a prerequisite for climate adaptation strategies. This data paper presents long-term soil moisture measurements recorded by 66 cosmic-ray neutron sensors (CRNS) operated by 24 institutions and distributed across major climate zones in Europe. Data processing followed harmonized protocols and state-of-the-art methods to generate consistent and comparable soil moisture products and to facilitate continental-scale analysis of hydrological extremes.
Aine M. Gormley-Gallagher, Sebastian Sterl, Annette L. Hirsch, Sonia I. Seneviratne, Edouard L. Davin, and Wim Thiery
Earth Syst. Dynam., 13, 419–438, https://doi.org/10.5194/esd-13-419-2022, https://doi.org/10.5194/esd-13-419-2022, 2022
Short summary
Short summary
Our results show that agricultural management can impact the local climate and highlight the need to evaluate land management in climate models. We use regression analysis on climate simulations and observations to assess irrigation and conservation agriculture impacts on warming trends. This allowed us to distinguish between the effects of land management and large-scale climate forcings such as rising CO2 concentrations and thus gain insight into the impacts under different climate regimes.
Sarah F. Kew, Sjoukje Y. Philip, Mathias Hauser, Mike Hobbins, Niko Wanders, Geert Jan van Oldenborgh, Karin van der Wiel, Ted I. E. Veldkamp, Joyce Kimutai, Chris Funk, and Friederike E. L. Otto
Earth Syst. Dynam., 12, 17–35, https://doi.org/10.5194/esd-12-17-2021, https://doi.org/10.5194/esd-12-17-2021, 2021
Short summary
Short summary
Motivated by the possible influence of rising temperatures, this study synthesises results from observations and climate models to explore trends (1900–2018) in eastern African (EA) drought measures. However, no discernible trends are found in annual soil moisture or precipitation. Positive trends in potential evaporation indicate that for irrigated regions more water is now required to counteract increased evaporation. Precipitation deficit is, however, the most useful indicator of EA drought.
Quentin Lejeune, Edouard L. Davin, Grégory Duveiller, Bas Crezee, Ronny Meier, Alessandro Cescatti, and Sonia I. Seneviratne
Earth Syst. Dynam., 11, 1209–1232, https://doi.org/10.5194/esd-11-1209-2020, https://doi.org/10.5194/esd-11-1209-2020, 2020
Short summary
Short summary
Trees are darker than crops or grasses; hence, they absorb more solar radiation. Therefore, land cover changes modify the fraction of solar radiation reflected by the land surface (its albedo), with consequences for the climate. We apply a new statistical method to simulations conducted with 15 recent climate models and find that albedo variations due to land cover changes since 1860 have led to a decrease in the net amount of energy entering the atmosphere by −0.09 W m2 on average.
Maialen Iturbide, José M. Gutiérrez, Lincoln M. Alves, Joaquín Bedia, Ruth Cerezo-Mota, Ezequiel Cimadevilla, Antonio S. Cofiño, Alejandro Di Luca, Sergio Henrique Faria, Irina V. Gorodetskaya, Mathias Hauser, Sixto Herrera, Kevin Hennessy, Helene T. Hewitt, Richard G. Jones, Svitlana Krakovska, Rodrigo Manzanas, Daniel Martínez-Castro, Gemma T. Narisma, Intan S. Nurhati, Izidine Pinto, Sonia I. Seneviratne, Bart van den Hurk, and Carolina S. Vera
Earth Syst. Sci. Data, 12, 2959–2970, https://doi.org/10.5194/essd-12-2959-2020, https://doi.org/10.5194/essd-12-2959-2020, 2020
Short summary
Short summary
We present an update of the IPCC WGI reference regions used in AR5 for the synthesis of climate change information. This revision was guided by the basic principles of climatic consistency and model representativeness (in particular for the new CMIP6 simulations). We also present a new dataset of monthly CMIP5 and CMIP6 spatially aggregated information using the new reference regions and describe a worked example of how to use this dataset to inform regional climate change studies.
Kathrin Wehrli, Mathias Hauser, and Sonia I. Seneviratne
Earth Syst. Dynam., 11, 855–873, https://doi.org/10.5194/esd-11-855-2020, https://doi.org/10.5194/esd-11-855-2020, 2020
Short summary
Short summary
The 2018 summer was unusually hot for large areas in the Northern Hemisphere, and heatwaves on three continents led to major impacts on agriculture and society. This study investigates storylines for the extreme 2018 summer, given the observed atmospheric circulation but different levels of background global warming. The results reveal a strong contribution by the present-day level of global warming and show a dramatic outlook for similar events in a warmer climate.
Karina von Schuckmann, Lijing Cheng, Matthew D. Palmer, James Hansen, Caterina Tassone, Valentin Aich, Susheel Adusumilli, Hugo Beltrami, Tim Boyer, Francisco José Cuesta-Valero, Damien Desbruyères, Catia Domingues, Almudena García-García, Pierre Gentine, John Gilson, Maximilian Gorfer, Leopold Haimberger, Masayoshi Ishii, Gregory C. Johnson, Rachel Killick, Brian A. King, Gottfried Kirchengast, Nicolas Kolodziejczyk, John Lyman, Ben Marzeion, Michael Mayer, Maeva Monier, Didier Paolo Monselesan, Sarah Purkey, Dean Roemmich, Axel Schweiger, Sonia I. Seneviratne, Andrew Shepherd, Donald A. Slater, Andrea K. Steiner, Fiammetta Straneo, Mary-Louise Timmermans, and Susan E. Wijffels
Earth Syst. Sci. Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020, https://doi.org/10.5194/essd-12-2013-2020, 2020
Short summary
Short summary
Understanding how much and where the heat is distributed in the Earth system is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to obtain the Earth heat inventory over the period 1960–2018.
Cited articles
Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein
Tank, A. M. G., Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F.,
Tagipour, A., Rupa Kumar, K., Revadekar, J., Griffiths, G., Vincent, L.,
Stephenson, D. B., Burn, J., Aguilar, E., Brunet, M., Taylor, M., New, M.,
Zhai, P., Rusticucci, M., and Vazquez-Aguirre, J. L.: Global observed
changes in daily climate extremes of temperature and precipitation, J.
Geophys. Res., 111, D05109, https://doi.org/10.1029/2005JD006290, 2006.
Alizadeh, M. R., Adamowski, J., Nikoo, M. R., AghaKouchak, A., Dennison, P.,
and Sadegh, M.: A century of observations reveals increasing likelihood of
continental-scale compound dry–hot extremes, Sci. Adv., 6, eaaz4571,
https://doi.org/10.1126/sciadv.aaz4571, 2020.
Alizadeh, M. R., Abatzoglou, J. T., Adamowski, J. F., Prestemon, J. P.,
Chittoori, B., Akbari Asanjan, A., and Sadegh, M.: Increasing Heat-Stress
Inequality in a Warming Climate, Earth's Future, 10, e2021EF002488,
https://doi.org/10.1029/2021EF002488, 2022.
Bao, J., Sherwood, S. C., Alexander, L. V., and Evans, J. P.: Future
increases in extreme precipitation exceed observed scaling rates, Nat.
Clim. Change, 7, 128–132, https://doi.org/10.1038/nclimate3201, 2017.
Bathiany, S., Dakos, V., Scheffer, M., and Lenton, T. M.: Climate models
predict increasing temperature variability in poor countries, Sci. Adv., 4,
eaar5809, https://doi.org/10.1126/sciadv.aar5809, 2018.
Batibeniz, F., Ashfaq, M., Diffenbaugh, N. S., Key, K., Evans, K. J.,
Turuncoglu, U. U., and Önol, B.: Doubling of U.S. Population Exposure to
Climate Extremes by 2050, Earth's Future, 8, e2019EF001421,
https://doi.org/10.1029/2019EF001421, 2020a.
Batibeniz, F., Ashfaq, M., Önol, B., Turuncoglu, U. U., Mehmood, S., and
Evans, K. J.: Identification of major moisture sources across the
Mediterranean Basin, Clim. Dynam., 54, 4109–4127,
https://doi.org/10.1007/s00382-020-05224-3, 2020b.
Bevacqua, E., Zappa, G., Lehner, F., and Zscheischler, J.: Precipitation
trends determine future occurrences of compound hot–dry events, Nat. Clim.
Change, 12, 350–355, https://doi.org/10.1038/s41558-022-01309-5, 2022.
Botzen, W. J. W., van den Bergh, J. C. J. M., and Bouwer, L. M.: Climate
change and increased risk for the insurance sector: a global perspective and
an assessment for the Netherlands, Nat. Hazards, 52, 577–598,
https://doi.org/10.1007/s11069-009-9404-1, 2010.
Brunner, L., Hauser, M., Lorenz, R., and Beyerle, U.: The ETH Zurich CMIP6 next generation archive: technical documentation, Zenodo [data set], https://doi.org/10.5281/ZENODO.3734128, 2020.
Champagne, O., Leduc, M., Coulibaly, P., and Arain, M. A.: Winter hydrometeorological extreme events modulated by large-scale atmospheric circulation in southern Ontario, Earth Syst. Dynam., 11, 301–318, https://doi.org/10.5194/esd-11-301-2020, 2020.
Chen, H., Sun, J., and Li, H.: Increased population exposure to
precipitation extremes under future warmer climates, Environ. Res. Lett.,
15, 034048, https://doi.org/10.1088/1748-9326/ab751f, 2020.
Chiang, F., Mazdiyasni, O., and AghaKouchak, A.: Amplified warming of
droughts in southern United States in observations and model simulations,
Sci. Adv., 4, eaat2380, https://doi.org/10.1126/sciadv.aat2380, 2018.
CIESN (Center for International Earth Science Information Network –
Columbia University): Gridded Population of the
World, Version 4 (GPWv4), Population Count, Revision 11, SEDAC [data set], https://doi.org/10.7927/H4JW8BX5, 2018.
Coppola, E., Raffaele, F., Giorgi, F., Giuliani, G., Xuejie, G., Ciarlo, J.
M., Sines, T. R., Torres-Alavez, J. A., Das, S., di Sante, F., Pichelli, E.,
Glazer, R., Müller, S. K., Abba Omar, S., Ashfaq, M., Bukovsky, M., Im,
E.-S., Jacob, D., Teichmann, C., Remedio, A., Remke, T., Kriegsmann, A.,
Bülow, K., Weber, T., Buntemeyer, L., Sieck, K., and Rechid, D.: Climate
hazard indices projections based on CORDEX-CORE, CMIP5 and CMIP6 ensemble,
Clim. Dynam., 57, 1293–1383, https://doi.org/10.1007/s00382-021-05640-z, 2021.
Couasnon, A., Eilander, D., Muis, S., Veldkamp, T. I. E., Haigh, I. D., Wahl, T., Winsemius, H. C., and Ward, P. J.: Measuring compound flood potential from river discharge and storm surge extremes at the global scale, Nat. Hazards Earth Syst. Sci., 20, 489–504, https://doi.org/10.5194/nhess-20-489-2020, 2020.
Das, J., Manikanta, V., and Umamahesh, N. V.: Population exposure to
compound extreme events in India under different emission and population
scenarios, Sci. Total Environ., 806, 150424,
https://doi.org/10.1016/j.scitotenv.2021.150424, 2022.
De Luca, P., Messori, G., Pons, F. M. E., and Faranda, D.: Dynamical systems
theory sheds new light on compound climate extremes in Europe and Eastern
North America, Q. J. Roy. Meteor. Soc., 146, 1636–1650,
https://doi.org/10.1002/qj.3757, 2020.
Dell, M., Jones, B. F., and Olken, B. A.: Temperature Shocks and Economic
Growth: Evidence from the Last Half Century, Am. Econ. J.-Macroecon., 4, 66–95, https://doi.org/10.1257/mac.4.3.66, 2012.
Dell, M., Jones, B. F., and Olken, B. A.: What Do We Learn from the Weather?
The New Climate-Economy Literature, J. Econ. Lit., 52,
740–798, https://doi.org/10.1257/jel.52.3.740, 2014.
Diffenbaugh, N. S., Swain, D. L., and Touma, D.: Anthropogenic warming has
increased drought risk in California, P. Natl. Acad. Sci. USA, 112,
3931–3936, https://doi.org/10.1073/pnas.1422385112, 2015.
Eckstein, D., Künzel, V., and Schafer, L.: GLOBAL CLIMATE RISK INDEX
2021 Who Suffers Most from Extreme Weather Events? Westher-Related Loss
Events in 2019 and 2000–2019, Germanwatch e.V., https://www.germanwatch.org/en/cri (last access: 17 April 2023), 2021.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Feng, S., Wu, X., Hao, Z., Hao, Y., Zhang, X., and Hao, F.: A database for
characteristics and variations of global compound dry and hot events,
Weather and Climate Extremes, 30, 100299,
https://doi.org/10.1016/j.wace.2020.100299, 2020.
Forzieri, G., Feyen, L., Russo, S., Vousdoukas, M., Alfieri, L., Outten, S.,
Migliavacca, M., Bianchi, A., Rojas, R., and Cid, A.: Multi-hazard
assessment in Europe under climate change, Climatic Change, 137, 105–119,
https://doi.org/10.1007/s10584-016-1661-x, 2016.
Frame, D. J., Rosier, S. M., Noy, I., Harrington, L. J., Carey-Smith, T.,
Sparrow, S. N., Stone, D. A., and Dean, S. M.: Climate change attribution
and the economic costs of extreme weather events: a study on damages from
extreme rainfall and drought, Climatic Change, 162, 781–797,
https://doi.org/10.1007/s10584-020-02729-y, 2020.
Gross, M. H., Donat, M. G., Alexander, L. V., and Sherwood, S. C.: Amplified warming of seasonal cold extremes relative to the mean in the Northern Hemisphere extratropics, Earth Syst. Dynam., 11, 97–111, https://doi.org/10.5194/esd-11-97-2020, 2020.
Guo, J., Kubli, D., Saner, P., Ronke, P., and Swiss Re Institute: The
Economics of Climate Change: No Action Not an Option, Swiss Re Institute,
2021.
Hao, Z., Hao, F., Singh, V. P., and Zhang, X.: Changes in the severity of
compound drought and hot extremes over global land areas, Environ. Res.
Lett., 13, 124022, https://doi.org/10.1088/1748-9326/aaee96, 2018.
Hauser, M., Orth, R., and Seneviratne, S. I.: Role of soil moisture versus
recent climate change for the 2010 heat wave in western Russia, Geophys.
Res. Lett., 43, 2819–2826, https://doi.org/10.1002/2016GL068036, 2016.
Herrera-Estrada, J. E. and Sheffield, J.: Uncertainties in Future
Projections of Summer Droughts and Heat Waves over the Contiguous United
States, J. Climate, 30, 6225–6246,
https://doi.org/10.1175/JCLI-D-16-0491.1, 2017.
Holmes, C. R., Woollings, T., Hawkins, E., and de Vries, H.: Robust Future
Changes in Temperature Variability under Greenhouse Gas Forcing and the
Relationship with Thermal Advection, J. Climate, 29, 2221–2236,
https://doi.org/10.1175/JCLI-D-14-00735.1, 2016.
IPCC: Summary for Policymakers, in: Climate Change 2021: The Physical
Science Basis. Contribution of Working Group I to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by:
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C.,
Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M.,
Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield,
T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, 3–32,
https://doi.org/10.1017/9781009157896.001, 2021.
Jahn, M.: Economics of extreme weather events: Terminology and regional
impact models, Weather and Climate Extremes, 10, 29–39,
https://doi.org/10.1016/j.wace.2015.08.005, 2015.
Jones, B. and O'Neill, B. C.: Spatially explicit global population scenarios
consistent with the Shared Socioeconomic Pathways, Environ. Res. Lett., 11,
084003, https://doi.org/10.1088/1748-9326/11/8/084003, 2016.
Jones, B. and O'Neill, B. C.: Global One-Eighth Degree Population Base Year
and Projection Grids Based on the Shared Socioeconomic Pathways, Revision
01, Palisades, New York, NASA Socioeconomic Data and Applications Center (SEDAC), https://doi.org/10.7927/m30p-j498, 2020.
Jones, B. F. and Olken, B. A.: Climate Shocks and Exports, Am. Econ.
Rev., 100, 454–459, https://doi.org/10.1257/aer.100.2.454, 2010.
Jones, P. W.: First- and Second-Order Conservative Remapping Schemes for
Grids in Spherical Coordinates, Mon. Weather Rev., 127, 2204–2210,
https://doi.org/10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2, 1999.
Kelebek, M. B., Batibeniz, F., and Önol, B.: Exposure Assessment of
Climate Extremes over the Europe–Mediterranean Region, Atmosphere, 12, 633,
https://doi.org/10.3390/atmos12050633, 2021.
Kirono, D. G. C., Hennessy, K. J., and Grose, M. R.: Increasing risk of
months with low rainfall and high temperature in southeast Australia for the
past 150 years, Climate Risk Management, 16, 10–21,
https://doi.org/10.1016/j.crm.2017.04.001, 2017.
Kong, Q., Guerreiro, S. B., Blenkinsop, S., Li, X.-F., and Fowler, H. J.:
Increases in summertime concurrent drought and heatwave in Eastern China,
Weather and Climate Extremes, 28, 100242,
https://doi.org/10.1016/j.wace.2019.100242, 2020.
Krishnan, A. and Bhaskaran, P. K.: Skill assessment of global climate model
wind speed from CMIP5 and CMIP6 and evaluation of projections for the Bay of
Bengal, Clim. Dynam., 55, 2667–2687,
https://doi.org/10.1007/s00382-020-05406-z, 2020.
Lange, S., Volkholz, J., Geiger, T., Zhao, F., Vega, I., Veldkamp, T.,
Reyer, C. P. O., Warszawski, L., Huber, V., Jägermeyr, J., Schewe, J.,
Bresch, D. N., Büchner, M., Chang, J., Ciais, P., Dury, M., Emanuel, K.,
Folberth, C., Gerten, D., Gosling, S. N., Grillakis, M., Hanasaki, N.,
Henrot, A., Hickler, T., Honda, Y., Ito, A., Khabarov, N., Koutroulis, A.,
Liu, W., Müller, C., Nishina, K., Ostberg, S., Müller Schmied, H.,
Seneviratne, S. I., Stacke, T., Steinkamp, J., Thiery, W., Wada, Y.,
Willner, S., Yang, H., Yoshikawa, M., Yue, C., and Frieler, K.: Projecting
Exposure to Extreme Climate Impact Events Across Six Event Categories and
Three Spatial Scales, Earth's Future, 8, e2020EF001616,
https://doi.org/10.1029/2020EF001616, 2020.
Li, L., Yao, N., Li, Y., Liu, D. L., Wang, B., and Ayantobo, O. O.: Future
projections of extreme temperature events in different sub-regions of China,
Atmos. Res., 217, 150–164,
https://doi.org/10.1016/j.atmosres.2018.10.019, 2019.
Li, L., Wang, R., Lv, G., Ning, L., and Yuan, L.: Likelihood of warm-season
compound dry and hot extremes increased with stronger dependence,
Climatology (Global Change), ESS Open Archive [data set], https://doi.org/10.1002/essoar.10505090.1,
2020.
Liu, W., Sun, F., Feng, Y., Li, C., Chen, J., Sang, Y.-F., and Zhang, Q.:
Increasing population exposure to global warm-season concurrent dry and hot
extremes under different warming levels, Environ. Res. Lett., 16, 094002,
https://doi.org/10.1088/1748-9326/ac188f, 2021.
Manning, C., Widmann, M., Bevacqua, E., Van Loon, A. F., Maraun, D., and
Vrac, M.: Increased probability of compound long-duration dry and hot events
in Europe during summer (1950–2013), Environ. Res. Lett., 14, 094006,
https://doi.org/10.1088/1748-9326/ab23bf, 2019.
Martius, O., Pfahl, S., and Chevalier, C.: A global quantification of
compound precipitation and wind extremes: COMPOUND PRECIPITATION AND WIND
EXTREMES, Geophys. Res. Lett., 43, 7709–7717,
https://doi.org/10.1002/2016GL070017, 2016.
Mazdiyasni, O. and AghaKouchak, A.: Substantial increase in concurrent
droughts and heatwaves in the United States, P. Natl. Acad. Sci. USA, 112,
11484–11489, https://doi.org/10.1073/pnas.1422945112, 2015.
Messmer, M. and Simmonds, I.: Global analysis of cyclone-induced compound
precipitation and wind extreme events, Weather and Climate Extremes, 32,
100324, https://doi.org/10.1016/j.wace.2021.100324, 2021.
Miralles, D. G., Gentine, P., Seneviratne, S. I., and Teuling, A. J.:
Land-atmospheric feedbacks during droughts and heatwaves: state of the
science and current challenges: Land feedbacks during droughts and
heatwaves, Ann. N.Y. Acad. Sci., 1436, 19–35,
https://doi.org/10.1111/nyas.13912, 2019.
Mondal, A. and Mujumdar, P. P.: Modeling non-stationarity in intensity,
duration and frequency of extreme rainfall over India, J. Hydrol.,
521, 217–231, https://doi.org/10.1016/j.jhydrol.2014.11.071, 2015.
Mueller, B. and Seneviratne, S. I.: Systematic land climate and
evapotranspiration biases in CMIP5 simulations, Geophys. Res. Lett., 41,
128–134, https://doi.org/10.1002/2013GL058055, 2014.
Mukherjee, S. and Mishra, A. K.: Increase in Compound Drought and Heatwaves
in a Warming World, Geophys. Res. Lett., 48, e2020GL090617,
https://doi.org/10.1029/2020GL090617, 2021.
Mukherjee, S., Mishra, A. K., Mann, M. E., and Raymond, C.: Anthropogenic
Warming and Population Growth May Double US Heat Stress by the Late 21st
Century, Earth's Future, 9, e2020EF001886, https://doi.org/10.1029/2020EF001886, 2021.
Orlowsky, B. and Seneviratne, S. I.: Global changes in extreme events:
regional and seasonal dimension, Climatic Change, 110, 669–696,
https://doi.org/10.1007/s10584-011-0122-9, 2012.
Orlowsky, B. and Seneviratne, S. I.: Elusive drought: uncertainty in observed trends and short- and long-term CMIP5 projections, Hydrol. Earth Syst. Sci., 17, 1765–1781, https://doi.org/10.5194/hess-17-1765-2013, 2013.
Outten, S. and Sobolowski, S.: Extreme wind projections over Europe from the
Euro-CORDEX regional climate models, Weather and Climate Extremes, 33,
100363, https://doi.org/10.1016/j.wace.2021.100363, 2021.
Pfahl, S., O'Gorman, P. A., and Fischer, E. M.: Understanding the regional
pattern of projected future changes in extreme precipitation, Nat. Clim.
Change, 7, 423–427, https://doi.org/10.1038/nclimate3287, 2017.
Poschlod, B., Zscheischler, J., Sillmann, J., Wood, R. R., and Ludwig, R.:
Climate change effects on hydrometeorological compound events over southern
Norway, Weather and Climate Extremes, 28, 100253,
https://doi.org/10.1016/j.wace.2020.100253, 2020.
Ranasinghe, R., Ruane, A. C., Vautard, R., Arnell, N., Coppola, E., Cruz, F.
A., Dessai, S., Islam, A. S., Rahimi, M., Ruiz Carrascal, D., Sillmann, J.,
Sylla, M. B., Tebaldi, C., Wang, W., and Zaaboul, R.: Climate Change
Information for Regional Impact and for Risk Assessment, in: Climate Change
2021: The Physical Science Basis. Contribution of Working Group I to the
Sixth Assessment Report of the Intergovernmental Panel on Climate Change,
edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L.,
Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I.,
Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K.,
Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University
Press, Cambridge, United Kingdom and New York, NY, USA, 1767–1926,
https://doi.org/10.1017/9781009157896.014, 2021.
Rasmijn, L. M., van der Schrier, G., Bintanja, R., Barkmeijer, J., Sterl,
A., and Hazeleger, W.: Future equivalent of 2010 Russian heatwave
intensified by weakening soil moisture constraints, Nat. Clim. Change, 8,
381–385, https://doi.org/10.1038/s41558-018-0114-0, 2018.
Raveh-Rubin, S. and Wernli, H.: Large-scale wind and precipitation extremes
in the Mediterranean: a climatological analysis for 1979–2012: Mediterranean
Large-scale Wind and Precipitation Extremes, Q. J. Roy. Meteor. Soc., 141,
2404–2417, https://doi.org/10.1002/qj.2531, 2015.
Reale, M., Cabos Narvaez, W. D., Cavicchia, L., Conte, D., Coppola, E.,
Flaounas, E., Giorgi, F., Gualdi, S., Hochman, A., Li, L., Lionello, P.,
Podrascanin, Z., Salon, S., Sanchez-Gomez, E., Scoccimarro, E., Sein, D. V.,
and Somot, S.: Future projections of Mediterranean cyclone characteristics
using the Med-CORDEX ensemble of coupled regional climate system models,
Clim. Dynam., 58, 2501–2524, https://doi.org/10.1007/s00382-021-06018-x, 2021.
Ridder, N. N., Pitman, A. J., Westra, S., Ukkola, A., Do, H. X., Bador, M.,
Hirsch, A. L., Evans, J. P., Di Luca, A., and Zscheischler, J.: Global
hotspots for the occurrence of compound events, Nat. Commun., 11, 5956,
https://doi.org/10.1038/s41467-020-19639-3, 2020.
Ridder, N. N., Pitman, A. J., and Ukkola, A. M.: Do CMIP6 Climate Models
Simulate Global or Regional Compound Events Skillfully?, Geophys. Res. Lett.,
48, e2020GL091152, https://doi.org/10.1029/2020GL091152, 2021.
Roser, M., Ritchie, H., Ortiz-Ospina, E., and Rodés-Guirao, L.: World
Population Growth, Our World in Data, https://ourworldindata.org/world-population-growth (last access: 18 April 2023), 2013.
Rossow, W. B., Mekonnen, A., Pearl, C., and Goncalves, W.: Tropical
Precipitation Extremes, J. Climate, 26, 1457–1466,
https://doi.org/10.1175/JCLI-D-11-00725.1, 2013.
Saeed, F., Schleussner, C., and Ashfaq, M.: Deadly Heat Stress to Become
Commonplace Across South Asia Already at 1.5 ∘C of Global Warming,
Geophys. Res. Lett., 48, e2020GL091191, https://doi.org/10.1029/2020GL091191, 2021.
Sarhadi, A., Ausín, M. C., Wiper, M. P., Touma, D., and Diffenbaugh, N.
S.: Multidimensional risk in a nonstationary climate: Joint probability of
increasingly severe warm and dry conditions, Sci. Adv., 4, eaau3487,
https://doi.org/10.1126/sciadv.aau3487, 2018.
Schubert, S. D., Wang, H., Koster, R. D., Suarez, M. J., and Groisman, P.
Y.: Northern Eurasian Heat Waves and Droughts, J. Climate, 27,
3169–3207, https://doi.org/10.1175/JCLI-D-13-00360.1, 2014.
Schwingshackl, C., Sillmann, J., Vicedo-Cabrera, A. M., Sandstad, M., and
Aunan, K.: Heat Stress Indicators in CMIP6: Estimating Future Trends and
Exceedances of Impact-Relevant Thresholds, Earth's Future, 9, e2020EF001885,
https://doi.org/10.1029/2020EF001885, 2021.
Sedlmeier, K., Feldmann, H., and Schädler, G.: Compound summer
temperature and precipitation extremes over central Europe, Theor. Appl.
Climatol., 131, 1493–1501, https://doi.org/10.1007/s00704-017-2061-5, 2018.
Seneviratne, S. I. and Hauser, M.: Regional Climate Sensitivity of Climate
Extremes in CMIP6 Versus CMIP5 Multimodel Ensembles, Earth's Future, 8,
https://doi.org/10.1029/2019EF001474, 2020.
Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B.,
Lehner, I., Orlowsky, B., and Teuling, A. J.: Investigating soil
moisture–climate interactions in a changing climate: A review,
Earth-Sci. Rev., 99, 125–161,
https://doi.org/10.1016/j.earscirev.2010.02.004, 2010.
Seneviratne, S. I., Wilhelm, M., Stanelle, T., Hurk, B., Hagemann, S., Berg,
A., Cheruy, F., Higgins, M. E., Meier, A., Brovkin, V., Claussen, M.,
Ducharne, A., Dufresne, J., Findell, K. L., Ghattas, J., Lawrence, D. M.,
Malyshev, S., Rummukainen, M., and Smith, B.: Impact of soil
moisture-climate feedbacks on CMIP5 projections: First results from the
GLACE-CMIP5 experiment, Geophys. Res. Lett., 40, 5212–5217,
https://doi.org/10.1002/grl.50956, 2013.
Seneviratne, S. I., Donat, M. G., Pitman, A. J., Knutti, R., and Wilby, R.
L.: Allowable CO2 emissions based on regional and impact-related climate
targets, Nature, 529, 477–483, https://doi.org/10.1038/nature16542, 2016.
Seneviratne, S. I., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Di
Luca, A., Ghosh, S., Iskandar, I., Kossin, J., Lewis, S., Otto, F., Pinto,
I., Satoh, M., Vicente-Serrano, S. M., Wehner, M., and Zhou, B.: Weather and
Climate Extreme Events in a Changing Climate, in: Climate Change 2021: The
Physical Science Basis. Contribution of Working Group I to the Sixth
Assessment Report of the Intergovernmental Panel on Climate Change, edited
by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C.,
Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M.,
Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield,
T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, 1513–1766,
https://doi.org/10.1017/9781009157896.013, 2021.
Sharma, S. and Mujumdar, P.: Increasing frequency and spatial extent of
concurrent meteorological droughts and heatwaves in India, Sci. Rep., 7,
15582, https://doi.org/10.1038/s41598-017-15896-3, 2017.
Shen, L., Wen, J., Zhang, Y., Ullah, S., Cheng, J., and Meng, X.: Changes in
population exposure to extreme precipitation in the Yangtze River Delta,
China, Climate Services, 27, 100317,
https://doi.org/10.1016/j.cliser.2022.100317, 2022.
Sillmann, J., Thorarinsdottir, T., Keenlyside, N., Schaller, N., Alexander,
L. V., Hegerl, G., Seneviratne, S. I., Vautard, R., Zhang, X., and Zwiers,
F. W.: Understanding, modeling and predicting weather and climate extremes:
Challenges and opportunities, Weather and Climate Extremes, 18, 65–74,
https://doi.org/10.1016/j.wace.2017.10.003, 2017.
Singh, J., Ashfaq, M., Skinner, C., Anderson, W., Mishra, V., and Singh, D.:
Enhanced risk of concurrent regional droughts with increased ENSO
variability and warming, In Review,
https://doi.org/10.21203/rs.3.rs-347426/v1, 2021.
Srivastava, A., Grotjahn, R., and Ullrich, P. A.: Evaluation of historical
CMIP6 model simulations of extreme precipitation over contiguous US regions,
Weather and Climate Extremes, 29, 100268,
https://doi.org/10.1016/j.wace.2020.100268, 2020.
Stocchi, P., Pichelli, E., Torres Alavez, J. A., Coppola, E., Giuliani, G.,
and Giorgi, F.: Non-Hydrostatic Regcm4 (Regcm4-NH): Evaluation of
Precipitation Statistics at the Convection-Permitting Scale over Different
Domains, Atmosphere, 13, 861, https://doi.org/10.3390/atmos13060861, 2022.
Tebaldi, C., Hayhoe, K., Arblaster, J. M., and Meehl, G. A.: Going to the
Extremes: An Intercomparison of Model-Simulated Historical and Future
Changes in Extreme Events, Climatic Change, 79, 185–211,
https://doi.org/10.1007/s10584-006-9051-4, 2006.
Tilloy, A., Malamud, B. D., and Joly-Laugel, A.: A methodology for the spatiotemporal identification of compound hazards: wind and precipitation extremes in Great Britain (1979–2019), Earth Syst. Dynam., 13, 993–1020, https://doi.org/10.5194/esd-13-993-2022, 2022.
UNFCCC (United Nations Framework Convention on Climate Change): Adoption of the Paris Agreement, Report No. FCCC/CP/2015/L.9/Rev.1, United Nations Framework Convention on Climate Change, Bonn, Germany, 2015.
United Nations, Department of Economic and Social Affairs, Population Division: World Urbanization Prospects: The 2018 Revision, New York, United Nations, ST/ESA/SER.A/420, 2019.
Vogel, M. M., Orth, R., Cheruy, F., Hagemann, S., Lorenz, R., Hurk, B. J. J.
M., and Seneviratne, S. I.: Regional amplification of projected changes in
extreme temperatures strongly controlled by soil moisture-temperature
feedbacks, Geophys. Res. Lett., 44, 1511–1519,
https://doi.org/10.1002/2016GL071235, 2017.
Vogel, M. M., Hauser, M., and Seneviratne, S. I.: Projected changes in hot,
dry and wet extreme events' clusters in CMIP6 multi-model ensemble, Environ.
Res. Lett., 15, 094021, https://doi.org/10.1088/1748-9326/ab90a7, 2020.
Wartenburger, R., Hirschi, M., Donat, M. G., Greve, P., Pitman, A. J., and Seneviratne, S. I.: Changes in regional climate extremes as a function of global mean temperature: an interactive plotting framework, Geosci. Model Dev., 10, 3609–3634, https://doi.org/10.5194/gmd-10-3609-2017, 2017.
Westra, S., Alexander, L. V., and Zwiers, F. W.: Global Increasing Trends in
Annual Maximum Daily Precipitation, J. Climate, 26, 3904–3918,
https://doi.org/10.1175/JCLI-D-12-00502.1, 2013.
Wilcox, E. M. and Donner, L. J.: The Frequency of Extreme Rain Events in
Satellite Rain-Rate Estimates and an Atmospheric General Circulation Model,
J. Climate, 20, 53–69, https://doi.org/10.1175/JCLI3987.1, 2007.
Wu, S., Chan, T. O., Zhang, W., Ning, G., Wang, P., Tong, X., Xu, F., Tian,
H., Han, Y., Zhao, Y., and Luo, M.: Increasing Compound Heat and
Precipitation Extremes Elevated by Urbanization in South China, Front. Earth
Sci., 9, 636777, https://doi.org/10.3389/feart.2021.636777, 2021.
Yu, R. and Zhai, P.: More frequent and widespread persistent compound
drought and heat event observed in China, Sci. Rep., 10, 14576,
https://doi.org/10.1038/s41598-020-71312-3, 2020.
Zhang, X., Hegerl, G., Zwiers, F. W., and Kenyon, J.: Avoiding Inhomogeneity
in Percentile-Based Indices of Temperature Extremes, J. Climate, 18,
1641–1651, https://doi.org/10.1175/JCLI3366.1, 2005.
Zhou, P. and Liu, Z.: Likelihood of concurrent climate extremes and
variations over China, Environ. Res. Lett., 13, 094023,
https://doi.org/10.1088/1748-9326/aade9e, 2018.
Zhu, H., Jiang, Z., Li, J., Li, W., Sun, C., and Li, L.: Does CMIP6 Inspire
More Confidence in Simulating Climate Extremes over China?, Adv. Atmos.
Sci., 37, 1119–1132, https://doi.org/10.1007/s00376-020-9289-1, 2020.
Zhu, Y.-Y. and Yang, S.: Evaluation of CMIP6 for historical temperature and
precipitation over the Tibetan Plateau and its comparison with CMIP5,
Advances in Climate Change Research, 11, 239–251,
https://doi.org/10.1016/j.accre.2020.08.001, 2020.
Zscheischler, J. and Seneviratne, S. I.: Dependence of drivers affects risks
associated with compound events, Sci. Adv., 3, e1700263,
https://doi.org/10.1126/sciadv.1700263, 2017.
Zscheischler, J., van den Hurk, B., Ward, P. J., and Westra, S.:
Multivariate extremes and compound events, in: Climate Extremes and Their
Implications for Impact and Risk Assessment, Elsevier, 59–76,
https://doi.org/10.1016/B978-0-12-814895-2.00004-5, 2020.
Zscheischler, J., Naveau, P., Martius, O., Engelke, S., and Raible, C. C.: Evaluating the dependence structure of compound precipitation and wind speed extremes, Earth Syst. Dynam., 12, 1–16, https://doi.org/10.5194/esd-12-1-2021, 2021.
Short summary
We study single and concurrent heatwaves, droughts, precipitation, and wind extremes. Globally, these extremes become more frequent and affect larger land areas under future warming, with several countries experiencing extreme events every single month. Concurrent heatwaves–droughts (precipitation–wind) are projected to increase the most in mid–high-latitude countries (tropics). Every mitigation action to avoid further warming will reduce the number of people exposed to extreme weather events.
We study single and concurrent heatwaves, droughts, precipitation, and wind extremes. Globally,...
Altmetrics
Final-revised paper
Preprint