Articles | Volume 9, issue 1
https://doi.org/10.5194/esd-9-313-2018
https://doi.org/10.5194/esd-9-313-2018
Research article
 | 
28 Mar 2018
Research article |  | 28 Mar 2018

A bias-corrected CMIP5 dataset for Africa using the CDF-t method – a contribution to agricultural impact studies

Adjoua Moise Famien, Serge Janicot, Abe Delfin Ochou, Mathieu Vrac, Dimitri Defrance, Benjamin Sultan, and Thomas Noël

Related authors

Attributing the occurrence and intensity of extreme events with the flow analogues method
Robin Noyelle, Davide Faranda, Yoann Robin, Mathieu Vrac, and Pascal Yiou
EGUsphere, https://doi.org/10.5194/egusphere-2024-3167,https://doi.org/10.5194/egusphere-2024-3167, 2024
Short summary
A causality-based method for multi-model comparison: Application to relationships between atmospheric and marine biogeochemical variables
Germain Bénard, Marion Gehlen, and Mathieu Vrac
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2024-31,https://doi.org/10.5194/esd-2024-31, 2024
Preprint under review for ESD
Short summary
Long vs. Short: Understanding the dynamics of persistent summer hot spells in Europe
Duncan Pappert, Alexandre Tuel, Dim Coumou, Mathieu Vrac, and Olivia Martius
EGUsphere, https://doi.org/10.5194/egusphere-2024-2980,https://doi.org/10.5194/egusphere-2024-2980, 2024
Short summary
Assessing multivariate bias corrections of climate simulations on various impact models under climate change
Denis Allard, Mathieu Vrac, Bastien François, and Iñaki García de Cortázar-Atauri
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-102,https://doi.org/10.5194/hess-2024-102, 2024
Preprint under review for HESS
Short summary
ClimaMeter: contextualizing extreme weather in a changing climate
Davide Faranda, Gabriele Messori, Erika Coppola, Tommaso Alberti, Mathieu Vrac, Flavio Pons, Pascal Yiou, Marion Saint Lu, Andreia N. S. Hisi, Patrick Brockmann, Stavros Dafis, Gianmarco Mengaldo, and Robert Vautard
Weather Clim. Dynam., 5, 959–983, https://doi.org/10.5194/wcd-5-959-2024,https://doi.org/10.5194/wcd-5-959-2024, 2024
Short summary

Related subject area

Earth system change: climate scenarios
Countries most exposed to individual and concurrent extremes and near-permanent extreme conditions at different global warming levels
Fulden Batibeniz, Mathias Hauser, and Sonia Isabelle Seneviratne
Earth Syst. Dynam., 14, 485–505, https://doi.org/10.5194/esd-14-485-2023,https://doi.org/10.5194/esd-14-485-2023, 2023
Short summary
Direct and indirect application of univariate and multivariate bias corrections on heat-stress indices based on multiple regional-climate-model simulations
Liying Qiu, Eun-Soon Im, Seung-Ki Min, Yeon-Hee Kim, Dong-Hyun Cha, Seok-Woo Shin, Joong-Bae Ahn, Eun-Chul Chang, and Young-Hwa Byun
Earth Syst. Dynam., 14, 507–517, https://doi.org/10.5194/esd-14-507-2023,https://doi.org/10.5194/esd-14-507-2023, 2023
Short summary
Overview: The Baltic Earth Assessment Reports (BEAR)
H. E. Markus Meier, Marcus Reckermann, Joakim Langner, Ben Smith, and Ira Didenkulova
Earth Syst. Dynam., 14, 519–531, https://doi.org/10.5194/esd-14-519-2023,https://doi.org/10.5194/esd-14-519-2023, 2023
Short summary
The implications of maintaining Earth's hemispheric albedo symmetry for shortwave radiative feedbacks
Aiden R. Jönsson and Frida A.-M. Bender
Earth Syst. Dynam., 14, 345–365, https://doi.org/10.5194/esd-14-345-2023,https://doi.org/10.5194/esd-14-345-2023, 2023
Short summary
Robust global detection of forced changes in mean and extreme precipitation despite observational disagreement on the magnitude of change
Iris Elisabeth de Vries, Sebastian Sippel, Angeline Greene Pendergrass, and Reto Knutti
Earth Syst. Dynam., 14, 81–100, https://doi.org/10.5194/esd-14-81-2023,https://doi.org/10.5194/esd-14-81-2023, 2023
Short summary

Cited articles

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Déqué, M.: Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: model results and statistical correction according to observed values, Global Planet. Change, 57, 16–26, 2007. a, b
Dutra, E.: Report on the current state-of-the-art Water Resources Reanalysis, Tech. rep. D.5.1, EartH2Observe, available at: http://earth2observe.eu/files/Public Deliverables/D5.1_Report on the WRR1 tier1.pdf (last access: March 2018), 2015. a
Frieler, K., Lange, S., Piontek, F., Reyer, C. P. O., Schewe, J., Warszawski, L., Zhao, F., Chini, L., Denvil, S., Emanuel, K., Geiger, T., Halladay, K., Hurtt, G., Mengel, M., Murakami, D., Ostberg, S., Popp, A., Riva, R., Stevanovic, M., Suzuki, T., Volkholz, J., Burke, E., Ciais, P., Ebi, K., Eddy, T. D., Elliott, J., Galbraith, E., Gosling, S. N., Hattermann, F., Hickler, T., Hinkel, J., Hof, C., Huber, V., Jägermeyr, J., Krysanova, V., Marcé, R., Müller Schmied, H., Mouratiadou, I., Pierson, D., Tittensor, D. P., Vautard, R., van Vliet, M., Biber, M. F., Betts, R. A., Bodirsky, B. L., Deryng, D., Frolking, S., Jones, C. D., Lotze, H. K., Lotze-Campen, H., Sahajpal, R., Thonicke, K., Tian, H., and Yamagata, Y.: Assessing the impacts of 1.5 C global warming – simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b), Geosci. Model Dev., 10, 4321–4345, https://doi.org/10.5194/gmd-10-4321-2017, 2017. a
Hagemann, S., Chen, C., Haerter, J. O., Heinke, J., Gerten, D., and Piani, C.: Impact of a statistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models, J. Hydrometeorol., 12, 556–578, 2011. a
Download
Short summary
This study uses the cumulative distribution function transform (CDF-t) method to provide bias-corrected data over Africa using WFDEI as a reference dataset. It is shown that CDF-t is very effective in removing the biases and reducing the high inter-GCM scattering. Differences with other bias-corrected GCM data are mainly due to the differences among the reference datasets, particularly for surface downwelling shortwave radiation, which has a significant impact in terms of simulated maize yields.
Altmetrics
Final-revised paper
Preprint