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Abstract. The objective of this paper is to present a new dataset of bias-corrected CMIP5 global climate
model (GCM) daily data over Africa. This dataset was obtained using the cumulative distribution function trans-
form (CDF-t) method, a method that has been applied to several regions and contexts but never to Africa. Here
CDF-t has been applied over the period 1950–2099 combining Historical runs and climate change scenarios
for six variables: precipitation, mean near-surface air temperature, near-surface maximum air temperature, near-
surface minimum air temperature, surface downwelling shortwave radiation, and wind speed, which are critical
variables for agricultural purposes. WFDEI has been used as the reference dataset to correct the GCMs. Evalu-
ation of the results over West Africa has been carried out on a list of priority user-based metrics that were dis-
cussed and selected with stakeholders. It includes simulated yield using a crop model simulating maize growth.
These bias-corrected GCM data have been compared with another available dataset of bias-corrected GCMs us-
ing WATCH Forcing Data as the reference dataset. The impact of WFD, WFDEI, and also EWEMBI reference
datasets has been also examined in detail. It is shown that CDF-t is very effective at removing the biases and
reducing the high inter-GCM scattering. Differences with other bias-corrected GCM data are mainly due to the
differences among the reference datasets. This is particularly true for surface downwelling shortwave radiation,
which has a significant impact in terms of simulated maize yields. Projections of future yields over West Africa
are quite different, depending on the bias-correction method used. However all these projections show a similar
relative decreasing trend over the 21st century.
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1 Introduction

Global and regional climate models (GCMs and RCMs) are
used to produce projections of future climates driven by
various types of greenhouse gas emission scenarios. The
last Coupled Model Intercomparison Project (CMIP; Meehl
et al., 2000), CMIP5, provides simulations for the preindus-
trial period (CO2 concentration at a level of 280 ppm), histor-
ical period (1860–2005; including real evolutions of CO2 and
other greenhouse gas concentrations, anthropogenic and vol-
canic eruption aerosol contents, solar activity), and future cli-
mate projections based on different CO2 emission trajectory
scenarios, Representative Concentration Pathways RCPx.x
(Moss et al., 2010; x.x corresponding to the radiative forcing
in W m−2 in 2100), RCP2.6, RCP4.5, RCP6.0, and RCP8.5
(Taylor et al., 2012).

Scientific communities working on evaluation and mod-
elling of climate change impacts (in terms of crop yields, wa-
ter resources, health, etc.) are increasingly using these sim-
ulation outputs either to compute related impact metrics or
to run impact models. However robust biases are still present
in climate models due to ill-defined processes and associated
parametrizations, leading to biased statistical distributions of
simulated physical and dynamical variables (e.g. Vrac and
Friederichs, 2015). Then statistical bias corrections must be
applied to variables used in impact model simulations (Vrac
et al., 2016). For instance, warmer-than-normal sea surface
temperatures in the equatorial Atlantic lead to a too south-
ern location of the Inter-Tropical Convergence Zone (ITCZ)
in boreal summer over West Africa. This bias has not been
reduced between CMIP3 and CMIP5 GCM simulations (see
Roehrig et al., 2013). This too southern ITCZ location over
West Africa leads to too weak precipitation over the Sahel
and too weak crop yields whose values cannot be used as
relevant information for stakeholders and farmers.

GCM and RCM output data have to be adjusted to statisti-
cal distributions of observation-based reference data. How-
ever, the use of different bias-correction methods in com-
bination with different reference datasets contributes to the
total uncertainty in climate projections and can contribute in
some contexts more than the use of different GCMs or RCMs
(Iizumi et al., 2017). Thus using multiple bias-correction
techniques and reference datasets can be recommended. For
instance, a bias correction of a subset of five GCMs of
the CMIP5 database was realized at a global scale through
the ISIMIP project (Hempel et al., 2013a), the first Inter-
Sectorial Impact Model Intercomparison Project1. These cor-
rections were applied at a daily scale from 1 January 1950
to 31 December 2099 to historical and all RCP scenarios
for five GCMs at a 0.5◦× 0.5◦ grid using WATCH Forcing
Data (WFD) data as observation-based reference. More re-
cently a ISIMIP2b bias correction using an improved refer-
ence dataset, EWEMBI, has been realized for three out of the

1https://www.isimip.org/.

five CMIP5 GCMs’ data, and the results have been compared
to the bias-corrected ISIMIP/WFD data (Lange, 2017a). Sig-
nificant differences have been highlighted that are closely re-
lated to differences between WDF and EWEMBI data.

The objectives of this paper are to present and evaluate
bias-corrected GCM data obtained by performing the cumu-
lative distribution function transform (CDF-t) method over
Africa to quantify the sensitivity of the bias-corrected data
to different reference datasets and to illustrate this in terms
of simulated crop yields. It is a contribution to the AMMA-
20502 project, centred on West Africa, the goals of which
are to significantly improve scientific understanding of cli-
mate variability and change across Africa and the impact of
climate change on specific development decisions, to intro-
duce flexible methods for integrating improved climate infor-
mation and tools in specific decision-making contexts, and to
improve medium to long-term (5–40 years) decision-making,
policies, planning, and investment by African stakeholders
and donors.

Bias correction has been applied to daily data of six vari-
ables critical for these types of impact: precipitation (pr),
mean near-surface air temperature (tas), near-surface max-
imum air temperature (tasmax), near-surface minimum air
temperature (tasmin), surface downwelling shortwave radi-
ation (rsds), and wind speed (wind). The bias correction has
been performed using the CDF-t method (Michelangeli et al.,
2009), a method that has been widely used and validated
for various variables and in various contexts (e.g. Kallache
et al., 2011; Vrac et al., 2012; Lavaysse et al., 2012; Vautard
et al., 2013; Vrac and Friederichs, 2015; Vrac et al., 2016),
including tropical areas (Oettli et al., 2011; Vigaud et al.,
2013), but not Africa. These corrections have been applied to
29 GCMs over the 1950–2005 period and RCP2.6, RCP4.5,
and RCP8.5 2006–2099 projections. The observation-based
reference dataset used for bias corrections is WFDEI, the
WATCH Forcing Data (WFD; Weedon et al., 2011) method-
ology applied to ERA-Interim data, for the period from 1 Jan-
uary 1979 to 31 December 2013 on a 0.5◦× 0.5◦ grid (Wee-
don et al., 2014).

Section 2 presents the reference data. A first intercom-
parison of WFD, WFDEI, and EWEMBI is presented in
terms of mean seasonal fields over West Africa. In Sect. 3
the CDF-t bias-correction method is shortly presented. Then
tests are carried out over 1979–2013 to evaluate the sensi-
tivity of the corrections to the calibration period. In Sect. 4,
the evaluation of the CDF-t bias correction is detailed over
West Africa, first on mean seasonal fields, then on daily met-
rics. CDF-t bias-corrected GCM data are also compared with
ISIMIP/WFD bias-corrected data for the five GCMs used in
ISIMIP. The significant impact induced by some improve-
ments introduced in WFDEI data will be shown. CDF-t out-
puts are also compared to products from EWEMBI. To go
further into this evaluation, a crop model has been used to

2http://www.amma2050.org/.
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test the impact on simulated crop yields (specifically a local
maize cultivar) of bias-correction data with one GCM and of
the three reference data. A sensitivity analysis to individual
forcing variables (temperature, pr, and rsds) is also presented.
Finally the bias-correction impact on crop simulations in the
context of RCP8.5 climate change projections is shown. Con-
clusions are given in Sect. 5.

2 Climate input data

The AMMA-2050 dataset comprises bias-corrected daily
data for the variables pr, tas, maximum air temperature and
minimum air temperature, rsds, and wind speed. It cov-
ers the domain 20◦W–55◦ E/40◦ S–40◦ N, including all of
Africa. In this paper, results are presented for West Africa
(20◦W–20◦ E/0–25◦ N) in boreal summer as it is the focus
of AMMA-2050.

2.1 Simulations

We use daily data extracted from the CMIP5 archive, cov-
ering the period from 1 January 1950 to 31 December 2099.
Based on availability of daily data, it comprises 29 GCMs for
the 1950–2005 historical period and RCP8.5 2006–2099 pro-
jection, 27 GCMs for the RCP4.5 projection, and 20 GCMs
for the RCP2.6 projection (see Table 1 for more details).
Only one run has been used for each GCM. For an easier
comparison with observation, these “raw” data have been in-
terpolated on the 0.5◦× 0.5◦ grid of WFDEI using a bilin-
ear approach for temperatures and wind and using a “nearest
neighbour” approach for precipitation. Then, bias-corrected
data are available on the 0.5◦× 0.5◦ grid.

2.2 Reference observation datasets

The observation-based reference dataset is critical for the
correction of GCM biases, especially when corrections are
applied to daily data. The reference dataset must also have
a global coverage on a regular grid, which may induce large
uncertainties in void in situ data areas as in Africa. So we
used the available WFD, WFDEI, and EWEMBI reference
datasets to compare to each other and to compare bias-
corrected (with WFD) ISIMIP data with bias-corrected (with
WFDEI) AMMA-2050 data.

The WFD dataset (Weedon et al., 2011) is a combina-
tion of ERA-40 daily reanalysis of the European Centre for
Medium-Range Weather Forecasts (ECMWF) at a grid res-
olution of 2.5◦ and the Climate Research Unit (CRU) TS2.1
dataset that provides observed time series of monthly vari-
ations in the climate on a resolution grid of 0.5◦. A correc-
tion for monthly mean rainfall is included using the Global
Precipitation Climatology Centre (GPCC) version 4 dataset
(Hagemann et al., 2011). The WFD data are available over
the period 1958–2001 on a 0.5◦ grid over land area points.
The WFD dataset has been used over 1979–2001.

WFDEI, an improved version of WFD, has been produced
based on ERA-Interim reanalysis, over the period from 1 Jan-
uary 1979 to 31 December 2013 on a 0.5◦× 0.5◦ grid (Wee-
don et al., 2014). Improvements come from the 4D-var data
assimilation system with 6 h windows in ERA-Interim in-
stead of 3D-var in ERA-40. Compared to ERA-40, ERA-
Interim uses a more extensive suite of satellites, atmospheric
soundings, and surface observations and provides substan-
tial improvement in surface meteorological variables (Dee
et al., 2011), in particular with a new aerosol loading distribu-
tions and corrections for downward shortwave fluxes (lead-
ing in particular to larger average WFDEI values over the
Sahara and northern Africa), leading to less bias compared
to globally distributed observations. ERA-Interim also has a
reduced Gaussian grid spectral model resolution of T255 in-
stead of T159 for ERA-40, leading to data much closer to
the regular 0.5◦× 0.5◦ spatial resolution and to the eleva-
tion distribution used for WFDEI. A correction for monthly
mean rainfall is included using the GPCCv5/v6 dataset. The
WFDEI dataset has been used over 1979–2013.

More recently, the EWEMBI dataset has been produced
within ISIMIP (Lange, 2016, 2017b). Over land, EWEMBI
is identical to the WFDEI dataset for pr, daily mean, mini-
mum, and maximum near-surface air temperature, and 10 m
wind speed but different for surface downwelling short-
wave radiation. Data sources of EWEMBI are ERA-Interim
data, WFDEI, eartH2Observe forcing data (E2OBS; Dutra,
2015), and NASA/GEWEX Surface Radiation Budget data
(SRB; Stackhouse Jr. et al., 2011) primary-algorithm es-
timates of daily mean rsds from SRB release 3.0 (Frieler
et al., 2017; Lange, 2017b). Significant differences have been
highlighted between WFD-based and EWEMBI-based bias-
corrected data that are closely related to similar improve-
ments from WDF to EWEMBI data. The EWEMBI dataset
has been used over 1979–2013.

2.3 Intercomparison of WFD, WFDEI, and EWEMBI on
mean seasonal fields over West Africa

In the following, to reduce the number of figures, the
results are presented only for the summer season, July–
September (JAS), which is the main rainy season over the
Sahel. Similar computations have been performed over the
other seasons, especially over spring, which is the main rainy
season over the Guinean coast, and some of the results will
be commented on.

Figure 1 presents the July–September mean seasonal fields
of WFD, WFDEI, and EWEMBI for tas, pr, and rsds. Re-
garding tas, the mean fields of the three reference datasets are
very close, showing the set-up in northern spring and summer
of the high-temperature area associated with the Saharan and
Saudi Arabia heat lows. Regarding pr, the seasonal fields are
also very close, showing the seasonal migration of the ITCZ
between spring and summer. Local maxima associated with
highlands like the Fouta Djalloon or Cameroon mountains
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Figure 1. Summer climatology from different observation datasets (WFD, WFDEI, and EWEMBI): (a–c) for near-surface temperature (◦C)
over 1979–2001, (d–f) for precipitation rate (mm day−1) over the 1979–2001 period, (g–i) for solar radiation (W m−2) over the 1984–2001
period, and the difference among WFD (j) over 1984–2007, WFDEI (k) over 1984–2007, EWEMBI (l) over 1984–2001, and SRB solar
radiation. The red box (18◦W–10◦ E; 10–20◦ N) and blue box (18◦W–10◦ E; 3–10◦ N) respectively represent the Sahel and Guinea regions
used in this study.

are also clearly highlighted. Regarding rsds, more differences
are evident between the three reference datasets. The mean
seasonal fields show similar patterns with low values within
the ITCZ area due to the high cloud coverage and high val-
ues over the Sahara due to low moisture and cloud coverage,
but the range of values are quite different. Over the ITCZ,
WFD rsds values are the weakest and EWEMBI values the
highest. Over the Sahara WFD values are also the weakest
but WFDEI values are a bit higher than for EWEMBI. In
the remaining panels, differences are produced in respect to
SRB data. Compared to SRB, EWEMBI data are very sim-
ilar, which is logical since SRB data were used to correct
ERA-Interim. WFDEI has moderate negative biases in the
ITCZ area and weak positive biases over the Sahara, while
WFD has high negative biases over the whole area.

3 The CDF-t bias correction

3.1 The CDF-t method

In this work, we use the CDF-t method developed by
Michelangeli et al. (2009) to adjust climate models. It con-
sists in matching the CDF of a climate variable simulated
by a model (here the GCM) to the CDF of this variable in
observations (here WFDEI) through a mathematical func-
tion. CDF-t is a variant of the non-parametric quantile–
quantile (QQ) method (Déqué, 2007). But contrary to the
QQ method that projects the GCM CDF of simulated fu-
ture data onto the CDF of historical data, CDF-t considers
the CDF change between historical and future GCM simula-
tions. Let FGh and FSh define the CDFs of a variable from
the GCM (subscript G) and from a given reference location

www.earth-syst-dynam.net/9/313/2018/ Earth Syst. Dynam., 9, 313–338, 2018
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(subscript S) over a historical calibration period (subscript h).
The transformation T allows going from FGh to FSh:

T (FGh(x))= FSh(x). (1)

Replacing x with F−1
Gh (u), where u is any probability

in [0, 1]:

T (u)= FSh

(
F−1

Gh (u)
)
, (2)

which provides a definition of T . Assuming T is stationary
in time, the transformation can be applied to FGf, the CDF
of the variable over a future or validation period f , to gen-
erate FSf, the CDF at the reference location for the same pe-
riod f :

T (FGf(x))= FSf(x). (3)

That is

FSf(x)= FSh

(
F−1

Gh (FGf(x))
)
. (4)

Once FSf has been determined from Eq. (4), a QQ ap-
proach is carried out between FGf and FSf to generate local
time series. While in Déqué (2007), QQ is applied directly
between FGh and FSh, the CDF-t method generates quantile
values through a QQ performed between FGf (and not FGh)
and FSf (and not FSh). Values are then generated according
to FSf in chronological agreement with future climate simu-
lations. More details on the CDF-t method can be found in
Vrac et al. (2012, 2016).

3.2 Application

This CDF-t approach has been applied to five out of the
six variables (tas, tasmax, tasmin, rsds, and wind) over
the period 1950–2099 (historical and RCP2.6, RCP4.5, and
RCP8.5 runs). For pr, an updated CDF-t approach has been
used, referred to as “singularity stochastic removal” (SSR),
addressing rainfall occurrence and intensity issues (see Vrac
et al., 2016, for more details).

CDF-t has been applied month by month to take into ac-
count the strong seasonality over Africa. It has been applied
using a moving window to smooth discontinuities (Vrac
et al., 2016): a moving 17-year window is used as the “target”
CDF, and the GCM data of the central 9 years are corrected.
This process is repeated by moving the window forward by
9 years, covering the whole period of 1950-2099. Moreover,
CDF-t preserves any long-term trend in the GCM data but
neither trends in moments nor in quantiles (Vrac et al., 2012).
GCM data have been interpolated to the WFDEI grid before
being bias corrected, using a bilinear method for tas, tasmax,
tasmin, rsds, and wind and a nearest neighbour method for
pr.

Examples of CDF-t bias correction applied to mean West
Africa daily pr data for the five GCMs used in ISIMIP are

shown (Fig. S1 in the Supplement). It is represented in terms
of cumulative distribution function. The distributions of raw
GCM data are clearly different from the WFDEI data. Some
of them show more low pr values in GCMs than in WFDEI
while others have more low pr values. The CDF-t bias correc-
tion appears very effective as the WFDEI and bias-corrected
GCM data distributions are closely superimposed.

3.3 Sensitivity of the correction to the calibration period
over West Africa

Before applying the CDF-t correction through the moving
window process over 1950–2099, the bias-correction method
has to be calibrated individually for every GCM over a refer-
ence period. In order to have a calibration dataset as represen-
tative as possible of the variability in the various variables,
especially pr, the time period 1979–2013 has finally been
used for calibration of the bias-correction method. However
the sensitivity to the calibration period has been explored
over West Africa by testing it on two sub-periods, 1979–1996
and 1996–2013, to prevent any overestimation of the bias-
correction performance. This has been performed on the five
GCMs used in ISIMIP, and it is more specifically shown in
the IPSL-CM5A-LR model in summer for tas, pr, and rsds
(Supplement).

Three calibration periods have been tested: 1979–1996,
1996–2013, and 1979–2013 (see Fig. S2). First, it is clear
that the bias correction is powerful to remove the cold bias
of the raw data. Second, the positive trend present in the
raw data over the period 1979–2013, as in WFDEI but with
a weaker range, is preserved after the bias correction. This
is probably due to the dry bias of pr over the Sahel in raw
data that induces a higher sensitivity to the impact of anthro-
pogenic global warming over the period than in observations.
Third, the effect of the calibration period is clear. By using
the calibration period 1979–1996, the remaining bias of cor-
rected data is near zero and is weakly positive over 1997–
2013, while by using the calibration period 1996–2013, the
remaining bias of corrected data is near zero and is weakly
negative over 1979–1995. Using the calibration period 1979–
2013, the remaining bias is overall very weak and on average
near zero. Similar tests have been carried out for the vari-
ables pr and rsds, and for the other seasons, with similar con-
clusions. Thus, while it can be thought that using the whole
observational period to calibrate the bias-correction process
may lead to overestimation of the fit between observations
and bias-corrected data, it in fact provides a more robust cor-
rection. Therefore we choose the longest period 1979–2013
to perform the calibration process.
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Figure 2. Mean near-surface air temperature (◦C) in JAS 1979–2001 from WFDEI and from five CMIP5 GCMs’ raw data (the GCMs also
used in ISIMIP).

4 Results

4.1 User-based metrics and diagnostics

A list of priority metrics has been established between sci-
entists and stakeholders involved in AMMA-2050. We are
presenting results based on some of these metrics related to
the three variables, pr, near-surface air temperature (tas), and
surface downwelling shortwave radiation (rsds). These met-
rics are

– the seasonal mean for pr, tas, and rsds;

– the mean time–latitude annual cycle over (15◦W–15◦ E)
for pr, tas, and rsds;

– the 95th percentile of daily values for tas;

– the number of days with tas > 30 ◦C;

– the 95th percentile of daily values for pr;

– the number of wet days (pr > 1 mm day−1);

– the number of days with pr > 10 mm day−1;

– the number of dry days (pr < 1 mm day−1);

– the 95th percentile of the duration of consecutive dry
days sequences.

4.2 Mean seasonal fields over West Africa

In the following, the Taylor diagram (Taylor, 2001) will
be used to quantify the distance between the raw, bias-
corrected GCM data and WFDEI data. This diagram pro-
vides three statistics, the spatial correlation coefficient be-
tween the tested field and the reference field, the normalized
standard deviation of the tested field in respect to the stan-
dard deviation of the reference field, and the centred root-
mean-square error (RMSE) between the tested field and the
reference field. The Taylor diagram has also been used to
evaluate the distance between the reference datasets WFD
and EWEMBI relative to WFDEI. Table 2 sums up the three
Taylor statistics of these reference datasets for all the metrics.

Regarding the seasonal mean metrics, WFDEI and
EWEMBI statistics are similar except for rsds, for which they
are quite different over the Guinean coast. WFD is also very
close to WFDEI but all statistics are a bit different, with again
more differences for the Guinea coast.

Figure 2 presents the mean JAS temperature fields over
West Africa for WFDEI data and for raw data from the five
GCMs used in ISIMIP. Figure S3 shows similar fields but
for CDF-t bias-corrected data. Figure 3 shows the Taylor
diagrams computed on JAS over the Sahel and Guinea ar-
eas for the 29 raw and bias-corrected GCM data compared
to WFDEI data (first column) and the five GCMs used in
ISIMIP in terms of raw data of CDF-t bias-corrected data and
of ISIMIP bias-corrected data (second column). WFD and
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Figure 3. Taylor diagrams relative to the mean of near-surface air temperature over 1979–2001 from 29 individual models (a) and five out
of them (b) were also used in ISIMIP. Two areas are considered: Sahel and Guinea (see these boxes in Figs. 1, 18, or 19). Data are compared
to WFDEI data. Taylor diagrams provide three statistics: the correlation coefficient between any tested field and the reference field (related
to the azimuthal angle), the normalized standard deviation of the tested field in respect to the standard deviation of the reference field
(proportional to the radial distance from the origin), and the centred root-mean-square difference between the tested field and the reference
field (proportional to the distance from the REF point on the x axis; grey circles from 1 (with the lowest radius) to 4 (the highest radius)).
“Observations” represents WFD and EWEMBI data (in black). Raw GCM data are in blue, CDF-t bias-corrected GCM data in red, and
ISIMIP bias-corrected GCM data in green.

EWEMBI data are also plotted in these diagrams. In the Tay-
lor diagrams the means of the fields are subtracted out before
computing their second-order statistics, so these diagrams do
not provide information about overall biases but characterize
biases associated with centred pattern errors. Hence maps in
Fig. 2 and Taylor diagrams in Fig. 3 provide complementary
bias information.

Figure 2 shows that the raw GCMs capture the spatial
structure of temperature over Africa rather well, character-
ized by high values over the Sahara in summer as well as
in spring (not shown), and low values in northern fall and
winter (not shown). However moderate cold biases exist over

most of the area. Inter-model dispersion is also present. For
instance, temperatures in MIROC-ESM-CHEM are about
2 ◦C higher than temperatures in HadGEM2-ES or IPSL-
CM5A-LR. The bias-correction process improves quite well
the simulations (see Fig. S3) and provides corrected mean
seasonal fields very similar to WFDEI, even at small spatial
scales as for lower temperatures over the Fouta Djalloon and
Cameroon mountains. The Taylor diagrams (Fig. 3) quan-
tify this improvement very clearly for the 29 GCMs. The
raw GCMs (Fig. 3 left column) are quite scattered with spa-
tial correlations, with WFDEI distributed between +0.1 and
more than +0.9. For the Sahel area, correlations are quite

Earth Syst. Dynam., 9, 313–338, 2018 www.earth-syst-dynam.net/9/313/2018/



A. M. Famien et al.: A bias-corrected CMIP5 dataset for Africa using the CDF-t method 321

Table 2. Spatial correlation, standard deviation (SD), and root-mean-square error (RMSE) computed for different observation datasets over
the Sahel (18◦W–10◦ E; 10–20◦ N) and Guinea (18◦W–10◦ E; 3–10◦ N) areas in JAS. All scores are computed relative to WFDEI for
seasonal mean precipitation (Mean pr), seasonal near-surface air temperature (Mean tas), seasonal surface downwelling shortwave radia-
tion (Mean rsds), the 95th percentile of daily values for precipitation (R95p) and near-surface air temperature (T95p), the number of wet
days (R1mm), the number of heavy days (R10mm), the number of dry days, the 95th percentile of consecutive dry days, and the number of
days with tas greater than 30 ◦C. CDD: consecutive dry days.

Correlation SD RMSE

Metrics WFDEI WFD EWEMBI WFDEI WFD EWEMBI WFDEI WFD EWEMBI

Sahel

Mean tas – 0.997 1.000 2.797 2.581 2.797 – 0.414 0.000
Mean pr – 0.999 1.000 3.176 3.237 3.176 – 0.203 0.000
Mean rsds – 0.980 0.938 43.125 47.945 30.944 – 39.115 18.687
T95p – 0.994 1.000 3.290 2.830 3.290 – 0.577 0.000
R95p – 0.970 1.000 6.740 12.979 6.740 – 8.424 0.000
R10mm – 0.965 1.000 3.751 3.202 3.751 – 3.214 0.000
Number of day with tas > 30 ◦C – 0.996 1.000 35.114 35.988 35.114 – 4.487 0.000
R1mm – 0.961 1.000 27.421 15.859 27.421 – 21.527 0.000
Number of dry days – 0.961 1.000 9.140 5.286 9.140 – 7.176 0.000
95th percentile of CDD – 0.977 1.000 9.800 5.618 9.800 – 6.609 0.000

Guinea

Mean tas – 0.887 1.000 0.733 0.624 0.736 – 0.741 0.000
Mean pr – 0.995 1.000 3.647 3.644 3.680 – 0.352 0.000
Mean rsds – 0.824 0.390 15.387 14.419 13.946 – 54.940 28.532
T95p – 0.844 1.000 0.789 0.655 0.795 – 1.005 0.000
R95p – 0.948 1.000 7.866 11.735 7.957 – 13.676 0.000
R10mm – 0.969 1.000 17.860 10.681 17.860 – 7.972 0.000
Number of day with tas > 30 ◦C – 0.571 1.000 0.005 0.075 0.005 – 0.075 0.000
R1mm – 0.717 1.000 7.440 10.897 7.440 – 29.305 0.000
Number of dry days – 0.717 1.000 2.480 3.632 2.480 – 9.768 0.000
95th percentile of CDD – 0.886 1.000 7.910 4.750 7.910 – 9.374 0.000

Figure 4. Same as Fig. 2 but for precipitation rate in millimetres per day.
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Figure 5. Same as Fig. 3 but for precipitation rate.

high in JAS (centred around +0.9 between 0.5 and 0.98),
while for the Guinean area correlations are globally cen-
tred around +0.4 (from 0.1 to 0.8). GCMs are also scattered
in terms of normalized variances, from 0.6 to more than 2.
The performance of the CDF-t bias correction is clearly high
since all the GCMs are very close to the WFDEI reference
point. Taylor diagrams enable comparison of the five GCMs
used in ISIMIP in reference to WFDEI (Fig. 3 right col-
umn), for raw data and bias-corrected data using the CDF-t
and ISIMIP methods. WFD and EWEMBI data are also plot-
ted. CDF-t bias-corrected GCMs are very close to WFDEI.
ISIMIP bias-corrected GCMs are centred around WFD and
also near WFDEI (correlation higher than +0.9 and normal-
ized standard deviation close to 1); however WFD is a bit
more distant from WFDEI for the Guinean area (see also Ta-
ble 2). EWEMBI data are even closer to WFDEI.

Figures 4, 5, and S4 show similar results but for pr. The
seasonal fields of WFDEI show the mean location of the
ITCZ in JAS (Fig. 4). Local maxima associated with high-

lands like the Fouta Djalloon or Cameroon mountains are
also clearly highlighted. Raw GCMs reproduce this pattern
but a lot of discrepancies can be noticed for all GCMs, in
terms of pr amplitude, spatial pattern, and latitude extension.
HadGEM2-ES has the weakest values while the four oth-
ers produce pr amounts generally higher than WFDEI. The
CDF-t bias correction very efficiently improves the GCM
mean seasonal pr fields since examination must be very de-
tailed to discern differences with WFDEI fields and among
the GCMs (see Fig. S4). This improvement is clearly quanti-
fied with the Taylor diagrams over the Sahel and Guinea ar-
eas in Fig. 5. For raw GCMs the standardized standard devi-
ation is very scattered from 0.25 to more than 2. Spatial cor-
relations are higher in the Sahel (from +0.7 to +0.95) than
in Guinea area (from +0.2 to +0.8). The CDF-t bias correc-
tion is quite effective in removing these biases and bringing
the raw data closer to WFDEI, with some small remaining
discrepancies, higher than for tas. The ISIMIP bias correc-
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Figure 6. Same as Fig. 2 but for solar radiation in watts per square metre.

Figure 7. Same as Fig. 3 but for solar radiation. In the right column, EWEMBI is used as “REF”.
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tion is also effective due to the proximity between WFD and
WFDEI (see also Table 2).

Figures 6, 7, and S5 show similar results, but for rsds. The
mean seasonal field of WFDEI is a pattern with low values
within the ITCZ area due to the high cloud coverage and high
values for the Sahara due to low moisture and cloud cover-
age. We have noticed previously (Fig. 1) that high differences
exist among WFDEI, WFD, and EWEMBI. WFD rsds values
are the weakest and EWEMBI values the highest in the ITCZ
area. WFD values are also the weakest and WFDEI values
are a bit higher than for EWEMBI over the Sahara (see also
Table 2). The five raw GCMs have, in agreement with their
pr mean seasonal fields, a reasonable latitudinal evolution of
low rsds values associated with the ITCZ, but the range of
rsds differences with WFDEI data as well as the inter-GCM
dispersion are very high. There is an overall positive bias
over West Africa, except for GFDL-ESM2M. The CDF-t bias
correction is once more very effective at removing biases in
respect to WFDEI data (see Fig. S5). The Taylor diagrams
(Fig. 7) provide some more quantification over the Sahel and
Guinea areas. In terms of spatial correlation and normalized
standard deviation in respect to WFDEI, raw GCMs have
rather good performances over the Sahel (correlations higher
than+0.8). Again, results are less good over the Guinea area
(correlations less than +0.8) with a high dispersion of the
GCMs. The ISIMIP bias correction highly reduces the inter-
GCM dispersion around WFD, but WFD rsds data are a bit
far from WFDEI rsds data. EWEMBI rsds data are also far
from WFDEI. This is illustrated by the Taylor diagnostics us-
ing EWEMBI as “REF”. Bias-corrected data from both the
CDF-t and ISIMIP methods stay far from EWEMBI and do
not improve the performance of raw GCMs.

Figures 8 to 10 display other features of the mean fields
in terms of Hovmöller diagrams computed over West Africa
(15◦W–15◦ E) for the whole year. They show the mean fields
of EWEMBI, WFDEI, and WFD (first row) and of the five
GCMs used in ISIMIP (rows 2 to 6) for raw data (first col-
umn), CDF-t bias-corrected data (second column), and the
ISIMIP bias-correction method (third row). For tas (Fig. 8),
the WFDEI, WFD, and EWEMBI fields are very similar
and highlight the set-up of the high-temperature area as-
sociated with the Saharan heat low in spring and summer
(Lavaysse et al., 2009). Raw GCMs show a similar timing
but their temperature values are lower by 2 to 4 ◦C depending
on the model and some increase in the northward progres-
sion around June that is not present in observations. Bias-
correction methods are very effective at reducing these dis-
crepancies but few differences still remain with WFDEI as
for instance a bit weaker temperature maximum around July
in CDF-t-corrected data. ISIMIP bias-corrected data are also
very closer to WFD.

Figure 9 shows similar diagrams but for pr. The Hov-
möller approach is a good way to depict the main charac-
teristics of the ITCZ evolution over West Africa with a first
rainy season during spring over the Guinea area followed by

an abrupt jump to the north in June–July (Sultan and Jan-
icot, 2003) and by a more progressive southward retreat at
the end of the summer monsoon season, leading to a sec-
ond weaker rainy season over the Guinean area in autumn.
WFDEI and EWEMBI are quite similar. WFD fields are a
bit noisier. Raw GCMs have high discrepancies and produce
mean fields quite different from one model to another one.
In particular, pr data can be either very low (HadGEM2-ES)
or very high (GFDL-ESM2M), and no GCM captures the
abrupt northward shift of the ITCZ well. The bias-correction
methods (CDF-t using WFDEI, ISIMIP using WFD) are very
effective in capturing back the main features of the ITCZ evo-
lution. However, differences still remain among the GCMs,
and ISIMIP-corrected GCMs have global rainfall maxima
higher than CDF-t-corrected GCMs.

Figure 10 shows similar diagrams but for rsds. The sea-
sonal evolution is in agreement with tas and pr fields and
depicts high solar radiation values over the Sahara and weak
values following the ITCZ latitudinal excursion but with a
small southward lag (consistent with a higher cover of mid-
level clouds; see Roehrig et al., 2013). WFD shows an over-
all negative bias with respect to WFDEI and EWEMBI, and
WFDEI has a higher meridional gradient than EWEMBI with
lower minimum values over the Guinea area and higher max-
imum values of the Sahara. The corrected GCM data are
very close to their respective observation reference (WFD
for ISIMIP, WFDEI for CDF-t), and hence different between
their two respective corrected versions due to the differences
between WFD and WFDEI.

4.3 Daily metrics over West Africa

In the following, similar diagnostics are presented to evaluate
the selected daily metrics. To reduce the number of figures in
the core of the paper, some of them are presented in the Sup-
plement (three metrics in the core of the paper, three others in
the Supplement). A more complete metrics report is available
at http://www.amma2050.org/content/climate-metrics.

Figures 11 and 12 shows the results for the tas 95th per-
centile of daily values of near-surface air temperature. WFD,
WFDEI, and EWEMBI provide similar values in summer
(Fig. 11; see also Table 2) with the highest values over the Sa-
hara in spring (up to 40 ◦C, not shown), moving northward in
summer, and with weaker values in autumn (up to 32 ◦C; not
shown). WFD values appear to be a bit higher than the two
other reference datasets. More to the south, in the Guinea
area, the 95 % percentile is between 30 and 34 ◦C. CDF-
t bias-corrected data are also presented for the five GCMs
used in ISIMIP in terms of differences relative to WFDEI.
Some biases still remain but mostly lower than 1 ◦C in abso-
lute value. They are generally negative over the Sahara ex-
cept for GFDL-ESM2M. The Taylor diagrams again depict
the good performance of the CDF-t bias-correction method
here for extreme values. The highly scattered raw GCM data,
especially over the Guinea area, move into a concentrated
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Figure 8. Hovmöller diagrams of daily temperature (◦C) averaged between 15◦W and 15◦ E and for the period 1979–2001 for EWEMBI,
WFDEI, and WFD observations, each of the five GCMs for raw data (first column panels), CDF-t data (second column panels), and ISIMIP
data (third column panels).
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Figure 9. Same as Fig. 8 but for precipitation rate in millimetres per day.
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Figure 10. Same as Fig. 8 but for solar radiation in watts per square metre.
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Figure 11. The 95th percentile of daily values for temperature from various observation datasets in JAS: WFD (a), WFDEI (b), EWEMBI (c),
and the difference relative to WFDEI data from five individual CDF-t bias-corrected models (d–h) over the period 1979–2001.

zone very near the WFDEI reference (Fig. 12). ISIMIP bias-
corrected data are also well concentrated near the WDF ref-
erence data but at some distance from the WFDEI reference
point. Here again, EWEMBI is superimposed to REF (see
also Table 2), and bias-corrected GCMs are closer to REF
for Sahel than for Guinea area.

Figures 13 and 14 provide similar analysis for the 95th per-
centile of daily pr. WFD, WFDEI, and EWEMBI provide
fields consistent with the ITCZ location including high val-
ues over the mountain areas (Fig. 13). WFDEI and EWEMBI
have very similar fields while the range of values for WDF
is very different, with values higher than 30 mm day−1 in
the ITCZ in summer in contrast with values lower than
20 mm day−1 for the two other reference datasets (see also
Table 2). A similar range of differences is present over the
Guinea area in spring and to a lesser extent in autumn (not
shown). Such differences are also large over the mountain ar-
eas (Fouta Djalloon, Cameroon). CDF-t bias-corrected GCM
data have remaining weak biases relative to WFDEI, lower
than ±2 mm day−1, except for IPSL-CM5A-LR, where dif-
ferences up to +5 mm day−1 are located north of 10◦ N.
Compared to the 95th percentile of daily tas, Taylor dia-
grams (Fig. 14) again show the good performance of the
CDF-t bias-correction method for the 29 GCMs, but with a

bit higher distance to REF for both the Sahel and Guinea
areas. ISIMIP bias-corrected GCM data are more scattered
than CDF-t-corrected GCMs in relation to their respective
reference dataset, WFD and WFDEI, and WFD is located far
from the WFDEI REF in terms of normalized standard devi-
ation and centred RMSE (see also Table 2).

Finally, Figs. 15 and 16 provide similar analysis for the
number of days with pr > 10 mm day−1. WFD, WFDEI, and
EWEMBI provide values consistent with the ITCZ location
including high values over the mountain areas (Fig. 15). In
contrast to the previous metric, WFD has a more similar
range of values relative to WFDEI and EWEMBI, with some
overestimation, especially over Nigeria, Cameroon, and cen-
tral Africa. The spatial variance is higher than for the two
previous metrics with a higher contrast between mountain
and plain areas. Remaining biases in the CDF-t-corrected
data are localized over mountain areas with mostly nega-
tive biases, but also over plains with mostly positive biases in
the ITCZ area and especially extended for IPSL-CM5A-LR.
Taylor diagrams (Fig. 16) once more show a good perfor-
mance of the CDF-t correction method to remove biases and
reduce inter-GCM dispersion. ISIMIP bias-corrected GCMs
have a higher dispersion than CDF-t-corrected GCMs rela-
tive to their respective reference dataset.
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Figure 12. Same as Fig. 3 but for the 95th percentile of near-surface temperature.

4.4 Crop yield simulations and sensitivity to
bias-corrected variables

The sensitivity of simulated crop yields over West Africa to
raw and bias-corrected forcing data is now evaluated. A crop
model forced by atmospheric variables integrates biases and
variability in these forcing data in a non-linear way. This in-
tegration may reduce or amplify the variability induced from
these forcing data.

This has been tested by using the crop model SARRA-O
(System of Agroclimatological Regional Risk Analysis; ver-
sion O). The model simulates yield attainable under water-
limited conditions by simulating the soil water balance, po-
tential and actual evapotranspiration, phenology, potential
and water-limited carbon assimilation, and biomass parti-
tioning (see Kouressy et al., 2008, for a detailed review of
model concepts). The simulation of these processes makes
SARRA-O particularly suited for the analysis of climate im-
pacts on cereal growth and yield in dry tropical environ-
ments (see for instance Sultan et al., 2013). Several sen-

sitivity simulations have been carried out. First SARRA-O
has been forced for each year from 1979 to 2001 by WFD,
WFDEI, and EWEMBI data. Second, the IPSL-CM5A-LR
model has been used to force SARRA-O over the same
years, with raw, CDF-t bias-corrected, and ISIMIP bias-
corrected data. The simulations have been compared to the
“GDHY” dataset (1981–2001) of 1.125◦ gridded yield es-
timation. GDHY is a hybrid of FAO country yield data,
satellite-derived crop-specific vegetation index and global
crop datasets on crop calendar, harvested area, and produc-
tion shares achieved by different growing season. Subna-
tional yield statistics have been used to validate the grid-
cell yield estimates (Iizumi et al., 2014). Note that SARRA-
O provides potential yields that can be different from ob-
served yields, so this comparison with the GDHY dataset
must be considered as indicative only. Finally, sensitivity to
individual variables has been conducted by comparing the
SARRA-O simulation forced with WFDEI data with simu-
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Figure 13. The 95th percentile of daily precipitation rate (mm day−1) from various observation datasets in JAS: WFD (a), WFDEI (b),
EWEMBI (c), and the difference relative to WFDEI data from five individual CDF-t bias-corrected models (d–h) over the period 1979–2001.

lations where one WFDEI variable is replaced by the corre-
sponding raw IPSL-CM5A-LR data.

Figure 17 compares the simulated crop yields over the
Sahel and Guinea areas when SARRA-O is forced either
by WFD, WFDEI, or EWEMBI and by the raw, CDF-t, or
ISIMIP bias-corrected IPSL-CM5A-LR model. GDHY data
are also shown as an evaluation. Over the Guinea area, the
differentiation of ensembles of simulations is quite clear.
The raw IPSL-CM5A-LR simulation has the highest yields
(∼ 2200 kg ha−1) while WFD and associated ISIMIP bias-
corrected simulations have the lowest yields (∼ 240 and
180 kg ha−1 respectively). The four remaining simulations,
based on WFDEI and associated CDF-t bias-corrected data
and EWEMBI and GDHY data, have intermediate yields,
between 700 and 1000 kg ha−1. Thus it is shown first that
SARRA-O maize yields are quite sensitive to the different
forcing datasets, second that WFD lead to simulated yields
far from the GDHY data while WFDEI and EWEMBI leads
to quite better yields, and finally that the raw GCM and GCM
corrected with WFD are also quite far from the validation
data while the GCM corrected with WFDEI has a rather
good performance. The simulation forced by EWEMBI has a
higher mean value than WFDEI (∼ 760 and 1030 kg ha−1 re-
spectively), and GDHY has yields ranging between WFDEI

and EWEMBI (∼ 980 kg ha−1), close to EWEMBI. Over
the Sahel area, the curves are closer but some similar con-
clusions can be drawn. WFD and associated ISIMIP bias-
corrected simulations provide the lowest yields (∼ 400 and
370 kg ha−1 respectively). WFDEI, EWEMBI, and CDF-t
bias-corrected simulations are very close (∼ 660, 650, and
710 kg ha−1 respectively). Finally, in contrast to the Guinea
area, GDHY data have the highest yields (∼ 980 kg ha−1), far
from other simulations. The raw simulation (∼ 590 kg ha−1)
is close to the WFDEI, EWEMBI, and CDF-t bias-corrected
simulations. This last point is quite surprising since raw
IPSL-CM5A-LR data have large biases.

Figure 18 shows the maps of mean simulated yields for
raw IPSL-CM5A-LR, WFDEI, and CDF-t bias-corrected
EWEMBI simulations, GDHY data, and the difference be-
tween EWEMBI and WFDEI simulations. For raw simula-
tions, yields are highly underestimated over the central Sahel
but highly overestimated over the western Sahel and espe-
cially near the Fouta Djalloon. The boundary between the
Sahel and Guinea areas being at 10◦ N, the spatial average
over the Sahel combine positive and negative biases in re-
spect to WFDEI. This explains the point raised at the end of
the previous paragraph. The other maps show that yields ob-
tained from EWEMBI are closer to GDHY data than yields
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Figure 14. Same as Fig. 3 but for the 95th percentile of daily precipitation rate (mm day−1).

from WFDEI, mostly due to better realistic values over the
Guinea area (see also Table 3). Yields from EWEMBI are
higher than yields from WFDEI mostly south of 10◦ N. Un-
derestimation of yields simulated from WFDEI over Fouta
Djalloon, southern Cameroon, and south-eastern Nigeria can
be clearly associated with underestimation of WFDEI rsds
compared to EWEMBI rsds (see Fig. 1). Comparisons of
WFDEI and EWEMBI interannual time series of yields and
associated tas, pr, and rsds on individual grid points in these
areas confirm that these yield differences are linked exclu-
sively to rsds differences. Finally, maps of simulated yields
from WFD and ISIMIP bias correction confirm the weak val-
ues over all of West Africa due to an underestimation of rsds
south of 10◦ N (not shown).

To go further, a sensitivity analysis to individual variables
has been conducted by comparing the SARRA-O simula-
tion forced with WFDEI data with simulations where one
of these WFDEI variables is replaced by the corresponding
raw IPSL-CM5A-LR data. These variables are pr, rsds, tas-

min, and tasmax, and also rsds from ISIMIP bias-corrected
IPSL-CM5A-LR (using WFD as reference). Table 3 shows
the mean yields for the Sahel and Guinea areas and the re-
sulting biases relative to WFDEI simulations. Biases are very
weak with tasmin–tasmax simulations (WFDEItminmax), a
bit higher for pr simulations (WFDEIpr) and for rsds sim-
ulations (WFDEIrsds) and drastically large for rsds from
ISIMIP bias-corrected simulations (WFDEIWFDrsds). Thus
rsds appears as a very critical variable for maize yields simu-
lated with SARRA-O, confirming a previous study based on
an older version, SARRA-H, of the crop model (Oettli et al.,
2011).

SARRA-O has also been run over the period 1950–2099
using the RCP8.5 projection, forced by ISPL-CM5A-LR
in terms of raw, CDF-t bias-corrected, and ISIMIP bias-
corrected data. Figure 19 shows, on the one hand, the result-
ing time series of maize yields over the Sahel and Guinea
boxes and, on the other hand, the maps of yields from CDF-
t bias-corrected data over 1979–2001 and 2077–2099 and
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Figure 15. Seasonal mean of number of days with precipitation greater than or equal to 10 mm day−1 from various observation datasets in
JAS: WFD (a), WFDEI (b), EWEMBI (c), and the difference relative to WFDEI data from five individual CDF-t bias-corrected models (d–h)
over the period 1979–2001.

the resulting difference between these two periods. Time se-
ries of standardized yield anomalies to their respective mean
over 1979–2001 are also displayed. In agreement with the
previous analysis, ISIMIP bias-corrected forcing data (with
WFD as reference data) lead to the lowest yields over both
the Sahel and Guinea areas at the present time but also over
the whole 21st century. Over the Guinea area, the very high
simulated yields coming from raw data are drastically re-
duced with CDF-t bias-corrected forcing data (with WFDEI
as reference data) while over the Sahel area these yields are
rather similar. After CDF-t bias correction, yields are quite
similar over the two areas. Interannual variability in simu-
lated yields is proportional to the mean with a very weak vari-
ability for ISIMIP yield and higher variability for CDF-t and
raw simulations. More precisely, standardized yield anoma-
lies (right panels) have a similar range over the Sahel, around
1 standard deviation after 2060, and a range around 2 stan-
dard deviations after 2070 over the Guinea area, except for
ISIMIP yields, which reach 4 standard deviations. All pro-
jections show a clear decrease in maize yields by a factor
of ∼ 2 over all of West Africa for the 21st century. The map
of the difference between 2077–2099 and 1979–2001 shows
that the yield decrease is located mostly south of 13◦ N, ex-

cept between Mali and Niger, and that a slight increase is
present north of 13◦ N.

5 Conclusions

The objectives of this paper are (i) to introduce a new bias-
corrected dataset for which the CDF-t correction method has
been applied to CMIP5 GCM daily data for the first time over
Africa, (ii) to quantify the effect of using different reference
datasets on the corrected data, (iii) and to illustrate this ef-
fect on crop simulations over West Africa. This bias correc-
tion has been applied over the period 1950–2099, combining
historical runs and RCP scenarios with 29/27/20 GCMs for
RCP8.5/4.5/2.6 respectively. It has been applied to six vari-
ables critical for agricultural impacts: daily accumulated pr,
daily mean, minimum and maximum near-surface air tem-
perature, daily mean surface downwelling shortwave radia-
tion, and daily mean wind speed.

The use of different bias-correction methods also based
on different reference datasets contributes to the total uncer-
tainty in climate projections and can contribute in some con-
texts more than the use of different GCMs or RCMs (Iizumi
et al., 2017). So using multiple bias-correction techniques
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Figure 16. Same as Fig. 3 but for the number of days when precipitation is greater than or equal to 10 mm day−1.

and reference datasets is highly recommended. In this con-
text, CDF-t bias-corrected GCM data have been compared
to the five GCMs ISIMIP bias-corrected data, and the im-
pact of the different reference datasets, WFD (used in ISIMIP
bias corrections), WFDEI (used in CDF-t bias corrections),
and the more recent EWEMBI (used in a second version of
ISIMIP bias corrections), has been examined in detail. Crop
simulations have also been carried out to test how the impact
of bias corrections in forcing data (temperature, pr, rsds) is
integrated in terms of crop (maize) yields. Finally, bias cor-
rections have also been presented in the context of RCP8.5
scenarios.

The whole observational period, 1979–2013, has been
chosen to calibrate the bias-correction process. It has been
shown that using various calibration sub-periods has a weak
impact, in particular on the time evolution over the 21st cen-
tury.

The evaluation of CDF-t bias correction applied to the
29 GCMs, both to mean seasonal data and to daily metrics,

has shown that CDF-t is very effective in removing the bi-
ases in respect to the reference WFDEI data and in reduc-
ing the high inter-GCM scattering. It has also shown some
distance, depending on variables and metrics, from bias-
corrected ISIMIP GCM data, mainly due to the differences
between WFDEI and WFD reference data. WFDEI (and
associated CDF-t bias-corrected GCMs) appears closer to
EWEMBI than WFD (and associated ISIMIP bias-corrected
GCMs). Metrics based on temperature are very close for
the three reference datasets, and some differences exist in
pr-based metrics. In contrast, significant differences have
been highlighted in terms of rsds. This has consequences
in terms of crop (maize) yields over West Africa. Sensitiv-
ity simulations performed with one GCM have shown that
bias corrections improve the yields simulated by the raw
GCM. However, the ISIMIP bias-corrected GCM still under-
estimate them as CDF-t bias-corrected GCMs do but with
yield estimates closer to observed ones. EWEMBI provides
the closest yields to observed estimates. This is mainly due
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Figure 17. Time series of crop maize yield over the Sahel (18◦W–10◦ E; 10–20◦ N) and Guinea (18◦W–10◦ E; 3–10◦ N) areas using
IPSL-raw, IPSL-CDF-t, IPSL-ISIMIP, WFD, WFDEI, and EWEMBI as forcing data over 1979–2001.

Table 3. Sensitivity experiment means and biases (kg ha−1) in re-
spect to WFDEI simulations for the Sahel and Guinea areas. Sim-
ulations of sensitivity to individual variables have been conducted
by forcing the SARRA-O model with WFDEI data and by replac-
ing one of the WFDEI variables with the corresponding raw IPSL-
CM5A-LR data. These variables are pr, rsds, tasmin, and tasmax,
and also rsds from ISIMIP bias-corrected IPSL-CM5A-LR (using
WFD as a reference).

Sahel Guinea

Mean Bias Mean Bias

WFDEI 658 0 757 0
WFD 398 −260 241 −516
EWEMBI 646 −12 1029 272
GDHY 979 321 978 221
IPSL-CM5A-LR Raw 586 −72 2201 1444
IPSL-CM5A-LR CDF-t 706 48 693 −64
IPSL-CM5A-LR ISIMIP 367 −291 184 −573
WFDEIpr 668 10 716 −41
WFDEIrsds 717 59 786 29
WFDEItminmax 658 0 767 10
WFDEIWFDrsds 317 −341 195 −562

to rsds whose values are underestimated in WFDEI south
of 10◦ N. Finally, in agreement with maize yield sensitiv-
ity simulations, projections of future yields over West Africa
have quite different levels depending on the bias-correction
method. However, they all show a similar relative decreasing
trend over the 21st century.

The main perspective of this work is to go on exploring
the uncertainty linked to bias-correction methods and their
associated reference data in RCP climate scenarios by pro-
ducing a second version of this bias-corrected 29-GCM en-
semble over Africa using more recent reference data like
EWEMBI or others like those used in AgMIP based on other
reanalyses (AgMERRA or AgCFSR; Ruane et al., 2015).
The main divergence among all those reference datasets is
probably expected from rsds. Bias correction for other vari-
ables useful for user-based metrics like specific humidity
is also scheduled. Comparison between CDF-t and ISIMIP
bias-correction methods based on the same reference dataset
is also ongoing.

The CFD-t bias correction has been applied independently
for each of the six variables. However, this may be a prob-
lem since existing spatial coherency and dependence among
variables may be destroyed by the application of univariate
calibrations. Recently, to address this issue, improved cali-
brations have been developed in terms of multivariate cor-
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Figure 18. Temporal mean of maize yield (t ha−1) for IPSL-raw, IPSL-CDF-t, WFDEI, EWEMBI, and GDHY over 1979–2001 and the
difference between EWEMBI and WFDEI simulations. The boxes indicate the Sahel (18◦W–10◦ E; 10–20◦ N) and Guinea (18◦W–10◦ E;
3—10◦ N) regions.

rection and spatial and/or temporal dependences (see for in-
stance Vrac and Friederichs, 2015, for a synthesis). Imple-
mentation of more sophisticated methods using multivariate
correction is also ongoing.

This work constitutes a first step in producing bias-
corrected datasets over Africa within AMMA-2050. An at-
las is in preparation that will provide extensive results over
Africa to the FCFA stakeholders and end-user communities.
These communities will be accompanied by FCFA climate
scientists in order to be aware of the way to use these data
and their limitations.

Data availability. The ISIMIP Fast Track data are available
at https://doi.org/10.5880/PIK.2016.001 (Hempel et al., 2013b)
and the EWEMBI dataset at https://doi.org/10.5880/pik.2016.004
(Lange, 2016). The CDF-t bias-corrected CMIP5 data over Africa
are available at http://amma2050.ipsl.upmc.fr/. To access the data,
users must contact the lead author at moflod@locean-ipsl.upmc.fr.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/esd-9-313-2018-supplement.
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Figure 19. Time series of RCP8.5 projections of maize yields over the Sahel (18◦W–10◦ E; 10–20◦ N) and Guinea (18◦W–10◦ E; 3–10◦ N)
areas (a) and standardized yield anomalies with respect to 1979–2001 (b), using IPSL-CM5A-LR raw data (green line), BC data with CDF-t
(blue line), and ISIMIP BC data (red line) as forcing data. Maps show mean maize yields from CDF-t bias-corrected data over 1979–2001,
2077–2099, and their difference.
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