Articles | Volume 9, issue 2
Earth Syst. Dynam., 9, 507–523, 2018

Special issue: Social dynamics and planetary boundaries in Earth system...

Earth Syst. Dynam., 9, 507–523, 2018

Research article 17 May 2018

Research article | 17 May 2018

Analytically tractable climate–carbon cycle feedbacks under 21st century anthropogenic forcing

Steven J. Lade et al.

Related authors

Taxonomies for structuring models for World-Earth system analysis of the Anthropocene: subsystems, their interactions and social-ecological feedback loops
Jonathan F. Donges, Wolfgang Lucht, Jobst Heitzig, Wolfram Barfuss, Sarah E. Cornell, Steven J. Lade, and Maja Schlüter
Earth Syst. Dynam. Discuss.,,, 2018
Revised manuscript accepted for ESD

Related subject area

Dynamics of the Earth system: models
How modelling paradigms affect simulated future land use change
Calum Brown, Ian Holman, and Mark Rounsevell
Earth Syst. Dynam., 12, 211–231,,, 2021
Short summary
Identifying meteorological drivers of extreme impacts: an application to simulated crop yields
Johannes Vogel, Pauline Rivoire, Cristina Deidda, Leila Rahimi, Christoph A. Sauter, Elisabeth Tschumi, Karin van der Wiel, Tianyi Zhang, and Jakob Zscheischler
Earth Syst. Dynam., 12, 151–172,,, 2021
Short summary
Simulating compound weather extremes responsible for critical crop failure with stochastic weather generators
Peter Pfleiderer, Aglaé Jézéquel, Juliette Legrand, Natacha Legrix, Iason Markantonis, Edoardo Vignotto, and Pascal Yiou
Earth Syst. Dynam., 12, 103–120,,, 2021
Short summary
Characterisation of Atlantic meridional overturning hysteresis using Langevin dynamics
Jelle van den Berk, Sybren Drijfhout, and Wilco Hazeleger
Earth Syst. Dynam., 12, 69–81,,, 2021
Short summary
Evaluating the dependence structure of compound precipitation and wind speed extremes
Jakob Zscheischler, Philippe Naveau, Olivia Martius, Sebastian Engelke, and Christoph C. Raible
Earth Syst. Dynam., 12, 1–16,,, 2021
Short summary

Cited articles

Alexandrov, G., Oikawa, T., and Yamagata, Y.: Climate dependence of the CO2 fertilization effect on terrestrial net primary production, Tellus B, 55, 669–675, 2003.
Anderies, J. M.: Minimal models and agroecological policy at the regional scale: an application to salinity problems in southeastern Australia, Reg. Environ. Change, 5, 1–17, 2005.
Anderies, J. M., Carpenter, S. R., Steffen, W., and Rockström, J.: The topology of non-linear global carbon dynamics: from tipping points to planetary boundaries, Environ. Res. Lett., 8, 044048,, 2013.
Bacastow, R., Keeling, C. D., Woodwell, G., and Pecan, E.: Atmospheric carbon dioxide and radiocarbon in the natural carbon cycle, II. Changes from AD 1700 to 2070 as deduced from a geochemical model, Tech. rep., Univ. of California, San Diego, La Jolla; Brookhaven National Lab., Upton, NY, USA, 1973.
Short summary
Around half of the carbon that humans emit into the atmosphere each year is taken up on land (by trees) and in the ocean (by absorption). We construct a simple model of carbon uptake that, unlike the complex models that are usually used, can be analysed mathematically. Our results include that changes in atmospheric carbon may affect future carbon uptake more than changes in climate. Our simple model could also study mechanisms that are currently too uncertain for complex models.
Final-revised paper