Articles | Volume 12, issue 4
https://doi.org/10.5194/esd-12-1061-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-12-1061-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Climate change in the High Mountain Asia in CMIP6
Mickaël Lalande
CORRESPONDING AUTHOR
Univ. Grenoble Alpes, CNRS, IRD, G-INP, IGE, 38000 Grenoble, France
Martin Ménégoz
Univ. Grenoble Alpes, CNRS, IRD, G-INP, IGE, 38000 Grenoble, France
Gerhard Krinner
Univ. Grenoble Alpes, CNRS, IRD, G-INP, IGE, 38000 Grenoble, France
Kathrin Naegeli
Institute of Geography and Oeschger Center for Climate Change Research, University of Bern, 3012 Bern, Switzerland
Stefan Wunderle
Institute of Geography and Oeschger Center for Climate Change Research, University of Bern, 3012 Bern, Switzerland
Related authors
Libo Wang, Lawrence Mudryk, Joe R. Melton, Colleen Mortimer, Jason Cole, Gesa Meyer, Paul Bartlett, and Mickaël Lalande
EGUsphere, https://doi.org/10.5194/egusphere-2025-1264, https://doi.org/10.5194/egusphere-2025-1264, 2025
Short summary
Short summary
This study shows that an alternate snow cover fraction (SCF) parameterization significantly improves SCF simulated in the CLASSIC model in mountainous areas for all three choices of meteorological datasets. Annual mean bias, unbiased root mean squared area, and correlation improve by 75 %, 32 %, and 7 % when evaluated with MODIS SCF observations over the Northern Hemisphere. We also link relative biases in the meteorological forcing data to differences in simulated snow water equivalent and SCF.
Mickaël Lalande, Martin Ménégoz, Gerhard Krinner, Catherine Ottlé, and Frédérique Cheruy
The Cryosphere, 17, 5095–5130, https://doi.org/10.5194/tc-17-5095-2023, https://doi.org/10.5194/tc-17-5095-2023, 2023
Short summary
Short summary
This study investigates the impact of topography on snow cover parameterizations using models and observations. Parameterizations without topography-based considerations overestimate snow cover. Incorporating topography reduces snow overestimation by 5–10 % in mountains, in turn reducing cold biases. However, some biases remain, requiring further calibration and more data. Assessing snow cover parameterizations is challenging due to limited and uncertain data in mountainous regions.
Lea Hartl, Federico Covi, Martin Stocker-Waldhuber, Anna Baldo, Davide Fugazza, Biagio Di Mauro, and Kathrin Naegeli
The Cryosphere, 19, 3329–3353, https://doi.org/10.5194/tc-19-3329-2025, https://doi.org/10.5194/tc-19-3329-2025, 2025
Short summary
Short summary
Glacier albedo determines how much solar radiation is absorbed by the glacier surface and is a key driver of glacier melt. Alpine glaciers are losing their snow and firn cover, and the underlying darker ice is becoming exposed. This means that more solar radiation is absorbed by the ice, which leads to increased melt. To quantify these processes, we explore data from a high-elevation, on-ice weather station that measures albedo and combine this information with satellite imagery.
Libo Wang, Lawrence Mudryk, Joe R. Melton, Colleen Mortimer, Jason Cole, Gesa Meyer, Paul Bartlett, and Mickaël Lalande
EGUsphere, https://doi.org/10.5194/egusphere-2025-1264, https://doi.org/10.5194/egusphere-2025-1264, 2025
Short summary
Short summary
This study shows that an alternate snow cover fraction (SCF) parameterization significantly improves SCF simulated in the CLASSIC model in mountainous areas for all three choices of meteorological datasets. Annual mean bias, unbiased root mean squared area, and correlation improve by 75 %, 32 %, and 7 % when evaluated with MODIS SCF observations over the Northern Hemisphere. We also link relative biases in the meteorological forcing data to differences in simulated snow water equivalent and SCF.
Cecile B. Menard, Sirpa Rasmus, Ioanna Merkouriadi, Gianpaolo Balsamo, Annett Bartsch, Chris Derksen, Florent Domine, Marie Dumont, Dorothee Ehrich, Richard Essery, Bruce C. Forbes, Gerhard Krinner, David Lawrence, Glen Liston, Heidrun Matthes, Nick Rutter, Melody Sandells, Martin Schneebeli, and Sari Stark
The Cryosphere, 18, 4671–4686, https://doi.org/10.5194/tc-18-4671-2024, https://doi.org/10.5194/tc-18-4671-2024, 2024
Short summary
Short summary
Computer models, like those used in climate change studies, are written by modellers who have to decide how best to construct the models in order to satisfy the purpose they serve. Using snow modelling as an example, we examine the process behind the decisions to understand what motivates or limits modellers in their decision-making. We find that the context in which research is undertaken is often more crucial than scientific limitations. We argue for more transparency in our research practice.
Caroline Legrand, Benoît Hingray, Bruno Wilhelm, and Martin Ménégoz
Hydrol. Earth Syst. Sci., 28, 2139–2166, https://doi.org/10.5194/hess-28-2139-2024, https://doi.org/10.5194/hess-28-2139-2024, 2024
Short summary
Short summary
Climate change is expected to increase flood hazard worldwide. The evolution is typically estimated from multi-model chains, where regional hydrological scenarios are simulated from weather scenarios derived from coarse-resolution atmospheric outputs of climate models. We show that two such chains are able to reproduce, from an atmospheric reanalysis, the 1902–2009 discharge variations and floods of the upper Rhône alpine river, provided that the weather scenarios are bias-corrected.
Sara Bacer, Julien Beaumet, Martin Ménégoz, Hubert Gallée, Enzo Le Bouëdec, and Chantal Staquet
Weather Clim. Dynam., 5, 211–229, https://doi.org/10.5194/wcd-5-211-2024, https://doi.org/10.5194/wcd-5-211-2024, 2024
Short summary
Short summary
A model chain is used to downscale outputs from a climate model to the Grenoble valley atmosphere over the 21st century in order to study the impact of climate change on persistent cold-air pool episodes. We find that the atmosphere in the Grenoble valleys during these episodes tends to be slightly less stable in the future under the SSP5–8.5 scenario, and statistically unchanged under the SSP2–4.5 scenario but that very stable persistent cold-air pool episodes can still form.
Mickaël Lalande, Martin Ménégoz, Gerhard Krinner, Catherine Ottlé, and Frédérique Cheruy
The Cryosphere, 17, 5095–5130, https://doi.org/10.5194/tc-17-5095-2023, https://doi.org/10.5194/tc-17-5095-2023, 2023
Short summary
Short summary
This study investigates the impact of topography on snow cover parameterizations using models and observations. Parameterizations without topography-based considerations overestimate snow cover. Incorporating topography reduces snow overestimation by 5–10 % in mountains, in turn reducing cold biases. However, some biases remain, requiring further calibration and more data. Assessing snow cover parameterizations is challenging due to limited and uncertain data in mountainous regions.
Francisco José Cuesta-Valero, Hugo Beltrami, Almudena García-García, Gerhard Krinner, Moritz Langer, Andrew H. MacDougall, Jan Nitzbon, Jian Peng, Karina von Schuckmann, Sonia I. Seneviratne, Wim Thiery, Inne Vanderkelen, and Tonghua Wu
Earth Syst. Dynam., 14, 609–627, https://doi.org/10.5194/esd-14-609-2023, https://doi.org/10.5194/esd-14-609-2023, 2023
Short summary
Short summary
Climate change is caused by the accumulated heat in the Earth system, with the land storing the second largest amount of this extra heat. Here, new estimates of continental heat storage are obtained, including changes in inland-water heat storage and permafrost heat storage in addition to changes in ground heat storage. We also argue that heat gains in all three components should be monitored independently of their magnitude due to heat-dependent processes affecting society and ecosystems.
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Thomas Arsouze, Tommi Bergman, Raffaele Bernardello, Souhail Boussetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, François Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O'Donnell, Pirkka Ollinaho, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang
Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, https://doi.org/10.5194/gmd-15-2973-2022, 2022
Short summary
Short summary
The Earth system model EC-Earth3 is documented here. Key performance metrics show physical behavior and biases well within the frame known from recent models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
Sara Bacer, Fatima Jomaa, Julien Beaumet, Hubert Gallée, Enzo Le Bouëdec, Martin Ménégoz, and Chantal Staquet
Weather Clim. Dynam., 3, 377–389, https://doi.org/10.5194/wcd-3-377-2022, https://doi.org/10.5194/wcd-3-377-2022, 2022
Short summary
Short summary
We study the impact of climate change on wintertime atmospheric blocking over Europe. We focus on the frequency, duration, and size of blocking events. The blocking events are identified via the weather type decomposition methodology. We find that blocking frequency, duration, and size are mostly stationary over the 21st century. Additionally, we compare the blocking size results with the size of the blocking events identified via a different approach using a blocking index.
Xiaodan Wu, Kathrin Naegeli, Valentina Premier, Carlo Marin, Dujuan Ma, Jingping Wang, and Stefan Wunderle
The Cryosphere, 15, 4261–4279, https://doi.org/10.5194/tc-15-4261-2021, https://doi.org/10.5194/tc-15-4261-2021, 2021
Short summary
Short summary
We performed a comprehensive accuracy assessment of an Advanced Very High Resolution Radiometer global area coverage snow-cover extent time series dataset for the Hindu Kush Himalayan (HKH) region. The sensor-to-sensor consistency, the accuracy related to snow depth, elevations, land-cover types, slope, and aspects, and topographical variability were also explored. Our analysis shows an overall accuracy of 94 % in comparison with in situ station data, which is the same with MOD10A1 V006.
Julien Beaumet, Michel Déqué, Gerhard Krinner, Cécile Agosta, Antoinette Alias, and Vincent Favier
The Cryosphere, 15, 3615–3635, https://doi.org/10.5194/tc-15-3615-2021, https://doi.org/10.5194/tc-15-3615-2021, 2021
Short summary
Short summary
We use empirical run-time bias correction (also called flux correction) to correct the systematic errors of the ARPEGE atmospheric climate model. When applying the method to future climate projections, we found a lesser poleward shift and an intensification of the maximum of westerly winds present in the southern high latitudes. This yields a significant additional warming of +0.6 to +0.9 K of the Antarctic Ice Sheet with respect to non-corrected control projections using the RCP8.5 scenario.
Marion Donat-Magnin, Nicolas C. Jourdain, Christoph Kittel, Cécile Agosta, Charles Amory, Hubert Gallée, Gerhard Krinner, and Mondher Chekki
The Cryosphere, 15, 571–593, https://doi.org/10.5194/tc-15-571-2021, https://doi.org/10.5194/tc-15-571-2021, 2021
Short summary
Short summary
We simulate the West Antarctic climate in 2100 under increasing greenhouse gases. Future accumulation over the ice sheet increases, which reduces sea level changing rate. Surface ice-shelf melt rates increase until 2100. Some ice shelves experience a lot of liquid water at their surface, which indicates potential ice-shelf collapse. In contrast, no liquid water is found over other ice shelves due to huge amounts of snowfall that bury liquid water, favouring refreezing and ice-shelf stability.
Richard Essery, Hyungjun Kim, Libo Wang, Paul Bartlett, Aaron Boone, Claire Brutel-Vuilmet, Eleanor Burke, Matthias Cuntz, Bertrand Decharme, Emanuel Dutra, Xing Fang, Yeugeniy Gusev, Stefan Hagemann, Vanessa Haverd, Anna Kontu, Gerhard Krinner, Matthieu Lafaysse, Yves Lejeune, Thomas Marke, Danny Marks, Christoph Marty, Cecile B. Menard, Olga Nasonova, Tomoko Nitta, John Pomeroy, Gerd Schädler, Vladimir Semenov, Tatiana Smirnova, Sean Swenson, Dmitry Turkov, Nander Wever, and Hua Yuan
The Cryosphere, 14, 4687–4698, https://doi.org/10.5194/tc-14-4687-2020, https://doi.org/10.5194/tc-14-4687-2020, 2020
Short summary
Short summary
Climate models are uncertain in predicting how warming changes snow cover. This paper compares 22 snow models with the same meteorological inputs. Predicted trends agree with observations at four snow research sites: winter snow cover does not start later, but snow now melts earlier in spring than in the 1980s at two of the sites. Cold regions where snow can last until late summer are predicted to be particularly sensitive to warming because the snow then melts faster at warmer times of year.
Ethan Welty, Michael Zemp, Francisco Navarro, Matthias Huss, Johannes J. Fürst, Isabelle Gärtner-Roer, Johannes Landmann, Horst Machguth, Kathrin Naegeli, Liss M. Andreassen, Daniel Farinotti, Huilin Li, and GlaThiDa Contributors
Earth Syst. Sci. Data, 12, 3039–3055, https://doi.org/10.5194/essd-12-3039-2020, https://doi.org/10.5194/essd-12-3039-2020, 2020
Short summary
Short summary
Knowing the thickness of glacier ice is critical for predicting the rate of glacier loss and the myriad downstream impacts. To facilitate forecasts of future change, we have added 3 million measurements to our worldwide database of glacier thickness: 14 % of global glacier area is now within 1 km of a thickness measurement (up from 6 %). To make it easier to update and monitor the quality of our database, we have used automated tools to check and track changes to the data over time.
Martin Ménégoz, Evgenia Valla, Nicolas C. Jourdain, Juliette Blanchet, Julien Beaumet, Bruno Wilhelm, Hubert Gallée, Xavier Fettweis, Samuel Morin, and Sandrine Anquetin
Hydrol. Earth Syst. Sci., 24, 5355–5377, https://doi.org/10.5194/hess-24-5355-2020, https://doi.org/10.5194/hess-24-5355-2020, 2020
Short summary
Short summary
The study investigates precipitation changes in the Alps, using observations and a 7 km resolution climate simulation over 1900–2010. An increase in mean precipitation is found in winter over the Alps, whereas a drying occurred in summer in the surrounding plains. A general increase in the daily annual maximum of precipitation is evidenced (20 to 40 % per century), suggesting an increase in extreme events that is significant only when considering long time series, typically 50 to 80 years.
Dimitri Osmont, Sandra Brugger, Anina Gilgen, Helga Weber, Michael Sigl, Robin L. Modini, Christoph Schwörer, Willy Tinner, Stefan Wunderle, and Margit Schwikowski
The Cryosphere, 14, 3731–3745, https://doi.org/10.5194/tc-14-3731-2020, https://doi.org/10.5194/tc-14-3731-2020, 2020
Short summary
Short summary
In this interdisciplinary case study, we were able to link biomass burning emissions from the June 2017 wildfires in Portugal to their deposition in the snowpack at Jungfraujoch, Swiss Alps. We analysed black carbon and charcoal in the snowpack, calculated backward trajectories, and monitored the fire evolution by remote sensing. Such case studies help to understand the representativity of biomass burning records in ice cores and how biomass burning tracers are archived in the snowpack.
Eleanor J. Burke, Yu Zhang, and Gerhard Krinner
The Cryosphere, 14, 3155–3174, https://doi.org/10.5194/tc-14-3155-2020, https://doi.org/10.5194/tc-14-3155-2020, 2020
Short summary
Short summary
Permafrost will degrade under future climate change. This will have implications locally for the northern high-latitude regions and may well also amplify global climate change. There have been some recent improvements in the ability of earth system models to simulate the permafrost physical state, but further model developments are required. Models project the thawed volume of soil in the top 2 m of permafrost will increase by 10 %–40 % °C−1 of global mean surface air temperature increase.
Cited articles
Adler, R., Wang, J.-J., Sapiano, M., Huffman, G., Chiu, L., Xie, P. P.,
Ferraro, R., Schneider, U., Becker, A., Bolvin, D., Nelkin, E., Gu, G., and
CDR, P. N.: Global Precipitation Climatology Project (GPCP) Climate Data
Record (CDR), Version 2.3 (Monthly), https://doi.org/10.7289/V56971M6, 2016. a, b
Adler, R., Sapiano, M., Huffman, G., Wang, J.-J., Gu, G., Bolvin, D., Chiu, L.,
Schneider, U., Becker, A., Nelkin, E., Xie, P., Ferraro, R., and Shin, D.-B.:
The Global Precipitation Climatology Project (GPCP) Monthly Analysis (New
Version 2.3) and a Review of 2017 Global Precipitation, Atmosphere, 9, 138,
https://doi.org/10.3390/atmos9040138, 2018. a
APHRODITE's Water Resources: Download, available at: http://aphrodite.st.hirosaki-u.ac.jp/download/, last access: 14 June 2021. a
Bao, Y. and You, Q.: How do westerly jet streams regulate the winter snow
depth over the Tibetan Plateau?, Clim. Dynam., 53, 353–370,
https://doi.org/10.1007/s00382-018-4589-1, 2019. a
Bengtsson, L.: Can climate trends be calculated from reanalysis data?,
J. Geophys. Res., 109, D11111, https://doi.org/10.1029/2004JD004536,
2004. a
Bookhagen, B. and Burbank, D. W.: Toward a complete Himalayan hydrological
budget: Spatiotemporal distribution of snowmelt and rainfall and their impact
on river discharge, J. Geophys. Res., 115, F03019,
https://doi.org/10.1029/2009JF001426, 2010. a, b
Boos, W. R. and Hurley, J. V.: Thermodynamic Bias in the Multimodel Mean
Boreal Summer Monsoon, J. Climate, 26, 2279–2287,
https://doi.org/10.1175/JCLI-D-12-00493.1, 2013. a
Boos, W. R. and Kuang, Z.: Dominant control of the South Asian monsoon by
orographic insulation versus plateau heating, Nature, 463, 218–222,
https://doi.org/10.1038/nature08707, 2010. a
Bormann, K. J., Brown, R. D., Derksen, C., and Painter, T. H.: Estimating
snow-cover trends from space, Nat. Clim. Change, 8, 924–928,
https://doi.org/10.1038/s41558-018-0318-3, 2018. a, b
Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols, M.-A., Meurdesoif, Y., Cadule, P., Devilliers, M., Ghattas, J., Lebas, N., Lurton, T., Mellul, L., Musat, I., Mignot, J., and Cheruy, F.: IPSL IPSL-CM6A-LR model output prepared for CMIP6 CMIP historical, Version 20180803, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.5195, 2018. a
Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols, M.-A., Meurdesoif, Y., Cadule, P., Devilliers, M., Dupont, E., and Lurton, T.: IPSL IPSL-CM6A-LR model output prepared for CMIP6 ScenarioMIP, Version 20190903, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.1532, 2019. a
Brown, R. D. and Robinson, D. A.: Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty, The Cryosphere, 5, 219–229, https://doi.org/10.5194/tc-5-219-2011, 2011. a
Brun, F., Berthier, E., Wagnon, P., Kääb, A., and Treichler, D.: A
spatially resolved estimate of High Mountain Asia glacier mass balances from
2000 to 2016, Nat. Geosci., 10, 668–673, https://doi.org/10.1038/ngeo2999, 2017. a
Cannon, F., Carvalho, L. M. V., Jones, C., and Bookhagen, B.: Multi-annual
variations in winter westerly disturbance activity affecting the Himalaya,
Clim. Dynam., 44, 441–455, https://doi.org/10.1007/s00382-014-2248-8, 2015. a, b, c
Chai, Z.: CAS CAS-ESM1.0 model output prepared for CMIP6 CMIP historical, Version 20201227, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.3353, 2020. a
Cheruy, F., Ducharne, A., Hourdin, F., Musat, I., Vignon, é., Gastineau,
G., Bastrikov, V., Vuichard, N., Diallo, B., Dufresne, J., Ghattas, J.,
Grandpeix, J., Idelkadi, A., Mellul, L., Maignan, F., Ménégoz,
M., Ottlé, C., Peylin, P., Servonnat, J., Wang, F., and Zhao, Y.:
Improved Near‐Surface Continental Climate in IPSL‐CM6A‐LR by Combined
Evolutions of Atmospheric and Land Surface Physics, J. Adv. Model. Earth Sy., 12, e2019MS002005, https://doi.org/10.1029/2019MS002005, 2020. a
Copin, Y.: Taylor diagram for python/matplotlib (2018-12-06), Zenodo [code],
https://doi.org/10.5281/zenodo.5548061, 2012. a
Dahe, Q., Shiyin, L., and Peiji, L.: Snow Cover Distribution, Variability, and
Response to Climate Change in Western China, J. Climate, 19,
1820–1833, https://doi.org/10.1175/JCLI3694.1, 2006. a
Danabasoglu, G.: NCAR CESM2 model output prepared for CMIP6 CMIP historical, Version 20190308, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.7627 2019a. a
Danabasoglu, G.: NCAR CESM2-FV2 model output prepared for CMIP6 CMIP historical, Version 20191120, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.11297, 2019b. a
Danabasoglu, G.: NCAR CESM2-WACCM model output prepared for CMIP6 CMIP historical, Version 20190227, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.10071, 2019c. a
Danabasoglu, G.: NCAR CESM2-WACCM-FV2 model output prepared for CMIP6 CMIP historical, Version 20191120, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.11298, 2019d. a
Danielson, J. and Gesch, D.: Global Multi-resolution Terrain Elevation Data
2010 (GMTED2010), U.S. Geological Survey Open-File Report 2011–1073, 2010,
26, available at: http://pubs.usgs.gov/of/2011/1073/pdf/of2011-1073.pdf (last access: 14 January 2021),
2011. a
Das, S., Giorgi, F., Giuliani, G., Dey, S., and Coppola, E.: Near‐Future
Anthropogenic Aerosol Emission Scenarios and Their Direct Radiative Effects
on the Present‐Day Characteristics of the Indian Summer Monsoon, J. Geophys. Res.-Atmos., 125, 1–19, https://doi.org/10.1029/2019JD031414,
2020. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler,
M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J.,
Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N.,
and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of
the data assimilation system, Q. J. Roy. Meteor.
Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Déry, S. J. and Brown, R. D.: Recent Northern Hemisphere snow cover
extent trends and implications for the snow-albedo feedback, Geophys.
Res. Lett., 34, L22504, https://doi.org/10.1029/2007GL031474, 2007. a
Deser, C., Lehner, F., Rodgers, K. B., Ault, T., Delworth, T. L., DiNezio,
P. N., Fiore, A., Frankignoul, C., Fyfe, J. C., Horton, D. E., Kay, J. E.,
Knutti, R., Lovenduski, N. S., Marotzke, J., McKinnon, K. A., Minobe, S.,
Randerson, J., Screen, J. A., Simpson, I. R., and Ting, M.: Insights from
Earth system model initial-condition large ensembles and future prospects,
Nat. Clim. Change, 10, 277–286, https://doi.org/10.1038/s41558-020-0731-2, 2020. a
Devasthale, A., Raspaud, M., Schlundt, C., Hanschmann, T., Finkensieper, S.,
Dybbroe, A., Hörnquist, S., Håkansson, N., Stengel, M., and
Karlsson, K.-G.: PyGAC: An open-source, community-driven Python interface to
preprocess nearly 40-year AVHRR Global Area Coverage (GAC) datarecord, GSICS Quartherly Newsl., 11, 3–5,
https://doi.org/10.7289/V5R78CFR, 2017. a
De Wekker, S. F. J. and Kossmann, M.: Convective Boundary Layer Heights Over
Mountainous Terrain – A Review of Concepts, Front. Earth Sci., 3,
1–22, https://doi.org/10.3389/feart.2015.00077, 2015. a
Dimri, A., Yasunari, T., Wiltshire, A., Kumar, P., Mathison, C., Ridley, J.,
and Jacob, D.: Application of regional climate models to the Indian winter
monsoon over the western Himalayas, Sci. Total Environ.,
468–469, S36–S47, https://doi.org/10.1016/j.scitotenv.2013.01.040, 2013. a
Ding, J., Cuo, L., Zhang, Y., and Zhu, F.: Monthly and annual temperature
extremes and their changes on the Tibetan Plateau and its surroundings during
1963–2015, Sci. Rep.-UK, 8, 1–23, https://doi.org/10.1038/s41598-018-30320-0,
2018. a
Drusch, M., Vasiljevic, D., and Viterbo, P.: ECMWF's Global Snow Analysis:
Assessment and Revision Based on Satellite Observations, J. Appl.
Meteorol., 43, 1282–1294,
https://doi.org/10.1175/1520-0450(2004)043<1282:EGSAAA>2.0.CO;2, 2004. a, b, c
Du, Z. and Qingsong, Z.: Introduction, in: Mountain Geoecology and
Sustainable Development of the Tibetan Plateau, chap. 1,
Springer, Dordrecht, 1–17, https://doi.org/10.1007/978-94-010-0965-2_1, 2000. a
Duan, A., Hu, J., and Xiao, Z.: The Tibetan Plateau Summer Monsoon in the
CMIP5 Simulations, J. Climate, 26, 7747–7766,
https://doi.org/10.1175/JCLI-D-12-00685.1, 2013. a
Duan, A. M. and Wu, G. X.: Role of the Tibetan Plateau thermal forcing in the
summer climate patterns over subtropical Asia, Clim. Dynam., 24,
793–807, https://doi.org/10.1007/s00382-004-0488-8, 2005. a
ECMWF: IFS Documentation CY47R1 – Part II: Data Assimilation, in: IFS
Documentation CY47R1, no. 2 in IFS Documentation, chap. 9.3.3, ECMWF,
https://doi.org/10.21957/0gtybbwp9, 2020a. a
ECMWF: ERA-Interim, available at: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim, last access: 6 October 2020b. a
Estilow, T. W., Young, A. H., and Robinson, D. A.: A long-term Northern Hemisphere snow cover extent data record for climate studies and monitoring, Earth Syst. Sci. Data, 7, 137–142, https://doi.org/10.5194/essd-7-137-2015, 2015. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a, b
Flohn, H.: Large-scale Aspects of the “Summer Monsoon” in South and East
Asia, J. Meteorol. Soc. Jpn., 35,
180–186, https://doi.org/10.2151/jmsj1923.35A.0_180, 1957. a
Foppa, N. and Seiz, G.: Inter-annual variations of snow days over Switzerland from 2000–2010 derived from MODIS satellite data, The Cryosphere, 6, 331–342, https://doi.org/10.5194/tc-6-331-2012, 2012. a
Forster, P. M., Maycock, A. C., McKenna, C. M., and Smith, C. J.: Latest
climate models confirm need for urgent mitigation, Nat. Clim. Change,
10, 7–10, https://doi.org/10.1038/s41558-019-0660-0, 2020. a
Gao, L., Hao, L., and Chen, X.-w.: Evaluation of ERA-interim monthly
temperature data over the Tibetan Plateau, J. Mt. Sci., 11,
1154–1168, https://doi.org/10.1007/s11629-014-3013-5, 2014. a
Good, P., Sellar, A., Tang, Y., Rumbold, S., Ellis, R., Kelley, D., Kuhlbrodt, T., and Walton, J.: MOHC UKESM1.0-LL model output prepared for CMIP6 ScenarioMIP, Version 20190503, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.1567, 2019. a
Grohmann, C. H.: COMPARATIVE ANALYSIS OF GLOBAL DIGITAL ELEVATION MODELS AND
ULTRA-PROMINENT MOUNTAIN PEAKS, ISPRS Annals of Photogrammetry, Remote
Sensing and Spatial Information Sciences, III-4, 17–23,
https://doi.org/10.5194/isprsannals-III-4-17-2016, 2016. a
Gu, H., Wang, G., Yu, Z., and Mei, R.: Assessing future climate changes and
extreme indicators in east and south Asia using the RegCM4 regional climate
model, Climatic Change, 114, 301–317, https://doi.org/10.1007/s10584-012-0411-y,
2012. a, b, c, d
Guo, H., John, J. G., Blanton, C., McHugh, C., Nikonov, S., Radhakrishnan, A., Rand, K., Zadeh, N. T., Balaji, V., Durachta, J., Dupuis, C., Menzel, R., Robinson, T., Underwood, S., Vahlenkamp, H., Bushuk, M., Dunne, K. A., Dussin, R., Gauthier, P. P. G., Ginoux, P., Griffies, S. M., Hallberg, R., Harrison, M., Hurlin, W., Lin, P., Malyshev, S., Naik, V., Paulot, F., Paynter, D. J., Ploshay, J., Reichl, B. G., Schwarzkopf, D. M., Seman, C. J., Shao, A., Silvers, L., Wyman, B., Yan, X., Zeng, Y., Adcroft, A., Dunne, J. P., Held, I. M., Krasting, J. P., Horowitz, L. W., Milly, P. C. D., Shevliakova, E., Winton, M., Zhao, M., and Zhang, R.: NOAA-GFDL GFDL-CM4 model output historical, Version 20180701, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.8594, 2018. a
Gurung, D. R., Maharjan, S. B., Shrestha, A. B., Shrestha, M. S., Bajracharya,
S. R., and Murthy, M. S. R.: Climate and topographic controls on snow cover
dynamics in the Hindu Kush Himalaya, Int. J. Climatol.,
37, 3873–3882, https://doi.org/10.1002/joc.4961, 2017. a
Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU TS
monthly high-resolution gridded multivariate climate dataset, Scientific
Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3, 2020. a
Hajima, T., Abe, M., Arakawa, O., Suzuki, T., Komuro, Y., Ogura, T., Ogochi, K., Watanabe, M., Yamamoto, A., Tatebe, H., Noguchi, M. A., Ohgaito, R., Ito, A., Yamazaki, D., Ito, A., Takata, K., Watanabe, S., Kawamiya, M., and Tachiiri, K.: MIROC MIROC-ES2L model output prepared for CMIP6 CMIP historical, Version 20190823, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.5602, 2019. a
Hawkins, E., Smith, R. S., Gregory, J. M., and Stainforth, D. A.: Irreducible
uncertainty in near-term climate projections, Clim. Dynam., 46,
3807–3819, https://doi.org/10.1007/s00382-015-2806-8, 2016. a, b
Helfrich, S. R., McNamara, D., Ramsay, B. H., Baldwin, T., and Kasheta, T.:
Enhancements to, and forthcoming developments in the Interactive Multisensor
Snow and Ice Mapping System (IMS), Hydrol. Process., 21, 1576–1586,
https://doi.org/10.1002/hyp.6720, 2007. a, b
Hernández-Henríquez, M. A., Déry, S. J., and Derksen, C.:
Polar amplification and elevation-dependence in trends of Northern
Hemisphere snow cover extent, 1971–2014, Environ. Res. Lett.,
10, 044010, https://doi.org/10.1088/1748-9326/10/4/044010, 2015. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J.,
Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.:
ERA5 hourly data on single levels from 1979 to present, Copernicus Climate Change
Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2018. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146,
1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b, c
Hori, M., Sugiura, K., Kobayashi, K., Aoki, T., Tanikawa, T., Kuchiki, K.,
Niwano, M., and Enomoto, H.: A 38-year (1978–2015) Northern Hemisphere
daily snow cover extent product derived using consistent objective criteria
from satellite-borne optical sensors, Remote Sens. Environ., 191,
402–418, https://doi.org/10.1016/j.rse.2017.01.023, 2017. a
Hoyer, S. and Hamman, J. J.: xarray: N-D labeled Arrays and Datasets in
Python, Journal of Open Research Software, 5, 1–6, https://doi.org/10.5334/jors.148,
2017. a
Hsu, H. and Liu, X.: Relationship between the Tibetan Plateau heating and East
Asian summer monsoon rainfall, Geophys. Res. Lett., 30,
2003GL017909, https://doi.org/10.1029/2003GL017909, 2003. a
Hunt, K. M. R., Turner, A. G., and Shaffrey, L. C.: The evolution, seasonality
and impacts of western disturbances, Q. J. Roy.
Meteor. Soc., 144, 278–290, https://doi.org/10.1002/qj.3200, 2018. a, b
Hunter, J. D.: Matplotlib: A 2D Graphics Environment, Comput. Sci.
Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007. a
Immerzeel, W., Droogers, P., de Jong, S., and Bierkens, M.: Large-scale
monitoring of snow cover and runoff simulation in Himalayan river basins
using remote sensing, Remote Sens. Environ., 113, 40–49,
https://doi.org/10.1016/j.rse.2008.08.010, 2009. a
Immerzeel, W. W. and Bierkens, M. F. P.: Asia's water balance, Nat.
Geosci., 5, 841–842, https://doi.org/10.1038/ngeo1643, 2012. a
Immerzeel, W. W., van Beek, L. P. H., and Bierkens, M. F. P.: Climate Change
Will Affect the Asian Water Towers, Science, 328, 1382–1385,
https://doi.org/10.1126/science.1183188, 2010. a, b
Immerzeel, W. W., Wanders, N., Lutz, A. F., Shea, J. M., and Bierkens, M. F. P.: Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff, Hydrol. Earth Syst. Sci., 19, 4673–4687, https://doi.org/10.5194/hess-19-4673-2015, 2015. a, b
Jimeno-Sáez, P., Pulido-Velazquez, D., Collados-Lara, A.-J.,
Pardo-Igúzquiza, E., Senent-Aparicio, J., and Baena-Ruiz, L.: A
Preliminary Assessment of the “Undercatching” and the Precipitation
Pattern in an Alpine Basin, Water, 12, 1061, https://doi.org/10.3390/w12041061, 2020. a
Jungclaus, J., Bittner, M., Wieners, K.-H., Wachsmann, F., Schupfner, M., Legutke, S., Giorgetta, M., Reick, C., Gayler, V., Haak, H., de Vrese, P., Raddatz, T., Esch, M., Mauritsen, T., von Storch, J.-S., Behrens, J., Brovkin, V., Claussen, M., Crueger, T., Fast, I., Fiedler, S., Hagemann, S., Hohenegger, C., Jahns, T., Kloster, S., Kinne, S., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Müller, W., Nabel, J., Notz, D., Peters-von Gehlen, K., Pincus, R., Pohlmann, H., Pongratz, J., Rast, S., Schmidt, H., Schnur, R., Schulzweida, U., Six, K., Stevens, B., Voigt, A., and Roeckner, E.: MPI-M MPI-ESM1.2-HR model output prepared for CMIP6 CMIP historical, Version 20190710, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.6594, 2019. a
Kang, S., Xu, Y., You, Q., Flügel, W.-A., Pepin, N., and Yao, T.: Review
of climate and cryospheric change in the Tibetan Plateau, Environ.
Res. Lett., 5, 015101, https://doi.org/10.1088/1748-9326/5/1/015101, 2010. a
Kapnick, S. B., Delworth, T. L., Ashfaq, M., Malyshev, S., and Milly, P. C. D.:
Snowfall less sensitive to warming in Karakoram than in Himalayas due to a
unique seasonal cycle, Nat. Geosci., 7, 834–840,
https://doi.org/10.1038/ngeo2269, 2014. a, b, c, d
Katzenberger, A., Schewe, J., Pongratz, J., and Levermann, A.: Robust increase of Indian monsoon rainfall and its variability under future warming in CMIP6 models, Earth Syst. Dynam., 12, 367–386, https://doi.org/10.5194/esd-12-367-2021, 2021. a
Knutti, R., Furrer, R., Tebaldi, C., Cermak, J., and Meehl, G. A.: Challenges
in Combining Projections from Multiple Climate Models, J. Climate,
23, 2739–2758, https://doi.org/10.1175/2009JCLI3361.1, 2010. a
Krinner, G., Kharin, V., Roehrig, R., Scinocca, J., and Codron, F.:
Historically-based run-time bias corrections substantially improve model
projections of 100 years of future climate change, Communications Earth &
Environment, 1, 29, https://doi.org/10.1038/s43247-020-00035-0, 2020. a
Krishnan, R., Sabin, T. P., Ayantika, D. C., Kitoh, A., Sugi, M., Murakami, H.,
Turner, A. G., Slingo, J. M., and Rajendran, K.: Will the South Asian
monsoon overturning circulation stabilize any further?, Clim. Dynam.,
40, 187–211, https://doi.org/10.1007/s00382-012-1317-0, 2013. a
Krishnan, R., Sabin, T. P., Vellore, R., Mujumdar, M., Sanjay, J., Goswami,
B. N., Hourdin, F., Dufresne, J.-L., and Terray, P.: Deciphering the
desiccation trend of the South Asian monsoon hydroclimate in a warming
world, Clim. Dynam., 47, 1007–1027, https://doi.org/10.1007/s00382-015-2886-5,
2016. a
Krishnan, R., Sabin, T. P., Madhura, R. K., Vellore, R. K., Mujumdar, M.,
Sanjay, J., Nayak, S., and Rajeevan, M.: Non-monsoonal precipitation
response over the Western Himalayas to climate change, Clim. Dynam., 52,
4091–4109, https://doi.org/10.1007/s00382-018-4357-2, 2019. a, b, c, d
Kutzbach, J. E., Prell, W. L., and Ruddiman, W. F.: Sensitivity of Eurasian
Climate to Surface Uplift of the Tibetan Plateau, J. Geol.,
101, 177–190, https://doi.org/10.1086/648215, 1993. a
Lalande, M.: mickaellalande/CMIP6_HMA_paper: First release for production
in ESD (v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.5500285, 2021. a
Lee, W.-L. and Liang, H.-C.: AS-RCEC TaiESM1.0 model output prepared for CMIP6 CMIP historical, Version 20200623, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.9755, 2020. a
Lee, D.-K. and Suh, M.-S.: Ten-year east Asian summer monsoon simulation using
a regional climate model (RegCM2), J. Geophys. Res.-Atmos., 105, 29565–29577, https://doi.org/10.1029/2000JD900438, 2000. a
Li, C. and Yanai, M.: The Onset and Interannual Variability of the Asian
Summer Monsoon in Relation to Land–Sea Thermal Contrast, J.
Climate, 9, 358–375, https://doi.org/10.1175/1520-0442(1996)009<0358:TOAIVO>2.0.CO;2,
1996. a
Li, C., Su, F., Yang, D., Tong, K., Meng, F., and Kan, B.: Spatiotemporal
variation of snow cover over the Tibetan Plateau based on MODIS snow product,
2001–2014, Int. J. Climatol., 38, 708–728,
https://doi.org/10.1002/joc.5204, 2018. a, b
Lin, C., Chen, D., Yang, K., and Ou, T.: Impact of model resolution on
simulating the water vapor transport through the central Himalayas:
implication for models’ wet bias over the Tibetan Plateau, Clim. Dynam., 51, 3195–3207, https://doi.org/10.1007/s00382-018-4074-x, 2018. a
Liu, X. and Chen, B.: Climatic warming in the Tibetan Plateau during recent
decades, International Journal of Climatology, 20, 1729–1742,
https://doi.org/10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y, 2000. a, b
Liu, Y., Bao, Q., Duan, A., Qian, Z., and Wu, G.: Recent progress in the
impact of the Tibetan Plateau on climate in China, Adv. Atmos. Sci., 24, 1060–1076, https://doi.org/10.1007/s00376-007-1060-3, 2007. a
Madhura, R. K., Krishnan, R., Revadekar, J. V., Mujumdar, M., and Goswami,
B. N.: Changes in western disturbances over the Western Himalayas in a
warming environment, Clim. Dynam., 44, 1157–1168,
https://doi.org/10.1007/s00382-014-2166-9, 2015. a
Mao, J. and Robock, A.: Surface Air Temperature Simulations by AMIP General
Circulation Models: Volcanic and ENSO Signals and Systematic Errors, J.
Climate, 11, 1538–1552,
https://doi.org/10.1175/1520-0442(1998)011<1538:SATSBA>2.0.CO;2, 1998. a, b
Meehl, G. A., Senior, C. A., Eyring, V., Flato, G., Lamarque, J.-F., Stouffer,
R. J., Taylor, K. E., and Schlund, M.: Context for interpreting equilibrium
climate sensitivity and transient climate response from the CMIP6 Earth
system models, Science Advances, 6, eaba1981, https://doi.org/10.1126/sciadv.aba1981,
2020. a
Ménégoz, M., Krinner, G., Balkanski, Y., Boucher, O., Cozic, A., Lim, S., Ginot, P., Laj, P., Gallée, H., Wagnon, P., Marinoni, A., and Jacobi, H. W.: Snow cover sensitivity to black carbon deposition in the Himalayas: from atmospheric and ice core measurements to regional climate simulations, Atmos. Chem. Phys., 14, 4237–4249, https://doi.org/10.5194/acp-14-4237-2014, 2014. a
Metsämäki, S., Pulliainen, J., Salminen, M., Luojus, K., Wiesmann,
A., Solberg, R., Böttcher, K., Hiltunen, M., and Ripper, E.:
Introduction to GlobSnow Snow Extent products with considerations for
accuracy assessment, Remote Sens. Environ., 156, 96–108,
https://doi.org/10.1016/j.rse.2014.09.018, 2015. a
Millman, K. J. and Aivazis, M.: Python for Scientists and Engineers,
Comput. Sci. Eng., 13, 9–12, https://doi.org/10.1109/MCSE.2011.36,
2011. a
Mudryk, L., Santolaria-Otín, M., Krinner, G., Ménégoz, M., Derksen, C., Brutel-Vuilmet, C., Brady, M., and Essery, R.: Historical Northern Hemisphere snow cover trends and projected changes in the CMIP6 multi-model ensemble, The Cryosphere, 14, 2495–2514, https://doi.org/10.5194/tc-14-2495-2020, 2020. a, b
Naegeli, K., Neuhaus, C., Salberg, A.-B., Schwaizer, G., Wiesmann, A.,
Wunderle, S., and Nagler, T.: ESA Snow Climate Change Initiative
(Snow_cci): Daily global Snow Cover Fraction – snow on ground (SCFG) from
AVHRR (1982–2019), version1.0, 12 May 2021, NERC EDS Centre for Environmental Data Analysis [data set] https://doi.org/10.5285/5484dc1392bc43c1ace73ba38a22ac56,
2021. a, b
NASA: GLDAS Vegetation Class/Mask, available at: https://ldas.gsfc.nasa.gov/gldas/vegetation-class-mask, last access: 1 June 2021. a
NASA Goddard Institute for Space Studies (NASA/GISS): NASA-GISS GISS-E2.1G model output prepared for CMIP6 CMIP historical, Version 20180827, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.7127, 2018. a
NASA Goddard Institute for Space Studies (NASA/GISS): NASA-GISS GISS-E2.1H model output prepared for CMIP6 CMIP historical, Version 20190403, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.7128, 2019. a
Norris, J., Carvalho, L. M. V., Jones, C., and Cannon, F.: WRF simulations of
two extreme snowfall events associated with contrasting extratropical
cyclones over the western and central Himalaya, J. Geophys. Res.-Atmos., 120, 3114–3138, https://doi.org/10.1002/2014JD022592, 2015. a
Norris, J., Carvalho, L. M. V., Jones, C., Cannon, F., Bookhagen, B., Palazzi,
E., and Tahir, A. A.: The spatiotemporal variability of precipitation over
the Himalaya: evaluation of one-year WRF model simulation, Clim. Dynam.,
49, 2179–2204, https://doi.org/10.1007/s00382-016-3414-y, 2017. a
Notarnicola, C.: Observing Snow Cover and Water Resource Changes in the High
Mountain Asia Region in Comparison with Global Mountain Trends over
2000–2018, Remote Sensing, 12, 3913, https://doi.org/10.3390/rs12233913, 2020. a, b
Oliphant, T. E.: Python for Scientific Computing, Comput. Sci.
Eng., 9, 10–20, https://doi.org/10.1109/MCSE.2007.58, 2007. a
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016. a, b
Orsolini, Y., Wegmann, M., Dutra, E., Liu, B., Balsamo, G., Yang, K., de Rosnay, P., Zhu, C., Wang, W., Senan, R., and Arduini, G.: Evaluation of snow depth and snow cover over the Tibetan Plateau in global reanalyses using in situ and satellite remote sensing observations, The Cryosphere, 13, 2221–2239, https://doi.org/10.5194/tc-13-2221-2019, 2019. a, b, c
Sabin, T. P., Krishnan, R., Ghattas, J., Denvil, S., Dufresne, J.-L., Hourdin,
F., and Pascal, T.: High resolution simulation of the South Asian monsoon
using a variable resolution global climate model, Clim. Dynam., 41,
173–194, https://doi.org/10.1007/s00382-012-1658-8, 2013. a
Park, S. and Shin, J.: SNU SAM0-UNICON model output prepared for CMIP6 CMIP historical, Version 20190323, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.7789, 2019. a
Pu, Z., Xu, L., and Salomonson, V. V.: MODIS/Terra observed seasonal
variations of snow cover over the Tibetan Plateau, Geophys. Res.
Lett., 34, L06706, https://doi.org/10.1029/2007GL029262, 2007. a
Rangwala, I., Sinsky, E., and Miller, J. R.: Amplified warming projections for
high altitude regions of the northern hemisphere mid-latitudes from CMIP5
models, Environ. Res. Lett., 8, 024040,
https://doi.org/10.1088/1748-9326/8/2/024040, 2013. a
Rasul, G.: Food, water, and energy security in South Asia: A nexus perspective
from the Hindu Kush Himalayan region☆, Environ. Sci. Policy,
39, 35–48, https://doi.org/10.1016/j.envsci.2014.01.010, 2014. a
Ridley, J., Menary, M., Kuhlbrodt, T., Andrews, M., and Andrews, T.: MOHC HadGEM3-GC31-LL model output prepared for CMIP6 CMIP historical, Version 20190624, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.6109, 2019a. a
Ridley, J., Menary, M., Kuhlbrodt, T., Andrews, M., and Andrews, T.: MOHC HadGEM3-GC31-MM model output prepared for CMIP6 CMIP historical, Version 20191207, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.6112, 2019b. a
Ribes, A., Qasmi, S., and Gillett, N. P.: Making climate projections
conditional on historical observations, Science Advances, 7, eabc0671,
https://doi.org/10.1126/sciadv.abc0671, 2021. a
Robinson, D. A., Estilow, T. W., and NOAA CDR Program: NOAA Climate
Data Record (CDR) of Northern Hemisphere (NH) Snow Cover Extent (SCE), Version 1. [r01], NOAA National Centers for Environmental Information [data set],
https://doi.org/10.7289/V5N014G9, 2012. a, b, c
Robinson, D. A., Dewey, K. F., and Heim, R. R.: Global Snow Cover Monitoring:
An Update, B. Am. Meteorol. Soc., 74, 1689–1696,
https://doi.org/10.1175/1520-0477(1993)074<1689:GSCMAU>2.0.CO;2, 1993. a
Roesch, A., Wild, M., Gilgen, H., and Ohmura, A.: A new snow cover fraction
parametrization for the ECHAM4 GCM, Clim. Dynam., 17, 933–946,
https://doi.org/10.1007/s003820100153, 2001. a
Sabin, T. P., Krishnan, R., Vellore, R., Priya, P., Borgaonkar, H. P., Singh,
B. B., and Sagar, A.: Climate Change Over the Himalayas, in: Assessment of
Climate Change over the Indian Region, edited by Krishnan, R., Sanjay, J.,
Gnanaseelan, C., Mujumdar, M., Kulkarni, A., and Chakraborty, S.,
Springer Singapore, Singapore, 207–222,
https://doi.org/10.1007/978-981-15-4327-2_11, 2020. a, b, c, d, e, f
Salunke, P., Jain, S., and Mishra, S. K.: Performance of the CMIP5 models in
the simulation of the Himalaya-Tibetan Plateau monsoon, Theor.
Appl. Climatol., 137, 909–928, https://doi.org/10.1007/s00704-018-2644-9, 2019. a, b, c
Sanjay, J., Krishnan, R., Shrestha, A. B., Rajbhandari, R., and Ren, G.-Y.:
Downscaled climate change projections for the Hindu Kush Himalayan region
using CORDEX South Asia regional climate models, Advances in Climate Change
Research, 8, 185–198, https://doi.org/10.1016/j.accre.2017.08.003, 2017. a, b, c
Santolaria-Otín, M. and Zolina, O.: Evaluation of snow cover and snow
water equivalent in the continental Arctic in CMIP5 models, Clim. Dynam., 55, 2993–3016, https://doi.org/10.1007/s00382-020-05434-9, 2020. a
Scott, C. A., Zhang, F., Mukherji, A., Immerzeel, W., Mustafa, D., and Bharati,
L.: Water in the Hindu Kush Himalaya, in: The Hindu Kush Himalaya
Assessment, Springer International Publishing, Cham, 257–299,
https://doi.org/10.1007/978-3-319-92288-1_8, 2019. a
Seferian, R.: CNRM-CERFACS CNRM-ESM2-1 model output prepared for CMIP6 CMIP historical, Version 20181206, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.4068, 2018. a
Seferian, R.: CNRM-CERFACS CNRM-ESM2-1 model output prepared for CMIP6 ScenarioMIP, Version 20190328, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.1395, 2019. a
Seland, Ø., Bentsen, M., Oliviè, D. J. L., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K. He, Y., Kirkevåg, A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I., H. H., Landgren, O. A., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: NCC NorESM2-LM model output prepared for CMIP6 CMIP historical, Version 20190920, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.8036, 2019. a
Serafin, S., Rotach, M. W., Arpagaus, M., Colfescu, I., Cuxart, J., De Wekker,
S. F. J., Evans, M., Grubišić, V., Kalthoff, N., Karl, T.,
Kirshbaum, D. J., Lehner, M., Mobbs, S., Paci, A., Palazzi, E.,
Raudzens Bailey, A., Schmidli, J., Wohlfahrt, G., and Zardi, D.: Multi-scale
transport and exchange processes in the atmosphere over mountains, Innsbruck
University Press, Innsbruck, https://doi.org/10.15203/99106-003-1, 2020. a
Sharma, E., Molden, D., Rahman, A., Khatiwada, Y. R., Zhang, L., Singh, S. P.,
Yao, T., and Wester, P.: Introduction to the Hindu Kush Himalaya
Assessment, in: The Hindu Kush Himalaya Assessment, pp. 1–16, Springer
International Publishing, Cham, https://doi.org/10.1007/978-3-319-92288-1_1, 2019. a
Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-Year
High-Resolution Global Dataset of Meteorological Forcings for Land Surface
Modeling, J. Climate, 19, 3088–3111, https://doi.org/10.1175/JCLI3790.1,
2006. a
Shen, S. S. P., Yao, R., Ngo, J., Basist, A. M., Thomas, N., and Yao, T.:
Characteristics of the Tibetan Plateau snow cover variations based on daily
data during 1997–2011, Theor. Appl. Climatol., 120, 445–453,
https://doi.org/10.1007/s00704-014-1185-0, 2015. a
Shiogama, H., Abe, M., and Tatebe, H.: MIROC MIROC6 model output prepared for CMIP6 ScenarioMIP, Version 20190627, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.898, 2019. a
Singh, P., Ramasastri, K. S., and Kumar, N.: Topographical Influence on
Precipitation Distribution in Different Ranges of Western Himalayas,
Hydrol. Res., 26, 259–284, https://doi.org/10.2166/nh.1995.0015, 1995. a
Stengel, M., Stapelberg, S., Sus, O., Schlundt, C., Poulsen, C., Thomas, G., Christensen, M., Carbajal Henken, C., Preusker, R., Fischer, J., Devasthale, A., Willén, U., Karlsson, K.-G., McGarragh, G. R., Proud, S., Povey, A. C., Grainger, R. G., Meirink, J. F., Feofilov, A., Bennartz, R., Bojanowski, J. S., and Hollmann, R.: Cloud property datasets retrieved from AVHRR, MODIS, AATSR and MERIS in the framework of the Cloud_cci project, Earth Syst. Sci. Data, 9, 881–904, https://doi.org/10.5194/essd-9-881-2017, 2017. a
Stengel, M., Stapelberg, S., Sus, O., Finkensieper, S., Würzler, B., Philipp, D., Hollmann, R., Poulsen, C., Christensen, M., and McGarragh, G.: Cloud_cci Advanced Very High Resolution Radiometer post meridiem (AVHRR-PM) dataset version 3: 35-year climatology of global cloud and radiation properties, Earth Syst. Sci. Data, 12, 41–60, https://doi.org/10.5194/essd-12-41-2020, 2020. a, b
Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., and Hsu, K.: A
Review of Global Precipitation Data Sets: Data Sources, Estimation, and
Intercomparisons, Rev. Geophys., 56, 79–107,
https://doi.org/10.1002/2017RG000574, 2018. a, b
Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee, W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Solheim, L., von Salzen, K., Yang, D., Winter, B., and Sigmond, M.: CCCma CanESM5 model output prepared for CMIP6 CMIP historical, Version 20190429, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.3610, 2019a. a
Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee, W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Solheim, L., von Salzen, K., Yang, D., Winter, B., and Sigmond, M.: CCCma CanESM5 model output prepared for CMIP6 ScenarioMIP, Version 20190429, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.1317, 2019b. a
Swenson, S. C. and Lawrence, D. M.: A new fractional snow-covered area
parameterization for the Community Land Model and its effect on the surface
energy balance, J. Geophys. Res.-Atmos., 117, D21107,
https://doi.org/10.1029/2012JD018178, 2012. a
Tachiiri, K., Abe, M., Hajima, T., Arakawa, O., Suzuki, T., Komuro, Y., Ogochi, K., Watanabe, M., Yamamoto, A., Tatebe, H., Noguchi, M. A., Ohgaito, R., Ito, A., Yamazaki, D., Ito, A., Takata, K., Watanabe, S., and Kawamiya, M.: MIROC MIROC-ES2L model output prepared for CMIP6 ScenarioMIP, Version 20190823, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.936, 2019. a
Tang, Y., Rumbold, S., Ellis, R., Kelley, D., Mulcahy, J., Sellar, A., Walton, J., and Jones, C.: MOHC UKESM1.0-LL model output prepared for CMIP6 CMIP historical, Version 20190406, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.6113, 2019. a
Tatebe, H. and Watanabe, M.: MIROC MIROC6 model output prepared for CMIP6 CMIP historical, Version 20181212, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.5603, 2018. a
Taylor, K. E.: Summarizing multiple aspects of model performance in a single
diagram, J. Geophys. Res.-Atmos., 106, 7183–7192,
https://doi.org/10.1029/2000JD900719, 2001. a
TEMIS: GMTED2010 elevation data at different resolutions, available at: https://www.temis.nl/data/gmted2010/index.php, last access: 1 June 2021. a
Turnock, S. T., Allen, R. J., Andrews, M., Bauer, S. E., Deushi, M., Emmons, L., Good, P., Horowitz, L., John, J. G., Michou, M., Nabat, P., Naik, V., Neubauer, D., O'Connor, F. M., Olivié, D., Oshima, N., Schulz, M., Sellar, A., Shim, S., Takemura, T., Tilmes, S., Tsigaridis, K., Wu, T., and Zhang, J.: Historical and future changes in air pollutants from CMIP6 models, Atmos. Chem. Phys., 20, 14547–14579, https://doi.org/10.5194/acp-20-14547-2020, 2020. a
University of East Anglia Climatic Research Unit, Harris, I. C., and Jones, P. D.: CRU TS4.00: Climatic Research Unit (CRU) Time-Series (TS) version 4.00 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901–Dec. 2015), Centre for Environmental Data Analysis, 25 August 2017 [data set], https://doi.org/10.5285/edf8febfdaad48abb2cbaf7d7e846a86, 2017. a
Usha, K. H., Nair, V. S., and Babu, S. S.: Modeling of aerosol induced snow
albedo feedbacks over the Himalayas and its implications on regional
climate, Clim. Dynam., 54, 4191–4210, https://doi.org/10.1007/s00382-020-05222-5, 2020. a, b
Vandenberghe, J., Renssen, H., van Huissteden, K., Nugteren, G., Konert, M.,
Lu, H., Dodonov, A., and Buylaert, J.-P.: Penetration of Atlantic westerly
winds into Central and East Asia, Quaternary Sci. Rev., 25,
2380–2389, https://doi.org/10.1016/j.quascirev.2006.02.017, 2006. a
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J.,
van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N.,
Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, I.,
Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman,
R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro,
A. H., Pedregosa, F., and van Mulbregt, P.: SciPy 1.0: fundamental
algorithms for scientific computing in Python, Nat. Methods, 17, 261–272,
https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Viste, E. and Sorteberg, A.: Snowfall in the Himalayas: an uncertain future from a little-known past, The Cryosphere, 9, 1147–1167, https://doi.org/10.5194/tc-9-1147-2015, 2015. a
Voldoire, A.: CMIP6 simulations of the CNRM-CERFACS based on CNRM-CM6-1 model for CMIP experiment historical, Version 20180917, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.4066, 2018. a
Voldoire, A.: CNRM-CERFACS CNRM-CM6-1 model output prepared for CMIP6 ScenarioMIP, Version 20190219, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.1384, 2019a. a
Voldoire, A.: CNRM-CERFACS CNRM-CM6-1-HR model output prepared for CMIP6 CMIP historical, Version 20191021, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.4067, 2019b. a
Voldoire, A.: CNRM-CERFACS CNRM-CM6-1-HR model output prepared for CMIP6 ScenarioMIP, Version 20200127, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.1388, 2019c. a
Walland, D. J. and Simmonds, I.: SUB-GRID-SCALE TOPOGRAPHY AND THE SIMULATION
OF NORTHERN HEMISPHERE SNOW COVER, Int. J. Climatol., 16,
961–982,
https://doi.org/10.1002/(SICI)1097-0088(199609)16:9<961::AID-JOC72>3.0.CO;2-R, 1996. a
Wang, A. and Zeng, X.: Evaluation of multireanalysis products with in situ
observations over the Tibetan Plateau, J. Geophys. Res.-Atmos., 117, D05102, https://doi.org/10.1029/2011JD016553, 2012. a, b
Wang, B., Bao, Q., Hoskins, B., Wu, G., and Liu, Y.: Tibetan Plateau warming
and precipitation changes in East Asia, Geophys. Res. Lett., 35,
L14702, https://doi.org/10.1029/2008GL034330, 2008. a, b
Wang, T., Ottlé, C., Boone, A., Ciais, P., Brun, E., Morin, S., Krinner,
G., Piao, S., and Peng, S.: Evaluation of an improved intermediate
complexity snow scheme in the ORCHIDEE land surface model, J. Geophys. Res.-Atmos., 118, 6064–6079, https://doi.org/10.1002/jgrd.50395,
2013a. a
Wang, T., Zhao, Y., Xu, C., Ciais, P., Liu, D., Yang, H., Piao, S., and Yao,
T.: Atmospheric dynamic constraints on Tibetan Plateau freshwater under
Paris climate targets, Nat. Clim. Change, 11, 219–225,
https://doi.org/10.1038/s41558-020-00974-8, 2021. a
Wang, X., Yang, M., Wan, G., Chen, X., and Pang, G.: Qinghai-Xizang (Tibetan)
Plateau climate simulation using the regional climate model RegCM3, Clim.
Res., 57, 173–186, https://doi.org/10.3354/cr01167, 2013b. a
WCRP: CMIP6, available at: https://esgf-node.llnl.gov/search/cmip6/, last access: 13 October 2021. a
Webster, P. J., Magaña, V. O., Palmer, T. N., Shukla, J., Tomas, R. A.,
Yanai, M., and Yasunari, T.: Monsoons: Processes, predictability, and the
prospects for prediction, J. Geophys. Res.-Oceans, 103,
14451–14510, https://doi.org/10.1029/97JC02719, 1998. a
Wester, P., Mishra, A., Mukherji, A., and Shrestha, A. B., eds.: The Hindu
Kush Himalaya Assessment, Springer International Publishing, Cham,
https://doi.org/10.1007/978-3-319-92288-1, 2019. a
Wieners, K.-H., Giorgetta, M., Jungclaus, J., Reick, C., Esch, M., Bittner, M., Legutke, S., Schupfner, M., Wachsmann, F., Gayler, V., Haak, H., de Vrese, P., Raddatz, T., Mauritsen, T., von Storch, J.-S., Behrens, J., Brovkin, V., Claussen, M., Crueger, T., Fast, I., Fiedler, S., Hagemann, S., Hohenegger, C., Jahns, T., Kloster, S., Kinne, S., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Müller, W., Nabel, J., Notz, D., Peters-von Gehlen, K., Pincus, R., Pohlmann, H., Pongratz, J., Rast, S., Schmidt, H., Schnur, R., Schulzweida, U., Six, K., Stevens, B., Voigt, A., and Roeckner, E.: MPI-M MPI-ESM1.2-LR model output prepared for CMIP6 CMIP historical, Version 20190710, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.6595, 2019. a
Wu, G. and Zhang, Y.: Tibetan Plateau Forcing and the Timing of the Monsoon
Onset over South Asia and the South China Sea, Mon. Weather Rev., 126,
913–927, https://doi.org/10.1175/1520-0493(1998)126<0913:TPFATT>2.0.CO;2, 1998. a
Wu, G., Liu, Y., He, B., Bao, Q., Duan, A., and Jin, F.-F.: Thermal Controls
on the Asian Summer Monsoon, Sci. Rep.-UK, 2, 404,
https://doi.org/10.1038/srep00404, 2012. a
Wu, G., Zhuo, H., Wang, Z., and Liu, Y.: Two types of summertime heating over
the Asian large-scale orography and excitation of potential-vorticity forcing
I. Over Tibetan Plateau, Sci. China Earth Sci., 59, 1996–2008,
https://doi.org/10.1007/s11430-016-5328-2, 2016. a
Wu, T., Chu, M., Dong, M., Fang, Y., Jie, W., Li, J., Li, W., Liu, Q., Shi, X., Xin, X., Yan, J., Zhang, F., Zhang, J., Zhang, L., and Zhang, Y.: BCC BCC-CSM2MR model output prepared for CMIP6 CMIP historical, Version 20181126, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.2948, 2018. a
Xin, X., Wu, T., Shi, X., Zhang, F., Li, J., Chu, M., Liu, Q., Yan, J., Ma, Q., and Wei, M.: BCC BCC-CSM2MR model output prepared for CMIP6 ScenarioMIP, Version 20190314, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.1732, 2019. a
Xu, J., Gao, Y., Chen, D., Xiao, L., and Ou, T.: Evaluation of global climate
models for downscaling applications centred over the Tibetan Plateau,
Int. J. Climatol., 37, 657–671, https://doi.org/10.1002/joc.4731,
2017. a
Xu, Y., Ramanathan, V., and Washington, W. M.: Observed high-altitude warming and snow cover retreat over Tibet and the Himalayas enhanced by black carbon aerosols, Atmos. Chem. Phys., 16, 1303–1315, https://doi.org/10.5194/acp-16-1303-2016, 2016. a
Xue, X., Guo, J., Han, B., Sun, Q., and Liu, L.: The effect of climate warming
and permafrost thaw on desertification in the Qinghai–Tibetan Plateau,
Geomorphology, 108, 182–190, https://doi.org/10.1016/j.geomorph.2009.01.004, 2009. a
Yang, M., Nelson, F. E., Shiklomanov, N. I., Guo, D., and Wan, G.: Permafrost
degradation and its environmental effects on the Tibetan Plateau: A review of
recent research, Earth-Sci. Rev., 103, 31–44,
https://doi.org/10.1016/j.earscirev.2010.07.002, 2010. a
Yao, T., Pu, J., Lu, A., Wang, Y., and Yu, W.: Recent glacial retreat and its
impact on hydrological processes on the Tibetan Plateau, China, and
surrounding regions, Arct., Antarct. Alp. Res., 39, 642–650,
https://doi.org/10.1657/1523-0430(07-510)[YAO]2.0.CO;2, 2007. a
Yao, T., Thompson, L. G., Mosbrugger, V., Zhang, F., Ma, Y., Luo, T., Xu, B.,
Yang, X., Joswiak, D. R., Wang, W., Joswiak, M. E., Devkota, L. P., Tayal,
S., Jilani, R., and Fayziev, R.: Third Pole Environment (TPE),
Environmental Development, 3, 52–64, https://doi.org/10.1016/j.envdev.2012.04.002,
2012. a, b
Yao, T., Xue, Y., Chen, D., Chen, F., Thompson, L., Cui, P., Koike, T., Lau,
W. K., Lettenmaier, D., Mosbrugger, V., Zhang, R., Xu, B., Dozier, J.,
Gillespie, T., Gu, Y., Kang, S., Piao, S., Sugimoto, S., Ueno, K., Wang, L.,
Wang, W., Zhang, F., Sheng, Y., Guo, W., Ailikun, Yang, X., Ma, Y., Shen,
S. S. P., Su, Z., Chen, F., Liang, S., Liu, Y., Singh, V. P., Yang, K., Yang,
D., Zhao, X., Qian, Y., Zhang, Y., and Li, Q.: Recent Third Pole’s Rapid
Warming Accompanies Cryospheric Melt and Water Cycle Intensification and
Interactions between Monsoon and Environment: Multidisciplinary Approach with
Observations, Modeling, and Analysis, B. Am.
Meteorol. Soc., 100, 423–444, https://doi.org/10.1175/BAMS-D-17-0057.1, 2019. a
Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N., and Kitoh,
A.: APHRODITE: Constructing a Long-Term Daily Gridded Precipitation Dataset
for Asia Based on a Dense Network of Rain Gauges, B. Am.
Meteorol. Soc., 93, 1401–1415, https://doi.org/10.1175/BAMS-D-11-00122.1,
2012. a
Yi, Y., Liu, S., Zhu, Y., Wu, K., Xie, F., and Saifullah, M.: Spatiotemporal
heterogeneity of snow cover in the central and western Karakoram Mountains
based on a refined MODIS product during 2002–2018, Atmos. Res.,
250, 105402, https://doi.org/10.1016/j.atmosres.2020.105402, 2021. a
Yihui, D. and Chan, J. C. L.: The East Asian summer monsoon: an overview,
Meteorol. Atmos. Phys., 89, 117–142,
https://doi.org/10.1007/s00703-005-0125-z, 2005. a
Yoon, Y., Kumar, S. V., Forman, B. A., Zaitchik, B. F., Kwon, Y., Qian, Y.,
Rupper, S., Maggioni, V., Houser, P., Kirschbaum, D., Richey, A., Arendt, A.,
Mocko, D., Jacob, J., Bhanja, S., and Mukherjee, A.: Evaluating the
Uncertainty of Terrestrial Water Budget Components Over High Mountain Asia,
Front. Earth Sci., 7, 120, https://doi.org/10.3389/feart.2019.00120, 2019.
a
You, Q., Kang, S., Pepin, N., Flügel, W. A., Yan, Y., Behrawan, H., and
Huang, J.: Relationship between temperature trend magnitude, elevation and
mean temperature in the Tibetan Plateau from homogenized surface stations and
reanalysis data, Global Planet. Change, 71, 124–133,
https://doi.org/10.1016/j.gloplacha.2010.01.020, 2010. a
Yu, R., Wang, B., and Zhou, T.: Climate Effects of the Deep Continental
Stratus Clouds Generated by the Tibetan Plateau, J. Climate, 17,
2702–2713, https://doi.org/10.1175/1520-0442(2004)017<2702:CEOTDC>2.0.CO;2, 2004. a
Yukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yoshimura, H., Shindo, E., Mizuta, R., Ishii, M., Obata, A., and Adachi, Y.: MRI MRI-ESM2.0 model output prepared for CMIP6 CMIP historical, Version 20190222, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.6842, 2019a. a
Yukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yoshimura, H., Shindo, E., Mizuta, R., Ishii, M., Obata, A., and Adachi, Y.: MRI MRI-ESM2.0 model output prepared for CMIP6 ScenarioMIP, Version 20191108, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.638, 2019b. a
Zhang, J., Wu, T., Shi, X., Zhang, F., Li, J., Chu, M., Liu, Q., Yan, J., Ma, Q., and Wei, M.: BCC BCC-ESM1 model output prepared for CMIP6 CMIP historical, Version 20181214, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.2949, 2018a. a
Zhou, T.-J. and Li, Z.: Simulation of the east asian summer monsoon using a
variable resolution atmospheric GCM, Clim. Dynam., 19, 167–180,
https://doi.org/10.1007/s00382-001-0214-8, 2002. a
Zhuang, J., Dussin, R., Jüling, A., and Rasp, S.: JiaweiZhuang/xESMF:
v0.3.0 Adding ESMF.LocStream capabilities (v0.3.0), Zenodo [code],
https://doi.org/10.5281/zenodo.3700105, 2020a. a
Short summary
Climate change over High Mountain Asia is investigated with CMIP6 climate models. A general cold bias is found in this area, often related to a snow cover overestimation in the models. Ensemble experiments generally encompass the past observed trends, suggesting that even biased models can reproduce the trends. Depending on the future scenario, a warming from 1.9 to 6.5 °C, associated with a snow cover decrease and precipitation increase, is expected at the end of the 21st century.
Climate change over High Mountain Asia is investigated with CMIP6 climate models. A general cold...
Altmetrics
Final-revised paper
Preprint