Articles | Volume 9, issue 1
https://doi.org/10.5194/esd-9-167-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-9-167-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A new moisture tagging capability in the Weather Research and Forecasting model: formulation, validation and application to the 2014 Great Lake-effect snowstorm
Non-Linear Physics Group, Universidade de Santiago de Compostela, Galicia, Spain
Gonzalo Miguez-Macho
CORRESPONDING AUTHOR
Non-Linear Physics Group, Universidade de Santiago de Compostela, Galicia, Spain
Related authors
Alfredo Crespo-Otero, Damián Insua-Costa, Emilio Hernández-García, Cristóbal López, and Gonzalo Míguez-Macho
Earth Syst. Dynam., 16, 1483–1501, https://doi.org/10.5194/esd-16-1483-2025, https://doi.org/10.5194/esd-16-1483-2025, 2025
Short summary
Short summary
We evaluated two Lagrangian moisture tracking tools for computing moisture sources in precipitation events related to atmospheric rivers (ARs) and compared them against the Weather Research and Forecasting (WRF) model with water vapor tracers. Our results show that both tools (the Sodemann et al., 2008, and Dirmeyer and Brubaker, 1999, methodologies) present a systematic underestimation of remote sources. Implementing simple physics-based changes substantially improved both methods, narrowing the disparities among all approaches.
Marc Lemus-Canovas, Sergi Gonzalez-Herrero, Laura Trapero, Anna Albalat, Damian Insua-Costa, Martin Senande-Rivera, and Gonzalo Miguez-Macho
Nat. Hazards Earth Syst. Sci., 25, 2503–2518, https://doi.org/10.5194/nhess-25-2503-2025, https://doi.org/10.5194/nhess-25-2503-2025, 2025
Short summary
Short summary
This study investigates the intense heatwaves of 2022 in the Pyrenees. The interplay of the synoptic circulation with the complex topography and the pre-existing soil moisture deficits played an important role in driving the spatial variability of their temperature anomalies. Moreover, human-driven climate change has made these heatwaves more severe compared to the past. This research helps us better understand how climate change affects extreme weather in mountainous regions.
Sara Cloux, Daniel Garaboa-Paz, Damián Insua-Costa, Gonzalo Miguez-Macho, and Vicente Pérez-Muñuzuri
Hydrol. Earth Syst. Sci., 25, 6465–6477, https://doi.org/10.5194/hess-25-6465-2021, https://doi.org/10.5194/hess-25-6465-2021, 2021
Short summary
Short summary
We examine the performance of a widely used Lagrangian method for moisture tracking by comparing it with a highly accurate Eulerian tool, both operating on the same WRF atmospheric model fields. Although the Lagrangian approach is very useful for a qualitative analysis of moisture sources, it has important limitations in quantifying the contribution of individual sources to precipitation. These drawbacks should be considered by other authors in the future so as to not draw erroneous conclusions.
Alfredo Crespo-Otero, Damián Insua-Costa, Emilio Hernández-García, Cristóbal López, and Gonzalo Míguez-Macho
Earth Syst. Dynam., 16, 1483–1501, https://doi.org/10.5194/esd-16-1483-2025, https://doi.org/10.5194/esd-16-1483-2025, 2025
Short summary
Short summary
We evaluated two Lagrangian moisture tracking tools for computing moisture sources in precipitation events related to atmospheric rivers (ARs) and compared them against the Weather Research and Forecasting (WRF) model with water vapor tracers. Our results show that both tools (the Sodemann et al., 2008, and Dirmeyer and Brubaker, 1999, methodologies) present a systematic underestimation of remote sources. Implementing simple physics-based changes substantially improved both methods, narrowing the disparities among all approaches.
Marc Lemus-Canovas, Sergi Gonzalez-Herrero, Laura Trapero, Anna Albalat, Damian Insua-Costa, Martin Senande-Rivera, and Gonzalo Miguez-Macho
Nat. Hazards Earth Syst. Sci., 25, 2503–2518, https://doi.org/10.5194/nhess-25-2503-2025, https://doi.org/10.5194/nhess-25-2503-2025, 2025
Short summary
Short summary
This study investigates the intense heatwaves of 2022 in the Pyrenees. The interplay of the synoptic circulation with the complex topography and the pre-existing soil moisture deficits played an important role in driving the spatial variability of their temperature anomalies. Moreover, human-driven climate change has made these heatwaves more severe compared to the past. This research helps us better understand how climate change affects extreme weather in mountainous regions.
Carolina A. Bieri, Francina Dominguez, Gonzalo Miguez-Macho, and Ying Fan
Geosci. Model Dev., 18, 3755–3779, https://doi.org/10.5194/gmd-18-3755-2025, https://doi.org/10.5194/gmd-18-3755-2025, 2025
Short summary
Short summary
Access to deep moisture below the Earth's surface is important for vegetation in areas of the Amazon where there is little precipitation for part of the year. Most existing numerical models of the Earth system do not adequately capture where and when deep root water uptake occurs. We address this by adding deep soil layers and a root water uptake feature to an existing model. Out modifications lead to increased dry-month transpiration and improved simulation of the annual transpiration cycle.
Xavier Fonseca, Gonzalo Miguez-Macho, José A. Cortes-Vazquez, and Antonio Vaamonde
Geosci. Commun., 5, 177–188, https://doi.org/10.5194/gc-5-177-2022, https://doi.org/10.5194/gc-5-177-2022, 2022
Short summary
Short summary
In this paper, we discuss the instrumental role of the press in informing and educating the public on the subject of climate science and climate change. We illustrate this using an example of a dissemination format called Weather Stories, published daily in one of the most read newspapers in Spain. The particularities of this journalistic format are described using a practical example of a relatively complex physical concept: the jet stream.
Sara Cloux, Daniel Garaboa-Paz, Damián Insua-Costa, Gonzalo Miguez-Macho, and Vicente Pérez-Muñuzuri
Hydrol. Earth Syst. Sci., 25, 6465–6477, https://doi.org/10.5194/hess-25-6465-2021, https://doi.org/10.5194/hess-25-6465-2021, 2021
Short summary
Short summary
We examine the performance of a widely used Lagrangian method for moisture tracking by comparing it with a highly accurate Eulerian tool, both operating on the same WRF atmospheric model fields. Although the Lagrangian approach is very useful for a qualitative analysis of moisture sources, it has important limitations in quantifying the contribution of individual sources to precipitation. These drawbacks should be considered by other authors in the future so as to not draw erroneous conclusions.
Cited articles
Arnault, J., Knoche, R., Wei, J., and Kunstmann, H.: Evaporation tagging and
atmospheric water budget analysis with WRF: A regional precipitation
recycling study for West Africa, Water Resour. Res., 52, 1544–1567,
https://doi.org/10.1002/2015WR017704, 2016. a
Bechtold, P., Bazile, E., Guichard, F., Mascart, P., and Richard, E.: A
mass-flux convection scheme for regional and global models, Q. J. Roy. Meteor. Soc., 127, 869–886,
https://doi.org/10.1256/smsqj.57308, 2001. a
Bosilovich, M. G., Sud, Y. C., Schubert, S. D., and Walker, G. K.: Numerical
simulation of the large-scale North American monsoon water sources, J.
Geophys. Res., 108, 8614, https://doi.org/10.1029/2002JD003095, 2003. a
Bosilovich, M. G.: On the vertical distribution of local and remote sources of
water for precipitation, Meteorol. Atmos. Phys., 80, 31–41,
https://doi.org/10.1007/s007030200012, 2002. a
Brioude, J., Arnold, D., Stohl, A., Cassiani, M., Morton, D., Seibert, P.,
Angevine, W., Evan, S., Dingwell, A., Fast, J. D., Easter, R. C., Pisso, I.,
Burkhart, J., and Wotawa, G.: The Lagrangian particle dispersion model
FLEXPART-WRF version 3.1, Geosci. Model Dev., 6, 1889–1904,
https://doi.org/10.5194/gmd-6-1889-2013, 2013. a
Brubaker, K. L., Entekhabi, D., and Eagleson, P. S.: Estimation of continental
precipitation recycling, J. Climate, 6, 1077–1089,
https://doi.org/10.1175/1520-0442(1993)006<1077:EOCPR>2.0.CO;2, 1993. a
Budyko, M. I.: Climate and Life, 508 pp., Academic Press, New York, 1974. a
Burde, G. I., Gandush, C., and Bayarjargal, Y.: Bulk recycling models with
incomplete vertical mixing. Part II: Precipitation recycling in the Amazon
basin, J. Climate, 19, 1473–1489, https://doi.org/10.1175/JCLI3688.1, 2006. a
Carroll, T., Cline, D., Olheiser, C., Rost, A., Nilsson, A., Fall, G., Bovitz,
C., and Li, L.: NOAA's National Snow Analyses, Proceedings of the 74th
Annual Meeting of the Western Snow Conference, 1–14, 2006. a
Chang, S. S. and Braham, R. R.: Observational study of a convective internal
boundary layer over Lake Michigan, J. Atmos. Sci., 48, 2265–2279,
https://doi.org/10.1175/1520-0469(1991)048<2265:OSOACI>2.0.CO;2, 1991. a
Changnon, S. A.: How a Severe Winter Impacts on Individuals, B. Am.
Meteorol. Soc., 60, 110–114,
https://doi.org/10.1175/1520-0477(1979)060<0110:HASWIO>2.0.CO;2, 1979. a
Chen, F. and Dudhia, J.: Coupling an Advanced Land Surface–Hydrology Model
with the Penn State–NCAR MM5 Modeling System. Part II: Preliminary Model
Validation, Mon. Weather Rev., 129, 587–604,
https://doi.org/10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2, 2001. a
Dirmeyer, P. A. and Brubaker, K. L.: Contrasting evaporative moisture
sources
during the drought of 1988 and the flood of 1993, J. Geophys. Res., 104, 19383–19397, https://doi.org/10.1029/1999JD900222, 1999. a
Dominguez, F., Kumar, P., Liang, X. Z., and Ting, M.: Impact of atmospheric
moisture storage on precipitation recycling, J. Climate, 19,
1513–1530, https://doi.org/10.1175/JCLI3691.1, 2006. a
Dominguez, F., Miguez-Macho, G., and Hu, H.: WRF with Water Vapor Tracers: A
Study of Moisture Sources for the North American Monsoon, J. Hydrometeorol., 17, 1915–1927, https://doi.org/10.1175/JHM-D-15-0221.1, 2016. a
Dudhia, J.: Numerical Study of Convection Observed during the Winter Monsoon
Experiment Using a Mesoscale Two-Dimensional Model, J. Atmos. Sci., 46, 3077–3107,
https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2, 1989. a
Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R.,
and Mearns, L. O.: Climate extremes: Observations, modeling, and impacts,
Science, 289, 2068–2074, https://doi.org/10.1126/science.289.5487.2068, 2000. a
Eichenlaub, V.: Lake effect snowfall to the lee of the Great Lakes: its role
in Michigan, B. Am. Meteorol. Soc., 51, 403–412, https://doi.org/10.1175/1520-0477(1970)051<0403:lesttl>2.0.co;2,
1970. a
Eichenlaub, V. L.: Weather and Climate of the Great Lakes Region, University
of Notre Dame Press, Indiana, 1978. a
Eiras-Barca, J., Dominguez, F., Hu, H., Garaboa-Paz, D., and Miguez-Macho,
G.: Evaluation of the moisture sources in two extreme landfalling atmospheric
river events using an Eulerian WRF tracers tool, Earth Syst. Dynam., 8,
1247–1261, https://doi.org/10.5194/esd-8-1247-2017, 2017. a
Eltahir, E. A. B. and Bras, R. L.: Precipitation recycling, Rev.
Geophys., 34, 367–378, 1996. a
Gat, J. R., Bowser, C. J., and Kendall, C.: The contribution of evaporation
from the Great Lakes to the continental atmosphere: estimate based on stable
isotope data, Geophys. Res. Lett., 21, 557–560, 1994. a
Gimeno, L., Drumond, A., Nieto, R., Trigo, R. M., and Stohl, A.: On the origin
of continental precipitation, Geophys. Res. Lett., 37, 1–7,
https://doi.org/10.1029/2010GL043712, 2010. a
Gimeno, L., Stohl, A., Trigo, R. M., Dominguez, F., Yoshimura, K., Yu, L.,
Drumond, A., Durn-Quesada, A. M., and Nieto, R.: Oceanic and terrestrial
sources of continental precipitation, Rev. Geophys., 50, 1–41,
https://doi.org/10.1029/2012RG000389, 2012. a
Goessling, H. F. and Reick, C. H.: What do moisture recycling estimates tell
us? Exploring the extreme case of non-evaporating continents, Hydrol. Earth
Syst. Sci., 15, 3217–3235, https://doi.org/10.5194/hess-15-3217-2011, 2011. a
Goessling, H. F. and Reick, C. H.: On the “well-mixed” assumption and
numerical 2-D tracing of atmospheric moisture, Atmos. Chem. Phys., 13,
5567–5585, https://doi.org/10.5194/acp-13-5567-2013, 2013. a, b
Henry Juang, H.-M. and Hong, S.-Y.: Forward Semi-Lagrangian Advection with
Mass Conservation and Positive Definiteness for Falling Hydrometeors,
Mon. Weather Rev., 138, 1778–1791, https://doi.org/10.1175/2009MWR3109.1, 2010. a
Hjelmfelt, M. R. and Roscoe, R. B.: Numerical simulation of the airflow over
Lake Michigan for a major lake-effect snow event, Mon. Weather Rev., 111, 205–219,
https://doi.org/10.1175/1520-0493(1983)111<0205:NSOTAO>2.0.CO;2, 1983. a
Hong, S.-Y., Noh, Y., and Dudhia, J.: A New Vertical Diffusion Package with an
Explicit Treatment of Entrainment Processes, Mon. Weather Rev., 134,
2318–2341, https://doi.org/10.1175/MWR3199.1, 2006. a, b
James, P., Stohl, A., Spichtinger, N., Eckhardt, S., and Forster, C.:
Climatological aspects of the extreme European rainfall of August 2002 and a
trajectory method for estimating the associated evaporative source regions,
Nat. Hazards Earth Syst. Sci., 4, 733–746,
https://doi.org/10.5194/nhess-4-733-2004, 2004. a
Joussaume, S., Sadourny, R., and Vignal, C.: Origin of precipitating water in
a numerical simulation of the July climate, Ocean-Air Interact., 1, 43–56,
1986. a
Kain, J. S.: The Kain–Fritsch Convective Parameterization: An Update,
J. Appl. Meteorol., 43, 170–181,
https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2, 2004. a, b
Kain, J. S. and Fritsch, J. M.: A One-Dimensional Entraining/Detraining Plume
Model and Its Application in Convective Parameterization, J. Atmos. Sci., 47, 2784–2802,
https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2, 1990. a
Kain, J. S., Baldwin, M. E., and Weiss, S. J.: Parameterized Updraft Mass Flux
as a Predictor of Convective Intensity, Weather Forecast., 18,
106–116, https://doi.org/10.1175/1520-0434(2003)018<0106:PUMFAA>2.0.CO;2, 2003. a, b
Knoche, H. R. and Kunstmann, H.: Tracking atmospheric water pathways by direct
evaporation tagging: A case study for West Africa, J. Geophys. Res.-Atmos., 118, 12345–12358, https://doi.org/10.1002/2013JD019976,
2013. a
Koster, R., Jouzel, J., Suozzo, R., Russell, G., Rind, D., and Eaglesonl, P.:
the NASA/GISS GCM. Water evaporating from various, Water, 13, 121–124,
https://doi.org/10.1029/GL013i002p00121, 1986. a
Lenschow, D. H.: Two examples of planetary boundary layer modification over
the Great Lakes, J. Atmos. Sci., 30, 568–581, 1973. a
Liu, X., Osher, S., and Chan, T.: Weighted essentially non-oscilatory
schemes, J. Comput. Phys., 115, 200–212, 1994. a
Machavaram, M. V. and Krishnamurthy, R.: Earth surface evaporative process: A
case study from the Great Lakes region of the United States based on
deuterium excess in precipitation, Geochim. Cosmochim. Ac., 59,
4279–4283, https://doi.org/10.1016/0016-7037(95)00256-Y, 1995. a
Miguez-Macho, G., Stenchikov, G. L., and Robock, A.: Spectral nudging to
eliminate the effects of domain position and geometry in regional climate
model simulations, J. Geophys. Res.-Atmos., 109,
1–15, https://doi.org/10.1029/2003JD004495, 2004. a
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.:
Radiative transfer for inhomogeneous atmospheres: RRTM, a validated
correlated-k model for the longwave, J. Geophys. Res.-Atmos., 102, 16663–16682, https://doi.org/10.1029/97JD00237, 1997. a
National Centers for Environmental Prediction, National Weather Service,
NOAA, U. D. o. C.: NCEP FNL Operational Model Global Tropospheric Analyses,
continuing from July 1999, available at: https://doi.org/10.5065/D6M043C6 (23 January 2017),
2000. a
National Weather Service, NOAA, U. D. o. C.: Lake Effect Summary:
17–19 November 2014, available at:
https://www.weather.gov/buf/lake1415_stormb.html (15 December 2017), 2014. a
Niziol, T. A., Snyder, W. R., and Waldstreicher, J. S.: Winter Weather
Forecasting throughout the Eastern United States. Part IV: Lake Effect
Snow, Weather Forecast., 10, 61–77,
https://doi.org/10.1175/1520-0434(1995)010<0061:WWFTTE>2.0.CO;2, 1995. a
Noone, D. and Simmonds, I.: Annular variations in moisture transport
mechanisms and the abundance of
δ18O in
Antarctic snow, J. Geophys. Res.-Atmos., 107, 1–11,
https://doi.org/10.1029/2002JD002262, 2002. a
Numaguti, A.: Origin and recycling processes of precipitating water over the
Eurasian continent: Experiments using an atmospheric general circulation
model, J. Geophys. Res.-Atmos., 104, 1957–1972,
https://doi.org/10.1029/1998JD200026, 1999. a
Oki, T. and Kanae, S.: Global Hydrological Cycles annd World Water Resources,
Science, 313, 1068–1072, https://doi.org/10.1126/science.1128845, 2006. a
Peixoto, J. P. and Oort, A. H.: Physics of climate, American Institute of
Physics, New York, 1992. a
Rios-Entenza, A. and Miguez-Macho, G.: Moisture recycling and the maximum of
precipitation in spring in the Iberian Peninsula, Clim. Dynam., 42,
3207–3231, https://doi.org/10.1007/s00382-013-1971-x, 2014. a
Schmidlin, T. W.: Impacts of severe winter weather during December 1989 in the
Lake Erie snowbelt, J. Climate, 6, 759–767, https://doi.org/10.1175/1520-0442(1993)006<0759:IOSWWD>2.0.CO;2,
1993. a
Singh, H. A., Bitz, C. M., Nusbaumer, J., and Noone, D. C.: A mathematical
framework for analysis of water tracers: Part 1: Development of theory and
application to the preindustrial mean state, J. Adv. Model. Earth Sy., 8, 991–1013, 2016. a
Skamarock, W., Klemp, J., Dudhi, J., Gill, D., Barker, D., Duda, M., Huang,
X.-Y., Wang, W., and Powers, J.: A Description of the Advanced Research WRF
Version 3, Technical Report, p. 113, https://doi.org/10.5065/D6DZ069T, 2008. a
Sodemann, H. and Stohl, A.: Moisture Origin and Meridional Transport in
Atmospheric Rivers and Their Association with Multiple Cyclones,
Mon. Weather Rev., 141, 2850–2868, https://doi.org/10.1175/MWR-D-12-00256.1, 2013. a
Sodemann, H., Wernli, H., and Schwierz, C.: Sources of water vapour
contributing to the Elbe flood in August 2002 – A tagging study in a
mesoscale model, Q. J. Roy. Meteor. Soc., 135,
205–223, https://doi.org/10.1002/qj.374, 2009. a, b, c, d
Stohl, A.: Computation, accuracy and applications of trajectories – a
review
and bibliography, Atmos. Environ., 32, 947–966, https://doi.org/10.1016/S1352-2310(97)00457-3, 1998. a
Stohl, A. and James, P.: A Lagrangian Analysis of the Atmospheric Branch of
the Global Water Cycle. Part II: Moisture Transports between Earth's Ocean
Basins and River Catchments, J. Hydrometeorol., 6, 961–984,
https://doi.org/10.1175/JHM470.1, 2005. a
Stohl, A., James, P., Stohl, A., and James, P.: A Lagrangian Analysis of the
Atmospheric Branch of the Global Water Cycle. Part I: Method Description,
Validation, and Demonstration for the August 2002 Flooding in Central
Europe, J. Hydrometeorol., 5, 656–678,
https://doi.org/10.1175/1525-7541(2004)005<0656:ALAOTA>2.0.CO;2, 2004. a
Stohl, A., Forster, C., and Sodemann, H.: Remote sources of water vapor
forming precipitation on the Norwegian west coast at 60∘ N – A tale of
hurricanes and an atmospheric river, J. Geophys. Res.-Atmos., 113, 1–13, https://doi.org/10.1029/2007JD009006, 2008. a
Trenberth, K. E.: Atmospheric moisture recycling: Role of advection and local
evaporation, J. Climate, 12, 1368–1381,
https://doi.org/10.1175/1520-0442(1999)012<1368:AMRROA>2.0.CO;2, 1999. a
van der Ent, R. J., Savenije, H. H. G., Schaefli, B., and Steele-Dunne, S.
C.: Origin and fate of atmospheric moisture over continents, Water Resour.
Res., 46, W09525, https://doi.org/10.1029/2010WR009127, 2010. a
van der Ent, R. J., Tuinenburg, O. A., Knoche, H.-R., Kunstmann, H., and
Savenije, H. H. G.: Should we use a simple or complex model for moisture
recycling and atmospheric moisture tracking?, Hydrol. Earth Syst. Sci., 17,
4869–4884, https://doi.org/10.5194/hess-17-4869-2013, 2013.
a
Werner, M., Heimann, M., and Hoffmann, G.: Isotopic composition and origin of
polar precipitation in present and glacial climate simulations, Tellus
B, 53, 53–71,
https://doi.org/10.3402/tellusb.v53i1.16539, 2001. a
Wiggin, B. L.: Great snows of the Great Lakes, Weatherwise, 3, 123–126,
1950. a
Winschall, A., Pfahl, S., Sodemann, H., and Wernli, H.: Comparison of
Eulerian and Lagrangian moisture source diagnostics – the flood event in
eastern Europe in May 2010, Atmos. Chem. Phys., 14, 6605–6619,
https://doi.org/10.5194/acp-14-6605-2014, 2014. a
Wright, D. M., Posselt, D. J., and Steiner, A. L.: Sensitivity of Lake-Effect
Snowfall to Lake Ice Cover and Temperature in the Great Lakes Region,
Mon. Weather Rev., 141, 670–689, https://doi.org/10.1175/MWR-D-12-00038.1, 2013. a
Yoshimura, K., Oki, T., Ohte, N., and Kanae, S.: Colored Moisture Analysis
Estimates of Variations in 1998 Asian Monsoon Water Sources, J. Meteorol. Soc. Jpn., 82, 1315–1329,
https://doi.org/10.2151/jmsj.2004.1315, 2004. a
Short summary
We present here a newly implemented water vapor tracer tool into the WRF meteorological model (WRF-WVT). A detailed validation shows high accuracy, with an error of much less than 1 % in moisture traceability. As an example application, we show that for the 2014 Great Lake-effect snowstorm, above 30 % of precipitation in the regions immediately downwind originated from lake evaporation, with contributions exceeding 50 % in the areas with highest snowfall accumulations.
We present here a newly implemented water vapor tracer tool into the WRF meteorological model...
Altmetrics
Final-revised paper
Preprint