Articles | Volume 14, issue 2
https://doi.org/10.5194/esd-14-457-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-14-457-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Performance-based sub-selection of CMIP6 models for impact assessments in Europe
Tamzin E. Palmer
CORRESPONDING AUTHOR
Met Office Hadley Centre, FitzRoy Rd, Exeter, Devon, EX1 3PB, UK
Carol F. McSweeney
Met Office Hadley Centre, FitzRoy Rd, Exeter, Devon, EX1 3PB, UK
Ben B. B. Booth
Met Office Hadley Centre, FitzRoy Rd, Exeter, Devon, EX1 3PB, UK
Matthew D. K. Priestley
Department of Mathematics and Statistics, University of Exeter, Exeter, UK
Paolo Davini
Consiglio Nazionale delle Ricerche, Istituto di Scienze dell’Atmosfera e del Clima (CNR-ISAC), Turin, Italy
Lukas Brunner
Department of Meteorology and Geophysics, University of Vienna, Vienna, Austria
Leonard Borchert
Climate Statistics and Climate Extremes, Centre for Earth System Research and Sustainability (CEN), Universität Hamburg, Hamburg, Germany
Laboratoire de Météorologie Dynamique (LMD) at École Normale Supérieure (ENS), Paris, France
Matthew B. Menary
Met Office Hadley Centre, FitzRoy Rd, Exeter, Devon, EX1 3PB, UK
Laboratoire de Météorologie Dynamique (LMD) at École Normale Supérieure (ENS), Paris, France
Related authors
Nieves G. Valiente, Andrew Saulter, Breogan Gomez, Christopher Bunney, Jian-Guo Li, Tamzin Palmer, and Christine Pequignet
Geosci. Model Dev., 16, 2515–2538, https://doi.org/10.5194/gmd-16-2515-2023, https://doi.org/10.5194/gmd-16-2515-2023, 2023
Short summary
Short summary
We document the Met Office operational global and regional wave models which provide wave forecasts up to 7 d ahead. Our models present coarser resolution offshore to higher resolution near the coastline. The increased resolution led to replication of the extremes but to some overestimation during modal conditions. If currents are included, wave directions and long period swells near the coast are significantly improved. New developments focus on the optimisation of the models with resolution.
Huw W. Lewis, Juan Manuel Castillo Sanchez, Alex Arnold, Joachim Fallmann, Andrew Saulter, Jennifer Graham, Mike Bush, John Siddorn, Tamzin Palmer, Adrian Lock, John Edwards, Lucy Bricheno, Alberto Martínez-de la Torre, and James Clark
Geosci. Model Dev., 12, 2357–2400, https://doi.org/10.5194/gmd-12-2357-2019, https://doi.org/10.5194/gmd-12-2357-2019, 2019
Short summary
Short summary
In the real world the atmosphere, oceans and land surface are closely interconnected, and yet the prediction systems used for weather and ocean forecasting tend to treat them in isolation. This paper describes the third version of a regional modelling system which aims to represent the feedback processes between sky, sea and land. The main innovation introduced in this version enables waves to affect the underlying ocean. Coupled results from four different month-long simulations are analysed.
Huw W. Lewis, Juan Manuel Castillo Sanchez, John Siddorn, Robert R. King, Marina Tonani, Andrew Saulter, Peter Sykes, Anne-Christine Pequignet, Graham P. Weedon, Tamzin Palmer, Joanna Staneva, and Lucy Bricheno
Ocean Sci., 15, 669–690, https://doi.org/10.5194/os-15-669-2019, https://doi.org/10.5194/os-15-669-2019, 2019
Short summary
Short summary
Forecasts of ocean temperature, salinity, currents, and sea height can be improved by linking state-of-the-art ocean and wave models, so that they can interact to better represent the real world. We test this approach in an ocean model of north-west Europe which can simulate small-scale details of the ocean state. The intention is to implement the system described in this study for operational use so that improved information can be provided to users of ocean forecast data.
Huw W. Lewis, Juan Manuel Castillo Sanchez, Jennifer Graham, Andrew Saulter, Jorge Bornemann, Alex Arnold, Joachim Fallmann, Chris Harris, David Pearson, Steven Ramsdale, Alberto Martínez-de la Torre, Lucy Bricheno, Eleanor Blyth, Victoria A. Bell, Helen Davies, Toby R. Marthews, Clare O'Neill, Heather Rumbold, Enda O'Dea, Ashley Brereton, Karen Guihou, Adrian Hines, Momme Butenschon, Simon J. Dadson, Tamzin Palmer, Jason Holt, Nick Reynard, Martin Best, John Edwards, and John Siddorn
Geosci. Model Dev., 11, 1–42, https://doi.org/10.5194/gmd-11-1-2018, https://doi.org/10.5194/gmd-11-1-2018, 2018
Short summary
Short summary
In the real world the atmosphere, oceans and land surface are closely interconnected, and yet prediction systems tend to treat them in isolation. Those feedbacks are often illustrated in natural hazards, such as when strong winds lead to large waves and coastal damage, or when prolonged rainfall leads to saturated ground and high flowing rivers. For the first time, we have attempted to represent some of the feedbacks between sky, sea and land within a high-resolution forecast system for the UK.
Julianna Carvalho-Oliveira, Giorgia Di Capua, Leonard F. Borchert, Reik V. Donner, and Johanna Baehr
Weather Clim. Dynam., 5, 1561–1578, https://doi.org/10.5194/wcd-5-1561-2024, https://doi.org/10.5194/wcd-5-1561-2024, 2024
Short summary
Short summary
We demonstrate with a causal analysis that an important recurrent summer atmospheric pattern, the so-called East Atlantic teleconnection, was influenced by the extratropical North Atlantic in spring during the second half of the 20th century. This causal link is, however, not well represented by our evaluated seasonal climate prediction system. We show that simulations able to reproduce this link show improved surface climate prediction credibility over those that do not.
Nicola Maher, Adam S. Phillips, Clara Deser, Robert C. Jnglin Wills, Flavio Lehner, John Fasullo, Julie M. Caron, Lukas Brunner, and Urs Beyerle
EGUsphere, https://doi.org/10.5194/egusphere-2024-3684, https://doi.org/10.5194/egusphere-2024-3684, 2024
Short summary
Short summary
We present a new multi-model large ensemble archive (MMLEAv2) and introduce the newly updated Climate Variability Diagnostics Package version 6 (CVDPv6), which is designed specifically for use with large ensembles. For highly variable quantities, we demonstrate that a model might evaluate poorly or favourably compared to the single realisation of the world that the observations represent, highlighting the need for large ensembles for model evaluation.
Masaru Yoshioka, Daniel P. Grosvenor, Ben B. B. Booth, Colin P. Morice, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 13681–13692, https://doi.org/10.5194/acp-24-13681-2024, https://doi.org/10.5194/acp-24-13681-2024, 2024
Short summary
Short summary
A 2020 regulation has reduced sulfur emissions from shipping by about 80 %, leading to a decrease in atmospheric aerosols that have a cooling effect primarily by affecting cloud properties and amounts. Our climate model simulations predict a global temperature increase of 0.04 K over the next 3 decades as a result, which could contribute to surpassing the Paris Agreement's 1.5 °C target. Reduced aerosols may have also contributed to the recent temperature spikes.
Viet Dung Nguyen, Sergiy Vorogushyn, Katrin Nissen, Lukas Brunner, and Bruno Merz
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 195–216, https://doi.org/10.5194/ascmo-10-195-2024, https://doi.org/10.5194/ascmo-10-195-2024, 2024
Short summary
Short summary
We present a novel stochastic weather generator conditioned on circulation patterns and regional temperature, accounting for dynamic and thermodynamic atmospheric changes. We extensively evaluate the model for the central European region. It statistically downscales precipitation for future periods, generating long, spatially and temporally consistent series. Results suggest an increase in extreme precipitation over the region, offering key benefits for hydrological impact studies.
Benjamin M. Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin G. Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Séférian, Bjørn H. Samset, Detlef van Vuuren, and Sönke Zaehle
Geosci. Model Dev., 17, 8141–8172, https://doi.org/10.5194/gmd-17-8141-2024, https://doi.org/10.5194/gmd-17-8141-2024, 2024
Short summary
Short summary
We discuss how, in order to provide more relevant guidance for climate policy, coordinated climate experiments should adopt a greater focus on simulations where Earth system models are provided with carbon emissions from fossil fuels together with land use change instructions, rather than past approaches that have largely focused on experiments with prescribed atmospheric carbon dioxide concentrations. We discuss how these goals might be achieved in coordinated climate modeling experiments.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Michele Filippucci, Simona Bordoni, and Paolo Davini
Weather Clim. Dynam., 5, 1207–1222, https://doi.org/10.5194/wcd-5-1207-2024, https://doi.org/10.5194/wcd-5-1207-2024, 2024
Short summary
Short summary
Atmospheric blocking is a recurring phenomenon in midlatitudes, causing winter cold spells and summer heat waves. Current models underestimate it, hindering understanding of global warming's impact on extremes. In this paper, we investigate whether stochastic parameterizations can improve blocking representation. We find that blocking frequency representation slightly deteriorates, following a change in midlatitude winds. We conclude by suggesting a direction for future model development.
Federico Fabiano, Paolo Davini, Virna L. Meccia, Giuseppe Zappa, Alessio Bellucci, Valerio Lembo, Katinka Bellomo, and Susanna Corti
Earth Syst. Dynam., 15, 527–546, https://doi.org/10.5194/esd-15-527-2024, https://doi.org/10.5194/esd-15-527-2024, 2024
Short summary
Short summary
Even after the concentration of greenhouse gases is stabilized, the climate will continue to adapt, seeking a new equilibrium. We study this long-term stabilization through a set of 1000-year simulations, obtained by suddenly "freezing" the atmospheric composition at different levels. If frozen at the current state, global warming surpasses 3° in the long term with our model. We then study how climate impacts will change after various centuries and how the deep ocean will warm.
Matthew D. K. Priestley, David B. Stephenson, Adam A. Scaife, Daniel Bannister, Christopher J. T. Allen, and David Wilkie
Nat. Hazards Earth Syst. Sci., 23, 3845–3861, https://doi.org/10.5194/nhess-23-3845-2023, https://doi.org/10.5194/nhess-23-3845-2023, 2023
Short summary
Short summary
This research presents a model for estimating extreme gusts associated with European windstorms. Using observed storm footprints we are able to calculate the return level of events at the 200-year return period. The largest gusts are found across NW Europe, and these are larger when the North Atlantic Oscillation is positive. Using theoretical future climate states we find that return levels are likely to increase across NW Europe to levels that are unprecedented compared to historical storms.
Kristian Strommen, Tim Woollings, Paolo Davini, Paolo Ruggieri, and Isla R. Simpson
Weather Clim. Dynam., 4, 853–874, https://doi.org/10.5194/wcd-4-853-2023, https://doi.org/10.5194/wcd-4-853-2023, 2023
Short summary
Short summary
We present evidence which strongly suggests that decadal variations in the intensity of the North Atlantic winter jet stream can be predicted by current forecast models but that decadal variations in its position appear to be unpredictable. It is argued that this skill at predicting jet intensity originates from the slow, predictable variability in sea surface temperatures in the sub-polar North Atlantic.
Alice Portal, Fabio D'Andrea, Paolo Davini, Mostafa E. Hamouda, and Claudia Pasquero
Weather Clim. Dynam., 4, 809–822, https://doi.org/10.5194/wcd-4-809-2023, https://doi.org/10.5194/wcd-4-809-2023, 2023
Short summary
Short summary
The differences between climate models can be exploited to infer how specific aspects of the climate influence the Earth system. This work analyses the effects of a negative temperature anomaly over the Tibetan Plateau on the winter atmospheric circulation. We show that models with a colder-than-average Tibetan Plateau present a reinforcement of the eastern Asian winter monsoon and discuss the atmospheric response to the enhanced transport of cold air from the continent toward the Pacific Ocean.
Anna L. Merrifield, Lukas Brunner, Ruth Lorenz, Vincent Humphrey, and Reto Knutti
Geosci. Model Dev., 16, 4715–4747, https://doi.org/10.5194/gmd-16-4715-2023, https://doi.org/10.5194/gmd-16-4715-2023, 2023
Short summary
Short summary
Using all Coupled Model Intercomparison Project (CMIP) models is unfeasible for many applications. We provide a subselection protocol that balances user needs for model independence, performance, and spread capturing CMIP’s projection uncertainty simultaneously. We show how sets of three to five models selected for European applications map to user priorities. An audit of model independence and its influence on equilibrium climate sensitivity uncertainty in CMIP is also presented.
Emmanouil Flaounas, Leonardo Aragão, Lisa Bernini, Stavros Dafis, Benjamin Doiteau, Helena Flocas, Suzanne L. Gray, Alexia Karwat, John Kouroutzoglou, Piero Lionello, Mario Marcello Miglietta, Florian Pantillon, Claudia Pasquero, Platon Patlakas, María Ángeles Picornell, Federico Porcù, Matthew D. K. Priestley, Marco Reale, Malcolm J. Roberts, Hadas Saaroni, Dor Sandler, Enrico Scoccimarro, Michael Sprenger, and Baruch Ziv
Weather Clim. Dynam., 4, 639–661, https://doi.org/10.5194/wcd-4-639-2023, https://doi.org/10.5194/wcd-4-639-2023, 2023
Short summary
Short summary
Cyclone detection and tracking methods (CDTMs) have different approaches in defining and tracking cyclone centers. This leads to disagreements on extratropical cyclone climatologies. We present a new approach that combines tracks from individual CDTMs to produce new composite tracks. These new tracks are shown to correspond to physically meaningful systems with distinctive life stages.
Nina Raoult, Tim Jupp, Ben Booth, and Peter Cox
Earth Syst. Dynam., 14, 723–731, https://doi.org/10.5194/esd-14-723-2023, https://doi.org/10.5194/esd-14-723-2023, 2023
Short summary
Short summary
Climate models are used to predict the impact of climate change. However, poorly constrained parameters used in the physics of the models mean that we simulate a large spread of possible future outcomes. We can use real-world observations to reduce the uncertainty of parameter values, but we do not have observations to reduce the spread of possible future outcomes directly. We present a method for translating the reduction in parameter uncertainty into a reduction in possible model projections.
Nieves G. Valiente, Andrew Saulter, Breogan Gomez, Christopher Bunney, Jian-Guo Li, Tamzin Palmer, and Christine Pequignet
Geosci. Model Dev., 16, 2515–2538, https://doi.org/10.5194/gmd-16-2515-2023, https://doi.org/10.5194/gmd-16-2515-2023, 2023
Short summary
Short summary
We document the Met Office operational global and regional wave models which provide wave forecasts up to 7 d ahead. Our models present coarser resolution offshore to higher resolution near the coastline. The increased resolution led to replication of the extremes but to some overestimation during modal conditions. If currents are included, wave directions and long period swells near the coast are significantly improved. New developments focus on the optimisation of the models with resolution.
Amy H. Peace, Ben B. B. Booth, Leighton A. Regayre, Ken S. Carslaw, David M. H. Sexton, Céline J. W. Bonfils, and John W. Rostron
Earth Syst. Dynam., 13, 1215–1232, https://doi.org/10.5194/esd-13-1215-2022, https://doi.org/10.5194/esd-13-1215-2022, 2022
Short summary
Short summary
Anthropogenic aerosol emissions have been linked to driving climate responses such as shifts in the location of tropical rainfall. However, the interaction of aerosols with climate remains one of the most uncertain aspects of climate modelling and limits our ability to predict future climate change. We use an ensemble of climate model simulations to investigate what impact the large uncertainty in how aerosols interact with climate has on predicting future tropical rainfall shifts.
Paolo Davini, Federico Fabiano, and Irina Sandu
Weather Clim. Dynam., 3, 535–553, https://doi.org/10.5194/wcd-3-535-2022, https://doi.org/10.5194/wcd-3-535-2022, 2022
Short summary
Short summary
In climate models, improvements obtained in the winter mid-latitude circulation following horizontal resolution increase are mainly caused by the more detailed representation of the mean orography. A high-resolution climate model with low-resolution orography might underperform compared to a low-resolution model with low-resolution orography. The absence of proper model tuning at high resolution is considered the potential reason behind such lack of improvements.
Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Thomas Arsouze, Tommi Bergman, Raffaele Bernardello, Souhail Boussetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, François Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O'Donnell, Pirkka Ollinaho, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang
Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, https://doi.org/10.5194/gmd-15-2973-2022, 2022
Short summary
Short summary
The Earth system model EC-Earth3 is documented here. Key performance metrics show physical behavior and biases well within the frame known from recent models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
Matthew D. K. Priestley and Jennifer L. Catto
Weather Clim. Dynam., 3, 337–360, https://doi.org/10.5194/wcd-3-337-2022, https://doi.org/10.5194/wcd-3-337-2022, 2022
Short summary
Short summary
We use the newest set of climate model experiments from CMIP6 to investigate changes to mid-latitude storm tracks and cyclones from global warming. The overall number of cyclones will decrease. However in winter there will be more of the most intense cyclones, and these intense cyclones are likely to be stronger. Cyclone wind speeds will increase in winter, and as a result the area of strongest wind speeds will increase. By 2100 the area of strong wind speeds may increase by over 30 %.
Jie Zhang, Kalli Furtado, Steven T. Turnock, Jane P. Mulcahy, Laura J. Wilcox, Ben B. Booth, David Sexton, Tongwen Wu, Fang Zhang, and Qianxia Liu
Atmos. Chem. Phys., 21, 18609–18627, https://doi.org/10.5194/acp-21-18609-2021, https://doi.org/10.5194/acp-21-18609-2021, 2021
Short summary
Short summary
The CMIP6 ESMs systematically underestimate TAS anomalies in the NH midlatitudes, especially from 1960 to 1990. The anomalous cooling is concurrent in time and space with anthropogenic SO2 emissions. The spurious drop in TAS is attributed to the overestimated aerosol concentrations. The aerosol forcing sensitivity cannot well explain the inter-model spread of PHC biases. And the cloud-amount term accounts for most of the inter-model spread in aerosol forcing sensitivity.
Benjamin M. Sanderson, Angeline G. Pendergrass, Charles D. Koven, Florent Brient, Ben B. B. Booth, Rosie A. Fisher, and Reto Knutti
Earth Syst. Dynam., 12, 899–918, https://doi.org/10.5194/esd-12-899-2021, https://doi.org/10.5194/esd-12-899-2021, 2021
Short summary
Short summary
Emergent constraints promise a pathway to the reduction in climate projection uncertainties by exploiting ensemble relationships between observable quantities and unknown climate response parameters. This study considers the robustness of these relationships in light of biases and common simplifications that may be present in the original ensemble of climate simulations. We propose a classification scheme for constraints and a number of practical case studies.
Julianna Carvalho-Oliveira, Leonard Friedrich Borchert, Aurélie Duchez, Mikhail Dobrynin, and Johanna Baehr
Weather Clim. Dynam., 2, 739–757, https://doi.org/10.5194/wcd-2-739-2021, https://doi.org/10.5194/wcd-2-739-2021, 2021
Short summary
Short summary
This work questions the influence of the Atlantic Meridional Overturning Circulation, an important component of the climate system, on the variability in North Atlantic sea surface temperature (SST) a season ahead, particularly how this influence affects SST prediction credibility 2–4 months into the future. While we find this relationship is relevant for assessing SST predictions, it strongly depends on the time period and season we analyse and is more subtle than what is found in observations.
Federico Fabiano, Virna L. Meccia, Paolo Davini, Paolo Ghinassi, and Susanna Corti
Weather Clim. Dynam., 2, 163–180, https://doi.org/10.5194/wcd-2-163-2021, https://doi.org/10.5194/wcd-2-163-2021, 2021
Short summary
Short summary
Global warming not only affects the mean state of the climate (i.e. a warmer world) but also its variability. Here we analyze a set of future climate scenarios and show how some configurations of the wintertime atmospheric flow will become more frequent and persistent under continued greenhouse forcing. For example, over Europe, models predict an increase in the NAO+ regime which drives intense precipitation in northern Europe and the British Isles and dry conditions over the Mediterranean.
Lukas Brunner, Angeline G. Pendergrass, Flavio Lehner, Anna L. Merrifield, Ruth Lorenz, and Reto Knutti
Earth Syst. Dynam., 11, 995–1012, https://doi.org/10.5194/esd-11-995-2020, https://doi.org/10.5194/esd-11-995-2020, 2020
Short summary
Short summary
In this study, we weight climate models by their performance with respect to simulating aspects of historical climate and their degree of interdependence. Our method is found to increase projection skill and to correct for structurally similar models. The weighted end-of-century mean warming (2081–2100 relative to 1995–2014) is 3.7 °C with a likely (66 %) range of 3.1 to 4.6 °C for the strong climate change scenario SSP5-8.5; this is a reduction of 0.4 °C compared with the unweighted mean.
Anna Louise Merrifield, Lukas Brunner, Ruth Lorenz, Iselin Medhaug, and Reto Knutti
Earth Syst. Dynam., 11, 807–834, https://doi.org/10.5194/esd-11-807-2020, https://doi.org/10.5194/esd-11-807-2020, 2020
Short summary
Short summary
Justifiable uncertainty estimates of future change in northern European winter and Mediterranean summer temperature can be obtained by weighting a multi-model ensemble comprised of projections from different climate models and multiple projections from the same climate model. Weights reduce the influence of model biases and handle dependence by identifying a projection's model of origin from historical characteristics; contributions from the same model are scaled by the number of members.
Rein Haarsma, Mario Acosta, Rena Bakhshi, Pierre-Antoine Bretonnière, Louis-Philippe Caron, Miguel Castrillo, Susanna Corti, Paolo Davini, Eleftheria Exarchou, Federico Fabiano, Uwe Fladrich, Ramon Fuentes Franco, Javier García-Serrano, Jost von Hardenberg, Torben Koenigk, Xavier Levine, Virna Loana Meccia, Twan van Noije, Gijs van den Oord, Froila M. Palmeiro, Mario Rodrigo, Yohan Ruprich-Robert, Philippe Le Sager, Etienne Tourigny, Shiyu Wang, Michiel van Weele, and Klaus Wyser
Geosci. Model Dev., 13, 3507–3527, https://doi.org/10.5194/gmd-13-3507-2020, https://doi.org/10.5194/gmd-13-3507-2020, 2020
Short summary
Short summary
HighResMIP is an international coordinated CMIP6 effort to investigate the improvement in climate modeling caused by an increase in horizontal resolution. This paper describes EC-Earth3P-(HR), which has been developed for HighResMIP. First analyses reveal that increasing resolution does improve certain aspects of the simulated climate but that many other biases still continue, possibly related to phenomena that are still not yet resolved and need to be parameterized.
Veronika Eyring, Lisa Bock, Axel Lauer, Mattia Righi, Manuel Schlund, Bouwe Andela, Enrico Arnone, Omar Bellprat, Björn Brötz, Louis-Philippe Caron, Nuno Carvalhais, Irene Cionni, Nicola Cortesi, Bas Crezee, Edouard L. Davin, Paolo Davini, Kevin Debeire, Lee de Mora, Clara Deser, David Docquier, Paul Earnshaw, Carsten Ehbrecht, Bettina K. Gier, Nube Gonzalez-Reviriego, Paul Goodman, Stefan Hagemann, Steven Hardiman, Birgit Hassler, Alasdair Hunter, Christopher Kadow, Stephan Kindermann, Sujan Koirala, Nikolay Koldunov, Quentin Lejeune, Valerio Lembo, Tomas Lovato, Valerio Lucarini, François Massonnet, Benjamin Müller, Amarjiit Pandde, Núria Pérez-Zanón, Adam Phillips, Valeriu Predoi, Joellen Russell, Alistair Sellar, Federico Serva, Tobias Stacke, Ranjini Swaminathan, Verónica Torralba, Javier Vegas-Regidor, Jost von Hardenberg, Katja Weigel, and Klaus Zimmermann
Geosci. Model Dev., 13, 3383–3438, https://doi.org/10.5194/gmd-13-3383-2020, https://doi.org/10.5194/gmd-13-3383-2020, 2020
Short summary
Short summary
The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics tool designed to improve comprehensive and routine evaluation of earth system models (ESMs) participating in the Coupled Model Intercomparison Project (CMIP). It has undergone rapid development since the first release in 2016 and is now a well-tested tool that provides end-to-end provenance tracking to ensure reproducibility.
Doug McNeall, Jonny Williams, Richard Betts, Ben Booth, Peter Challenor, Peter Good, and Andy Wiltshire
Geosci. Model Dev., 13, 2487–2509, https://doi.org/10.5194/gmd-13-2487-2020, https://doi.org/10.5194/gmd-13-2487-2020, 2020
Short summary
Short summary
In the climate model FAMOUS, matching the modelled Amazon rainforest to observations required different land surface parameter settings than for other forests. It was unclear if this discrepancy was due to a bias in the modelled climate or an error in the land surface component of the model. Correcting the climate of the model with a statistical model corrects the simulation of the Amazon forest, suggesting that the land surface component of the model is not the source of the discrepancy.
Flavio Lehner, Clara Deser, Nicola Maher, Jochem Marotzke, Erich M. Fischer, Lukas Brunner, Reto Knutti, and Ed Hawkins
Earth Syst. Dynam., 11, 491–508, https://doi.org/10.5194/esd-11-491-2020, https://doi.org/10.5194/esd-11-491-2020, 2020
Short summary
Short summary
Projections of climate change are uncertain because climate models are imperfect, future greenhouse gases emissions are unknown and climate is to some extent chaotic. To partition and understand these sources of uncertainty and make the best use of climate projections, large ensembles with multiple climate models are needed. Such ensembles now exist in a public data archive. We provide several novel applications focused on global and regional temperature and precipitation projections.
Huw W. Lewis, Juan Manuel Castillo Sanchez, Alex Arnold, Joachim Fallmann, Andrew Saulter, Jennifer Graham, Mike Bush, John Siddorn, Tamzin Palmer, Adrian Lock, John Edwards, Lucy Bricheno, Alberto Martínez-de la Torre, and James Clark
Geosci. Model Dev., 12, 2357–2400, https://doi.org/10.5194/gmd-12-2357-2019, https://doi.org/10.5194/gmd-12-2357-2019, 2019
Short summary
Short summary
In the real world the atmosphere, oceans and land surface are closely interconnected, and yet the prediction systems used for weather and ocean forecasting tend to treat them in isolation. This paper describes the third version of a regional modelling system which aims to represent the feedback processes between sky, sea and land. The main innovation introduced in this version enables waves to affect the underlying ocean. Coupled results from four different month-long simulations are analysed.
Huw W. Lewis, Juan Manuel Castillo Sanchez, John Siddorn, Robert R. King, Marina Tonani, Andrew Saulter, Peter Sykes, Anne-Christine Pequignet, Graham P. Weedon, Tamzin Palmer, Joanna Staneva, and Lucy Bricheno
Ocean Sci., 15, 669–690, https://doi.org/10.5194/os-15-669-2019, https://doi.org/10.5194/os-15-669-2019, 2019
Short summary
Short summary
Forecasts of ocean temperature, salinity, currents, and sea height can be improved by linking state-of-the-art ocean and wave models, so that they can interact to better represent the real world. We test this approach in an ocean model of north-west Europe which can simulate small-scale details of the ocean state. The intention is to implement the system described in this study for operational use so that improved information can be provided to users of ocean forecast data.
Matthew D. K. Priestley, Helen F. Dacre, Len C. Shaffrey, Kevin I. Hodges, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 18, 2991–3006, https://doi.org/10.5194/nhess-18-2991-2018, https://doi.org/10.5194/nhess-18-2991-2018, 2018
Short summary
Short summary
This study investigates the role of the clustering of extratropical cyclones in driving wintertime wind losses across a large European region. To do this over 900 years of climate model data have been used and analysed. The main conclusion of this work is that cyclone clustering acts to increase wind-driven losses in the winter by 10 %–20 % when compared to the losses from a random series of cyclones, with this specifically being for the higher loss years.
Jill S. Johnson, Leighton A. Regayre, Masaru Yoshioka, Kirsty J. Pringle, Lindsay A. Lee, David M. H. Sexton, John W. Rostron, Ben B. B. Booth, and Kenneth S. Carslaw
Atmos. Chem. Phys., 18, 13031–13053, https://doi.org/10.5194/acp-18-13031-2018, https://doi.org/10.5194/acp-18-13031-2018, 2018
Short summary
Short summary
We estimate the uncertainty in an aerosol–climate model that has been tuned to match several common types of observations. We used a large set of model simulations and built emulators so that we could generate 4 million “variants” of our climate model. Even after using nine aerosol and cloud observations to constrain the model, the uncertainty remains large. We conclude that estimates of aerosol forcing from multi-model studies are likely to be more uncertain than currently estimated.
Leighton A. Regayre, Jill S. Johnson, Masaru Yoshioka, Kirsty J. Pringle, David M. H. Sexton, Ben B. B. Booth, Lindsay A. Lee, Nicolas Bellouin, and Kenneth S. Carslaw
Atmos. Chem. Phys., 18, 9975–10006, https://doi.org/10.5194/acp-18-9975-2018, https://doi.org/10.5194/acp-18-9975-2018, 2018
Short summary
Short summary
We sample uncertainty in one climate model by perturbing aerosol and physical atmosphere parameters. Our uncertainty is comparable to multi-model studies. Atmospheric parameters cause most of the top-of-atmosphere flux uncertainty; uncertainty in aerosol forcing is mostly caused by aerosols: both are important. The strongest aerosol forcings are inconsistent with top-of-atmosphere flux observations. Better constraint requires observations that share causes of uncertainty with aerosol forcing.
Huw W. Lewis, Juan Manuel Castillo Sanchez, Jennifer Graham, Andrew Saulter, Jorge Bornemann, Alex Arnold, Joachim Fallmann, Chris Harris, David Pearson, Steven Ramsdale, Alberto Martínez-de la Torre, Lucy Bricheno, Eleanor Blyth, Victoria A. Bell, Helen Davies, Toby R. Marthews, Clare O'Neill, Heather Rumbold, Enda O'Dea, Ashley Brereton, Karen Guihou, Adrian Hines, Momme Butenschon, Simon J. Dadson, Tamzin Palmer, Jason Holt, Nick Reynard, Martin Best, John Edwards, and John Siddorn
Geosci. Model Dev., 11, 1–42, https://doi.org/10.5194/gmd-11-1-2018, https://doi.org/10.5194/gmd-11-1-2018, 2018
Short summary
Short summary
In the real world the atmosphere, oceans and land surface are closely interconnected, and yet prediction systems tend to treat them in isolation. Those feedbacks are often illustrated in natural hazards, such as when strong winds lead to large waves and coastal damage, or when prolonged rainfall leads to saturated ground and high flowing rivers. For the first time, we have attempted to represent some of the feedbacks between sky, sea and land within a high-resolution forecast system for the UK.
Lukas Brunner and Andrea K. Steiner
Atmos. Meas. Tech., 10, 4727–4745, https://doi.org/10.5194/amt-10-4727-2017, https://doi.org/10.5194/amt-10-4727-2017, 2017
Short summary
Short summary
Atmospheric blocking is a weather pattern where a stable high pressure system blocks the westerly flow at mid-latitudes. We provide, for the first time, a global perspective on blocking and related impacts, based on satellite observations from GPS radio occultation for 2006–2016. We find strong direct and remote effects on the vertical atmospheric structure revealing significant temperature and humidity anomalies up to 15 km. The observations will help for a better insight into blocking impacts.
Paolo Davini, Jost von Hardenberg, Susanna Corti, Hannah M. Christensen, Stephan Juricke, Aneesh Subramanian, Peter A. G. Watson, Antje Weisheimer, and Tim N. Palmer
Geosci. Model Dev., 10, 1383–1402, https://doi.org/10.5194/gmd-10-1383-2017, https://doi.org/10.5194/gmd-10-1383-2017, 2017
Short summary
Short summary
The Climate SPHINX project is a large set of more than 120 climate simulations run with the EC-Earth global climate. It explores the sensitivity of present-day and future climate to the model horizontal resolution (from 150 km up to 16 km) and to the introduction of two stochastic physics parameterisations. Results shows that the the stochastic schemes can represent a cheaper alternative to a resolution increase, especially for the representation of the tropical climate variability.
Doug McNeall, Jonny Williams, Ben Booth, Richard Betts, Peter Challenor, Andy Wiltshire, and David Sexton
Earth Syst. Dynam., 7, 917–935, https://doi.org/10.5194/esd-7-917-2016, https://doi.org/10.5194/esd-7-917-2016, 2016
Short summary
Short summary
We compare simulated with observed forests to constrain uncertain input parameters of the land surface component of a climate model.
We find that the model is unlikely to be able to simulate the Amazon and other major forests simultaneously at any one parameter set, suggesting a bias in the model's representation of the Amazon.
We find we cannot constrain parameters individually, but we can rule out large areas of joint parameter space.
Michael B. Butts, Carlo Buontempo, Jens K. Lørup, Karina Williams, Camilla Mathison, Oluf Z. Jessen, Niels D. Riegels, Paul Glennie, Carol McSweeney, Mark Wilson, Richard Jones, and Abdulkarim H. Seid
Proc. IAHS, 374, 3–7, https://doi.org/10.5194/piahs-374-3-2016, https://doi.org/10.5194/piahs-374-3-2016, 2016
Short summary
Short summary
The Nile Basin is one of the most important shared basins in Africa. Managing it's water resources, now and in the future, must not only address different water uses but also the trade-off between developments upstream and water use downstream, often between different countries. This paper presents a methodology, to support climate adaptation on a regional scale, for assessing climate change impacts and adaptation potential for floods, droughts and water scarcity within this basin.
Stefan C. Dekker, Margriet Groenendijk, Ben B. B. Booth, Chris Huntingford, and Peter M. Cox
Earth Syst. Dynam., 7, 525–533, https://doi.org/10.5194/esd-7-525-2016, https://doi.org/10.5194/esd-7-525-2016, 2016
Short summary
Short summary
Our analysis allows us to infer maps of changing plant water-use efficiency (WUE) for 1901–2010, using atmospheric observations of temperature, humidity and CO2. Our estimated increase in global WUE is consistent with the tree-ring and eddy covariance data, but much larger than the historical WUE increases simulated by Earth System Models (ESMs). We therefore conclude that the effects of increasing CO2 on plant WUE are significantly underestimated in the latest climate projections.
Lukas Brunner, Andrea K. Steiner, Barbara Scherllin-Pirscher, and Martin W. Jury
Atmos. Chem. Phys., 16, 4593–4604, https://doi.org/10.5194/acp-16-4593-2016, https://doi.org/10.5194/acp-16-4593-2016, 2016
Short summary
Short summary
Atmospheric blocking refers to persistent high-pressure systems which block the climatological flow at midlatitudes. We explore blocking with observations from GPS radio occultation (RO), a satellite-based remote-sensing system. Using two example cases, we find that RO data robustly capture blocking, highlighting the potential of RO observations to complement models and reanalysis as a basis for blocking research.
P. R. Halloran, B. B. B. Booth, C. D. Jones, F. H. Lambert, D. J. McNeall, I. J. Totterdell, and C. Völker
Biogeosciences, 12, 4497–4508, https://doi.org/10.5194/bg-12-4497-2015, https://doi.org/10.5194/bg-12-4497-2015, 2015
Short summary
Short summary
The oceans currently take up around a quarter of the carbon dioxide (CO2) emitted by human activity. While stored in the ocean, this CO2 is not causing global warming. Here we explore high latitude North Atlantic CO2 uptake across a set of climate model simulations, and find that the models show a peak in ocean CO2 uptake around the middle of the century after which time CO2 uptake begins to decline. We identify the causes of this long-term change and interannual variability in the models.
B. B. B. Booth, D. Bernie, D. McNeall, E. Hawkins, J. Caesar, C. Boulton, P. Friedlingstein, and D. M. H. Sexton
Earth Syst. Dynam., 4, 95–108, https://doi.org/10.5194/esd-4-95-2013, https://doi.org/10.5194/esd-4-95-2013, 2013
J. H. T. Williams, R. S. Smith, P. J. Valdes, B. B. B. Booth, and A. Osprey
Geosci. Model Dev., 6, 141–160, https://doi.org/10.5194/gmd-6-141-2013, https://doi.org/10.5194/gmd-6-141-2013, 2013
Related subject area
Earth system change: climate prediction
Past and future response of the North Atlantic warming hole to anthropogenic forcing
Emergent constraints for the climate system as effective parameters of bulk differential equations
Ensemble forecast of an index of the Madden–Julian Oscillation using a stochastic weather generator based on circulation analogs
Reconstructions and predictions of the global carbon budget with an emission-driven Earth system model
PInc-PanTher estimates of Arctic permafrost soil carbon under the GeoMIP G6solar and G6sulfur experiments
El Niño–Southern Oscillation (ENSO) predictability in equilibrated warmer climates
Investigation of the extreme wet–cold compound events changes between 2025–2049 and 1980–2004 using regional simulations in Greece
Constraining low-frequency variability in climate projections to predict climate on decadal to multi-decadal timescales – a poor man's initialized prediction system
Resilience of UK crop yields to compound climate change
Evaluating uncertainty in aerosol forcing of tropical precipitation shifts
A non-stationary extreme-value approach for climate projection ensembles: application to snow loads in the French Alps
Atmospheric regional climate projections for the Baltic Sea region until 2100
Balanced estimate and uncertainty assessment of European climate change using the large EURO-CORDEX regional climate model ensemble
Extreme metrics from large ensembles: investigating the effects of ensemble size on their estimates
Reduced-complexity model for the impact of anthropogenic CO2 emissions on future glacial cycles
Is time a variable like the others in multivariate statistical downscaling and bias correction?
Trivial improvements in predictive skill due to direct reconstruction of the global carbon cycle
Abrupt climate change as a rate-dependent cascading tipping point
Bayesian estimation of Earth's climate sensitivity and transient climate response from observational warming and heat content datasets
Comparison of CMIP6 historical climate simulations and future projected warming to an empirical model of global climate
Assessment of a full-field initialized decadal climate prediction system with the CMIP6 version of EC-Earth
A new view of heat wave dynamics and predictability over the eastern Mediterranean
Emergent constraints on equilibrium climate sensitivity in CMIP5: do they hold for CMIP6?
Dating hiatuses: a statistical model of the recent slowdown in global warming and the next one
Calibrating large-ensemble European climate projections using observational data
Reduced global warming from CMIP6 projections when weighting models by performance and independence
Emergent constraints on transient climate response (TCR) and equilibrium climate sensitivity (ECS) from historical warming in CMIP5 and CMIP6 models
Multivariate bias corrections of climate simulations: which benefits for which losses?
Historical and future anthropogenic warming effects on droughts, fires and fire emissions of CO2 and PM2.5 in equatorial Asia when 2015-like El Niño events occur
The impact of regional climate model formulation and resolution on simulated precipitation in Africa
Bayesian deconstruction of climate sensitivity estimates using simple models: implicit priors and the confusion of the inverse
Intensification of the hydrological cycle expected in West Africa over the 21st century
Winter hydrometeorological extreme events modulated by large-scale atmospheric circulation in southern Ontario
Investigating ENSO and its teleconnections under climate change in an ensemble view – a new perspective
Human influence on European winter wind storms such as those of January 2018
September Arctic sea ice minimum prediction – a skillful new statistical approach
ESD Reviews: Model dependence in multi-model climate ensembles: weighting, sub-selection and out-of-sample testing
Predicting near-term variability in ocean carbon uptake
A mathematical approach to understanding emergent constraints
Seasonal prediction skill of East Asian summer monsoon in CMIP5 models
Assessing the impact of a future volcanic eruption on decadal predictions
Projections of East Asian summer monsoon change at global warming of 1.5 and 2 °C
Changes in extremely hot days under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the HAPPI multi-model ensemble
Regional scaling of annual mean precipitation and water availability with global temperature change
Irreversible ocean thermal expansion under carbon dioxide removal
Changes in tropical cyclones under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols
Selecting a climate model subset to optimise key ensemble properties
Return levels of temperature extremes in southern Pakistan
On the meaning of independence in climate science
Minimal change of thermal continentality in Slovakia within the period 1961–2013
Saïd Qasmi
Earth Syst. Dynam., 14, 685–695, https://doi.org/10.5194/esd-14-685-2023, https://doi.org/10.5194/esd-14-685-2023, 2023
Short summary
Short summary
A new statistical method combining climate models and observations confirms the anthropogenic role in the cooling of the North Atlantic warming hole. Aerosols increase sea surface temperature (SST), while greenhouse gases contribute to the cooling over the 1870–2020 period. The method is able to reduce model uncertainty in the SST projections by 65% in the short term and up to 50% in the long term, excluding previous unlikely temperature increase scenarios.
Chris Huntingford, Peter M. Cox, Mark S. Williamson, Joseph J. Clarke, and Paul D. L. Ritchie
Earth Syst. Dynam., 14, 433–442, https://doi.org/10.5194/esd-14-433-2023, https://doi.org/10.5194/esd-14-433-2023, 2023
Short summary
Short summary
Emergent constraints (ECs) reduce the spread of projections between climate models. ECs estimate changes to climate features impacting adaptation policy, and with this high profile, the method is under scrutiny. Asking
What is an EC?, we suggest they are often the discovery of parameters that characterise hidden large-scale equations that climate models solve implicitly. We present this conceptually via two examples. Our analysis implies possible new paths to link ECs and physical processes.
Meriem Krouma, Riccardo Silini, and Pascal Yiou
Earth Syst. Dynam., 14, 273–290, https://doi.org/10.5194/esd-14-273-2023, https://doi.org/10.5194/esd-14-273-2023, 2023
Short summary
Short summary
We present a simple system to forecast the Madden–Julian Oscillation (MJO). We use atmospheric circulation as input to our system. We found a good-skill forecast of the MJO amplitude within 40 d using this methodology. Comparing our results with ECMWF and machine learning forecasts confirmed the good skill of our system.
Hongmei Li, Tatiana Ilyina, Tammas Loughran, Aaron Spring, and Julia Pongratz
Earth Syst. Dynam., 14, 101–119, https://doi.org/10.5194/esd-14-101-2023, https://doi.org/10.5194/esd-14-101-2023, 2023
Short summary
Short summary
For the first time, our decadal prediction system based on Max Planck Institute Earth System Model enables prognostic atmospheric CO2 with an interactive carbon cycle. The evolution of CO2 fluxes and atmospheric CO2 growth is reconstructed well by assimilating data products; retrospective predictions show high confidence in predicting changes in the next year. The Earth system predictions provide valuable inputs for understanding the global carbon cycle and informing climate-relevant policy.
Aobo Liu, John C. Moore, and Yating Chen
Earth Syst. Dynam., 14, 39–53, https://doi.org/10.5194/esd-14-39-2023, https://doi.org/10.5194/esd-14-39-2023, 2023
Short summary
Short summary
Permafrost thaws and releases carbon (C) as the Arctic warms. Most earth system models (ESMs) have poor estimates of C stored now, so their future C losses are much lower than using the permafrost C model with climate inputs from six ESMs. Bias-corrected soil temperatures and plant productivity plus geoengineering lowering global temperatures from a no-mitigation baseline scenario to a moderate emissions level keep C in the soil worth about USD 0–70 (mean 20) trillion in climate damages by 2100.
Yiyu Zheng, Maria Rugenstein, Patrick Pieper, Goratz Beobide-Arsuaga, and Johanna Baehr
Earth Syst. Dynam., 13, 1611–1623, https://doi.org/10.5194/esd-13-1611-2022, https://doi.org/10.5194/esd-13-1611-2022, 2022
Short summary
Short summary
El Niño–Southern Oscillation (ENSO) is one of the dominant climatic phenomena in the equatorial Pacific. Understanding and predicting how ENSO might change in a warmer climate is both societally and scientifically important. We use 1000-year-long simulations from seven climate models to analyze ENSO in an idealized stable climate. We show that ENSO will be weaker and last shorter under the warming, while the skill of ENSO prediction will unlikely change.
Iason Markantonis, Diamando Vlachogiannis, Athanasios Sfetsos, and Ioannis Kioutsioukis
Earth Syst. Dynam., 13, 1491–1504, https://doi.org/10.5194/esd-13-1491-2022, https://doi.org/10.5194/esd-13-1491-2022, 2022
Short summary
Short summary
This work focuses on the study of daily wet–cold compound events in Greece in the period November–April. We firstly study the historic period 1980–2004 in which we validate projection models with observations. Then we compare the model results with future period 2025–2049 RCP4.5 and RCP8.5 scenarios. The aim of the study is to calculate the probability of the events and to locate the areas where those are higher and how the probabilities will change at the future.
Rashed Mahmood, Markus G. Donat, Pablo Ortega, Francisco J. Doblas-Reyes, Carlos Delgado-Torres, Margarida Samsó, and Pierre-Antoine Bretonnière
Earth Syst. Dynam., 13, 1437–1450, https://doi.org/10.5194/esd-13-1437-2022, https://doi.org/10.5194/esd-13-1437-2022, 2022
Short summary
Short summary
Near-term climate change projections are strongly affected by the uncertainty from internal climate variability. Here we present a novel approach to reduce such uncertainty by constraining decadal-scale variability in the projections using observations. The constrained ensembles show significant added value over the unconstrained ensemble in predicting global climate 2 decades ahead. We also show the applicability of regional constraints for attributing predictability to certain ocean regions.
Louise J. Slater, Chris Huntingford, Richard F. Pywell, John W. Redhead, and Elizabeth J. Kendon
Earth Syst. Dynam., 13, 1377–1396, https://doi.org/10.5194/esd-13-1377-2022, https://doi.org/10.5194/esd-13-1377-2022, 2022
Short summary
Short summary
This work considers how wheat yields are affected by weather conditions during the three main wheat growth stages in the UK. Impacts are strongest in years with compound weather extremes across multiple growth stages. Future climate projections are beneficial for wheat yields, on average, but indicate a high risk of unseen weather conditions which farmers may struggle to adapt to and mitigate against.
Amy H. Peace, Ben B. B. Booth, Leighton A. Regayre, Ken S. Carslaw, David M. H. Sexton, Céline J. W. Bonfils, and John W. Rostron
Earth Syst. Dynam., 13, 1215–1232, https://doi.org/10.5194/esd-13-1215-2022, https://doi.org/10.5194/esd-13-1215-2022, 2022
Short summary
Short summary
Anthropogenic aerosol emissions have been linked to driving climate responses such as shifts in the location of tropical rainfall. However, the interaction of aerosols with climate remains one of the most uncertain aspects of climate modelling and limits our ability to predict future climate change. We use an ensemble of climate model simulations to investigate what impact the large uncertainty in how aerosols interact with climate has on predicting future tropical rainfall shifts.
Erwan Le Roux, Guillaume Evin, Nicolas Eckert, Juliette Blanchet, and Samuel Morin
Earth Syst. Dynam., 13, 1059–1075, https://doi.org/10.5194/esd-13-1059-2022, https://doi.org/10.5194/esd-13-1059-2022, 2022
Short summary
Short summary
Anticipating risks related to climate extremes is critical for societal adaptation to climate change. In this study, we propose a statistical method in order to estimate future climate extremes from past observations and an ensemble of climate change simulations. We apply this approach to snow load data available in the French Alps at 1500 m elevation and find that extreme snow load is projected to decrease by −2.9 kN m−2 (−50 %) between 1986–2005 and 2080–2099 for a high-emission scenario.
Ole Bøssing Christensen, Erik Kjellström, Christian Dieterich, Matthias Gröger, and Hans Eberhard Markus Meier
Earth Syst. Dynam., 13, 133–157, https://doi.org/10.5194/esd-13-133-2022, https://doi.org/10.5194/esd-13-133-2022, 2022
Short summary
Short summary
The Baltic Sea Region is very sensitive to climate change, whose impacts could easily exacerbate biodiversity stress from society and eutrophication of the Baltic Sea. Therefore, there has been a focus on estimations of future climate change and its impacts in recent research. Models show a strong warming, in particular in the north in winter. Precipitation is projected to increase in the whole region apart from the south during summer. New results improve estimates of future climate change.
Guillaume Evin, Samuel Somot, and Benoit Hingray
Earth Syst. Dynam., 12, 1543–1569, https://doi.org/10.5194/esd-12-1543-2021, https://doi.org/10.5194/esd-12-1543-2021, 2021
Short summary
Short summary
This research paper proposes an assessment of mean climate change responses and related uncertainties over Europe for mean seasonal temperature and total seasonal precipitation. An advanced statistical approach is applied to a large ensemble of 87 high-resolution EURO-CORDEX projections. For the first time, we provide a comprehensive estimation of the relative contribution of GCMs and RCMs, RCP scenarios, and internal variability to the total variance of a very large ensemble.
Claudia Tebaldi, Kalyn Dorheim, Michael Wehner, and Ruby Leung
Earth Syst. Dynam., 12, 1427–1501, https://doi.org/10.5194/esd-12-1427-2021, https://doi.org/10.5194/esd-12-1427-2021, 2021
Short summary
Short summary
We address the question of how large an initial condition ensemble of climate model simulations should be if we are concerned with accurately projecting future changes in temperature and precipitation extremes. We find that for most cases (and both models considered), an ensemble of 20–25 members is sufficient for many extreme metrics, spatial scales and time horizons. This may leave computational resources to tackle other uncertainties in climate model simulations with our ensembles.
Stefanie Talento and Andrey Ganopolski
Earth Syst. Dynam., 12, 1275–1293, https://doi.org/10.5194/esd-12-1275-2021, https://doi.org/10.5194/esd-12-1275-2021, 2021
Short summary
Short summary
We propose a model for glacial cycles and produce an assessment of possible trajectories for the next 1 million years. Under natural conditions, the next glacial inception would most likely occur ∼50 kyr after present. We show that fossil-fuel CO2 releases can have an extremely long-term effect. Potentially achievable CO2 anthropogenic emissions during the next centuries will most likely provoke ice-free conditions in the Northern Hemisphere landmasses throughout the next half a million years.
Yoann Robin and Mathieu Vrac
Earth Syst. Dynam., 12, 1253–1273, https://doi.org/10.5194/esd-12-1253-2021, https://doi.org/10.5194/esd-12-1253-2021, 2021
Short summary
Short summary
We propose a new multivariate downscaling and bias correction approach called
time-shifted multivariate bias correction, which aims to correct temporal dependencies in addition to inter-variable and spatial ones. Our method is evaluated in a
perfect model experimentcontext where simulations are used as pseudo-observations. The results show a large reduction of the biases in the temporal properties, while inter-variable and spatial dependence structures are still correctly adjusted.
Aaron Spring, István Dunkl, Hongmei Li, Victor Brovkin, and Tatiana Ilyina
Earth Syst. Dynam., 12, 1139–1167, https://doi.org/10.5194/esd-12-1139-2021, https://doi.org/10.5194/esd-12-1139-2021, 2021
Short summary
Short summary
Numerical carbon cycle prediction models usually do not start from observed carbon states due to sparse observations. Instead, only physical climate is reconstructed, assuming that the carbon cycle follows indirectly. Here, we test in an idealized framework how well this indirect and direct reconstruction with perfect observations works. We find that indirect reconstruction works quite well and that improvements from the direct method are limited, strengthening the current indirect use.
Johannes Lohmann, Daniele Castellana, Peter D. Ditlevsen, and Henk A. Dijkstra
Earth Syst. Dynam., 12, 819–835, https://doi.org/10.5194/esd-12-819-2021, https://doi.org/10.5194/esd-12-819-2021, 2021
Short summary
Short summary
Tipping of one climate subsystem could trigger a cascade of subsequent tipping points and even global-scale climate tipping. Sequential shifts of atmosphere, sea ice and ocean have been recorded in proxy archives of past climate change. Based on this we propose a conceptual model for abrupt climate changes of the last glacial. Here, rate-induced tipping enables tipping cascades in systems with relatively weak coupling. An early warning signal is proposed that may detect such a tipping.
Philip Goodwin and B. B. Cael
Earth Syst. Dynam., 12, 709–723, https://doi.org/10.5194/esd-12-709-2021, https://doi.org/10.5194/esd-12-709-2021, 2021
Short summary
Short summary
Climate sensitivityis a key measure of how sensitive Earth's climate is to human release of greenhouse gasses, such as from fossil fuels. However, there is still uncertainty as to the value of climate sensitivity, in part because different climate feedbacks operate over multiple timescales. This study assesses hundreds of millions of climate simulations against historical observations to reduce uncertainty in climate sensitivity and future climate warming.
Laura A. McBride, Austin P. Hope, Timothy P. Canty, Brian F. Bennett, Walter R. Tribett, and Ross J. Salawitch
Earth Syst. Dynam., 12, 545–579, https://doi.org/10.5194/esd-12-545-2021, https://doi.org/10.5194/esd-12-545-2021, 2021
Short summary
Short summary
We use a reduced-complexity climate model trained by observations to show that at the current rate of human release of CO2, total cumulative emissions will pass the 66 % likelihood of limiting warming to 1.5° or 2°C in about 10 and 35 years, respectively. We also show that complex climate models often used to guide policy tend to warm faster than observed over the past few decades. To achieve the Paris Climate Agreement, CO2 and CH4 emissions must be severely curtailed in the next decade.
Roberto Bilbao, Simon Wild, Pablo Ortega, Juan Acosta-Navarro, Thomas Arsouze, Pierre-Antoine Bretonnière, Louis-Philippe Caron, Miguel Castrillo, Rubén Cruz-García, Ivana Cvijanovic, Francisco Javier Doblas-Reyes, Markus Donat, Emanuel Dutra, Pablo Echevarría, An-Chi Ho, Saskia Loosveldt-Tomas, Eduardo Moreno-Chamarro, Núria Pérez-Zanon, Arthur Ramos, Yohan Ruprich-Robert, Valentina Sicardi, Etienne Tourigny, and Javier Vegas-Regidor
Earth Syst. Dynam., 12, 173–196, https://doi.org/10.5194/esd-12-173-2021, https://doi.org/10.5194/esd-12-173-2021, 2021
Short summary
Short summary
This paper presents and evaluates a set of retrospective decadal predictions with the EC-Earth3 climate model. These experiments successfully predict past changes in surface air temperature but show poor predictive capacity in the subpolar North Atlantic, a well-known source region of decadal climate variability. The poor predictive capacity is linked to an initial shock affecting the Atlantic Ocean circulation, ultimately due to a suboptimal representation of the Labrador Sea density.
Assaf Hochman, Sebastian Scher, Julian Quinting, Joaquim G. Pinto, and Gabriele Messori
Earth Syst. Dynam., 12, 133–149, https://doi.org/10.5194/esd-12-133-2021, https://doi.org/10.5194/esd-12-133-2021, 2021
Short summary
Short summary
Skillful forecasts of extreme weather events have a major socioeconomic relevance. Here, we compare two approaches to diagnose the predictability of eastern Mediterranean heat waves: one based on recent developments in dynamical systems theory and one leveraging numerical ensemble weather forecasts. We conclude that the former can be a useful and cost-efficient complement to conventional numerical forecasts for understanding the dynamics of eastern Mediterranean heat waves.
Manuel Schlund, Axel Lauer, Pierre Gentine, Steven C. Sherwood, and Veronika Eyring
Earth Syst. Dynam., 11, 1233–1258, https://doi.org/10.5194/esd-11-1233-2020, https://doi.org/10.5194/esd-11-1233-2020, 2020
Short summary
Short summary
As an important measure of climate change, the Equilibrium Climate Sensitivity (ECS) describes the change in surface temperature after a doubling of the atmospheric CO2 concentration. Climate models from the Coupled Model Intercomparison Project (CMIP) show a wide range in ECS. Emergent constraints are a technique to reduce uncertainties in ECS with observational data. Emergent constraints developed with data from CMIP phase 5 show reduced skill and higher ECS ranges when applied to CMIP6 data.
J. Isaac Miller and Kyungsik Nam
Earth Syst. Dynam., 11, 1123–1132, https://doi.org/10.5194/esd-11-1123-2020, https://doi.org/10.5194/esd-11-1123-2020, 2020
Short summary
Short summary
We augment an energy balance model with a novel measure of the oceans' multidecadal temperatures cycles to assess the contributions of model forcings and natural variability to the so-called hiatus in global warming. The model partially explains the recent slowdown and explains nearly all of the subsequent warming. The natural cycle suggests the possibility of a much longer hiatus over roughly 2023–2061.
Christopher H. O'Reilly, Daniel J. Befort, and Antje Weisheimer
Earth Syst. Dynam., 11, 1033–1049, https://doi.org/10.5194/esd-11-1033-2020, https://doi.org/10.5194/esd-11-1033-2020, 2020
Short summary
Short summary
This study examines how the output of large single-model ensembles can be calibrated using observational data to provide improved future projections over Europe. Using an out-of-sample
imperfect modeltest, in which calibration techniques are applied to individual climate model realisations, these techniques are shown to generally improve the reliability of European climate projections for the next 40 years, particularly for regional surface temperature.
Lukas Brunner, Angeline G. Pendergrass, Flavio Lehner, Anna L. Merrifield, Ruth Lorenz, and Reto Knutti
Earth Syst. Dynam., 11, 995–1012, https://doi.org/10.5194/esd-11-995-2020, https://doi.org/10.5194/esd-11-995-2020, 2020
Short summary
Short summary
In this study, we weight climate models by their performance with respect to simulating aspects of historical climate and their degree of interdependence. Our method is found to increase projection skill and to correct for structurally similar models. The weighted end-of-century mean warming (2081–2100 relative to 1995–2014) is 3.7 °C with a likely (66 %) range of 3.1 to 4.6 °C for the strong climate change scenario SSP5-8.5; this is a reduction of 0.4 °C compared with the unweighted mean.
Femke J. M. M. Nijsse, Peter M. Cox, and Mark S. Williamson
Earth Syst. Dynam., 11, 737–750, https://doi.org/10.5194/esd-11-737-2020, https://doi.org/10.5194/esd-11-737-2020, 2020
Short summary
Short summary
One of the key questions in climate science is how much more heating we will get for a given rise in carbon dioxide in the atmosphere. A new generation of models showed that this might be more than previously expected. Comparing the new models to observed temperature rise since 1970, we show that there is no need to revise the estimate upwards. Air pollution, whose effect on climate warming is poorly understood, stopped rising, allowing us to better constrain the greenhouse gas signal.
Bastien François, Mathieu Vrac, Alex J. Cannon, Yoann Robin, and Denis Allard
Earth Syst. Dynam., 11, 537–562, https://doi.org/10.5194/esd-11-537-2020, https://doi.org/10.5194/esd-11-537-2020, 2020
Short summary
Short summary
Recently, multivariate bias correction (MBC) methods designed to adjust climate simulations have been proposed. However, they use different approaches, leading potentially to different results. Therefore, this study intends to intercompare four existing MBC methods to provide end users with aid in choosing such methods for their applications. To do so, a wide range of evaluation criteria have been used to assess the ability of MBC methods to correct statistical properties of climate models.
Hideo Shiogama, Ryuichi Hirata, Tomoko Hasegawa, Shinichiro Fujimori, Noriko N. Ishizaki, Satoru Chatani, Masahiro Watanabe, Daniel Mitchell, and Y. T. Eunice Lo
Earth Syst. Dynam., 11, 435–445, https://doi.org/10.5194/esd-11-435-2020, https://doi.org/10.5194/esd-11-435-2020, 2020
Short summary
Short summary
Based on climate simulations, we suggested that historical warming increased chances of drought exceeding the severe 2015 event in equatorial Asia due to El Niño. The fire and fire emissions of CO2/PM2.5 will largely increase at 1.5 and 2 °C warming. If global warming reaches 3 °C, as is expected from the current mitigation policies, chances of fire and CO2/PM2.5 emissions exceeding the 2015 event become approximately 100 %. Future climate policy has to consider these climate change effects.
Minchao Wu, Grigory Nikulin, Erik Kjellström, Danijel Belušić, Colin Jones, and David Lindstedt
Earth Syst. Dynam., 11, 377–394, https://doi.org/10.5194/esd-11-377-2020, https://doi.org/10.5194/esd-11-377-2020, 2020
Short summary
Short summary
Regional Climate Models constitute a downscaling tool to provide high-resolution data for impact and adaptation studies. However, there is no unique definition of the added value of downscaling as it depends on many factors. We investigate the impact of spatial resolution and model formulation on downscaled rainfall in Africa. Our results show that improvements in downscaled rainfall compared to the driving reanalysis are often related to model formulation and not always to higher resolution.
James D. Annan and Julia C. Hargreaves
Earth Syst. Dynam., 11, 347–356, https://doi.org/10.5194/esd-11-347-2020, https://doi.org/10.5194/esd-11-347-2020, 2020
Short summary
Short summary
We explore the implicit assumptions that underlie many published probabilistic estimates of the equilibrium climate sensitivity – that is, the amount the climate will warm under a doubling of the atmospheric CO2 concentration. We demonstrate that many such estimates have made assumptions that would be difficult to justify and show how the calculations can be repeated in a more defensible manner. Our results show some significant differences from previous calculations.
Stella Todzo, Adeline Bichet, and Arona Diedhiou
Earth Syst. Dynam., 11, 319–328, https://doi.org/10.5194/esd-11-319-2020, https://doi.org/10.5194/esd-11-319-2020, 2020
Short summary
Short summary
This study uses climate projections over West Africa to investigate the future changes in different aspects of its hydrological cycle. Over the 21st century, temperatures are expected to increase at a faster rate (+0.5 °C per decade) than the global average (+0.3 °C per decade), leading to an intensification of the hydrological cycle on average of +11 % per °C over the Sahel (more intense precipitation and longer dry spells) and +3 % per °C over the Guinea Coast (more intense precipitation).
Olivier Champagne, Martin Leduc, Paulin Coulibaly, and M. Altaf Arain
Earth Syst. Dynam., 11, 301–318, https://doi.org/10.5194/esd-11-301-2020, https://doi.org/10.5194/esd-11-301-2020, 2020
Short summary
Short summary
Southern Ontario has seen more high flows in winter recently due to earlier snowmelt. We show that 10 mm of daily rain and temperature higher than 5 °C are necessary conditions to generate winter high flows in the historical period. These conditions are associated with high pressure on the east coast bringing warm and wet conditions from the south. In the future, as snowfall decreases, warm events will generate less high flows, while rainfall will become a greater high-flow contributor.
Tímea Haszpra, Mátyás Herein, and Tamás Bódai
Earth Syst. Dynam., 11, 267–280, https://doi.org/10.5194/esd-11-267-2020, https://doi.org/10.5194/esd-11-267-2020, 2020
Short summary
Short summary
We investigate the changes in the ENSO phenomenon and the alterations of its precipitation-related teleconnections in the CESM-LE. To avoid the disadvantages of the subjective choices of traditional temporal methods, we use an ensemble-based snapshot framework providing instantaneous quantities computed over the ensemble dimension of the simulation. We find that ENSO teleconnections undergo considerable changes, and the ENSO amplitude remarkably increases by 2100.
Robert Vautard, Geert Jan van Oldenborgh, Friederike E. L. Otto, Pascal Yiou, Hylke de Vries, Erik van Meijgaard, Andrew Stepek, Jean-Michel Soubeyroux, Sjoukje Philip, Sarah F. Kew, Cecilia Costella, Roop Singh, and Claudia Tebaldi
Earth Syst. Dynam., 10, 271–286, https://doi.org/10.5194/esd-10-271-2019, https://doi.org/10.5194/esd-10-271-2019, 2019
Short summary
Short summary
The effect of human activities on the probability of winter wind storms like the ones that occurred in Western Europe in January 2018 is analysed using multiple model ensembles. Despite a significant probability decline in observations, we find no significant change in probabilities due to human influence on climate so far. However, such extreme events are likely to be slightly more frequent in the future. The observed decrease in storminess is likely to be due to increasing roughness.
Monica Ionita, Klaus Grosfeld, Patrick Scholz, Renate Treffeisen, and Gerrit Lohmann
Earth Syst. Dynam., 10, 189–203, https://doi.org/10.5194/esd-10-189-2019, https://doi.org/10.5194/esd-10-189-2019, 2019
Short summary
Short summary
Based on a simple statistical model we show that the September sea ice extent has a high predictive skill, up to 4 months ahead, based on previous months' oceanic and atmospheric conditions. Our statistical model skillfully captures the interannual variability of the September sea ice extent and could provide a valuable tool for identifying relevant regions and oceanic and atmospheric parameters that are important for the sea ice development in the Arctic.
Gab Abramowitz, Nadja Herger, Ethan Gutmann, Dorit Hammerling, Reto Knutti, Martin Leduc, Ruth Lorenz, Robert Pincus, and Gavin A. Schmidt
Earth Syst. Dynam., 10, 91–105, https://doi.org/10.5194/esd-10-91-2019, https://doi.org/10.5194/esd-10-91-2019, 2019
Short summary
Short summary
Best estimates of future climate projections typically rely on a range of climate models from different international research institutions. However, it is unclear how independent these different estimates are, and, for example, the degree to which their agreement implies robustness. This work presents a review of the varied and disparate attempts to quantify and address model dependence within multi-model climate projection ensembles.
Nicole S. Lovenduski, Stephen G. Yeager, Keith Lindsay, and Matthew C. Long
Earth Syst. Dynam., 10, 45–57, https://doi.org/10.5194/esd-10-45-2019, https://doi.org/10.5194/esd-10-45-2019, 2019
Short summary
Short summary
This paper shows that the absorption of carbon dioxide by the ocean is predictable several years in advance. This is important because fossil-fuel-derived carbon dioxide is largely responsible for anthropogenic global warming and because carbon dioxide emission management and global carbon cycle budgeting exercises can benefit from foreknowledge of ocean carbon absorption. The promising results from this new forecast system justify the need for additional oceanic observations.
Femke J. M. M. Nijsse and Henk A. Dijkstra
Earth Syst. Dynam., 9, 999–1012, https://doi.org/10.5194/esd-9-999-2018, https://doi.org/10.5194/esd-9-999-2018, 2018
Short summary
Short summary
State-of-the-art climate models sometimes differ in their prediction of key aspects of climate change. The technique of
emergent constraintsuses observations of current climate to improve those predictions, using relationships between different climate models. Our paper first classifies the different uses of the technique, and continues with proposing a mathematical justification for their use. We also highlight when the application of emergent constraints might give biased predictions.
Bo Huang, Ulrich Cubasch, and Christopher Kadow
Earth Syst. Dynam., 9, 985–997, https://doi.org/10.5194/esd-9-985-2018, https://doi.org/10.5194/esd-9-985-2018, 2018
Short summary
Short summary
We find that CMIP5 models show more significant improvement in predicting zonal winds with initialisation than without initialisation based on the knowledge that zonal wind indices can be used as potential predictors for the EASM. Given the initial conditions, two models improve the seasonal prediction skill of the EASM, while one model decreases it. The models have different responses to initialisation due to their ability to depict the EASM–ESNO coupled mode.
Sebastian Illing, Christopher Kadow, Holger Pohlmann, and Claudia Timmreck
Earth Syst. Dynam., 9, 701–715, https://doi.org/10.5194/esd-9-701-2018, https://doi.org/10.5194/esd-9-701-2018, 2018
Jiawei Liu, Haiming Xu, and Jiechun Deng
Earth Syst. Dynam., 9, 427–439, https://doi.org/10.5194/esd-9-427-2018, https://doi.org/10.5194/esd-9-427-2018, 2018
Short summary
Short summary
A novel method based on
present–futurerelationship in observed climate and model-simulated future climate is applied to give more reliable projections of East Asian summer monsoon intensity and associated precipitation changes at 1.5 and 2 °C warming levels. Projected future changes suggest decreased precipitation over the Meiyu belt and increased precipitation over the high latitudes of East Asia and central China, together with a considerable weakening of EASM intensity.
Michael Wehner, Dáithí Stone, Dann Mitchell, Hideo Shiogama, Erich Fischer, Lise S. Graff, Viatcheslav V. Kharin, Ludwig Lierhammer, Benjamin Sanderson, and Harinarayan Krishnan
Earth Syst. Dynam., 9, 299–311, https://doi.org/10.5194/esd-9-299-2018, https://doi.org/10.5194/esd-9-299-2018, 2018
Short summary
Short summary
The United Nations Framework Convention on Climate Change challenged the scientific community to describe the impacts of stabilizing the global temperature at its 21st Conference of Parties. A specific target of 1.5 °C above preindustrial levels had not been seriously considered by the climate modeling community prior to the Paris Agreement. This paper analyzes heat waves in simulations designed for this target. We find there are reductions in extreme temperature compared to a 2 °C target.
Peter Greve, Lukas Gudmundsson, and Sonia I. Seneviratne
Earth Syst. Dynam., 9, 227–240, https://doi.org/10.5194/esd-9-227-2018, https://doi.org/10.5194/esd-9-227-2018, 2018
Short summary
Short summary
Assessing projected hydroclimatological changes is crucial, but associated with large uncertainties. We statistically assess here the response of precipitation and water availability to global temperature change, enabling us to estimate the significance of drying/wetting tendencies under anthropogenic climate change. We further show that opting for a 1.5 K warming target just slightly influences the mean response but could substantially reduce the risk of experiencing extreme changes.
Dana Ehlert and Kirsten Zickfeld
Earth Syst. Dynam., 9, 197–210, https://doi.org/10.5194/esd-9-197-2018, https://doi.org/10.5194/esd-9-197-2018, 2018
Short summary
Short summary
This study uses a global climate model to explore the extent to which sea level rise due to thermal expansion of the ocean is reversible if the atmospheric concentration of carbon dioxide (CO2) declines. It is found that sea level continues to rise for several decades after atmospheric CO2 starts to decline and does not return to the pre-industrial level for over thousand years after atmospheric CO2 is restored to the pre-industrial concentration.
Michael F. Wehner, Kevin A. Reed, Burlen Loring, Dáithí Stone, and Harinarayan Krishnan
Earth Syst. Dynam., 9, 187–195, https://doi.org/10.5194/esd-9-187-2018, https://doi.org/10.5194/esd-9-187-2018, 2018
Short summary
Short summary
The United Nations Framework Convention on Climate Change invited the scientific community to explore the impacts of a world in which anthropogenic global warming is stabilized at only 1.5 °C above preindustrial average temperatures. We present a projection of future tropical cyclone statistics for both 1.5 and 2.0 °C stabilized warming scenarios using a high-resolution global climate model. We find more frequent and intense tropical cyclones, but a reduction in weaker storms.
Nadja Herger, Gab Abramowitz, Reto Knutti, Oliver Angélil, Karsten Lehmann, and Benjamin M. Sanderson
Earth Syst. Dynam., 9, 135–151, https://doi.org/10.5194/esd-9-135-2018, https://doi.org/10.5194/esd-9-135-2018, 2018
Short summary
Short summary
Users presented with large multi-model ensembles commonly use the equally weighted model mean as a best estimate, ignoring the issue of near replication of some climate models. We present an efficient and flexible tool that finds a subset of models with improved mean performance compared to the multi-model mean while at the same time maintaining the spread and addressing the problem of model interdependence. Out-of-sample skill and reliability are demonstrated using model-as-truth experiments.
Maida Zahid, Richard Blender, Valerio Lucarini, and Maria Caterina Bramati
Earth Syst. Dynam., 8, 1263–1278, https://doi.org/10.5194/esd-8-1263-2017, https://doi.org/10.5194/esd-8-1263-2017, 2017
Short summary
Short summary
The southern part of Pakistan (Sindh province) has been exposed to frequent and intense temperature extremes recently and is highly vulnerable to their impacts due to lack of information on recurrence of extremes. In this paper for the first time we estimated the return levels of daily maximum temperatures and daily maximum wet-bulb temperatures over the different return periods in Sindh, which would help the local administrations to prioritize the regions in terms of adaptations.
James D. Annan and Julia C. Hargreaves
Earth Syst. Dynam., 8, 211–224, https://doi.org/10.5194/esd-8-211-2017, https://doi.org/10.5194/esd-8-211-2017, 2017
Short summary
Short summary
The concept of independence has been frequently raised in climate science, but has rarely been defined and discussed in a theoretically robust and quantifiable manner. Improved understanding of this topic is critical to better understanding of climate change. In this paper, we introduce a unifying approach based on the statistical definition of independence, and illustrate with simple examples how it can be applied to practical questions.
Jozef Vilček, Jaroslav Škvarenina, Jaroslav Vido, Paulína Nalevanková, Radoslav Kandrík, and Jana Škvareninová
Earth Syst. Dynam., 7, 735–744, https://doi.org/10.5194/esd-7-735-2016, https://doi.org/10.5194/esd-7-735-2016, 2016
Short summary
Short summary
Thermal continentality plays an important role not only in the basic characterisation of the climate in particular regions but also in the phytogeographic distribution of plants and ecosystem formation. Due to ongoing climate change, questions surrounding the changes of thermal continentality are very relevant. Our results show that the continentality of Slovakia increased in the period 1961 to 2013; however, this trend is not significant.
Cited articles
Ashfaq, M., Rastogi, D., Kitson, J., Abid, M. A., and Kao, S.-C.: Evaluation of
CMIP6 GCMs Over the CONUS for Downscaling Studies, J. Geophys.
Res.-Atmos., 127, e2022JD036659,
https://doi.org/10.1029/2022JD036659, 2022. a
Athanasiadis, P. J., Ogawa, F., Omrani, N.-E., Keenlyside, N., Schiemann, R.,
Baker, A. J., Vidale, P. L., Bellucci, A., Ruggieri, P., Haarsma, R., and Roberts, M.:
Mitigating climate biases in the midlatitude North Atlantic by increasing
model resolution: SST gradients and their relation to blocking and the jet,
J. Clim., 35, 3385–3406, 2022. a
Bellomo, K., Angeloni, M., Corti, S., and von Hardenberg, J.: Future climate
change shaped by inter-model differences in Atlantic meridional overturning
circulation response, Nat. Commun., 12, 3659,
https://doi.org/10.1038/s41467-021-24015-w, 2021. a
Bock, L., Lauer, A., Schlund, M., Barreiro, M., Bellouin, N., Jones, C., Meehl,
G. A., Predoi, V., Roberts, M. J., and Eyring, V.: Quantifying Progress
Across Different CMIP Phases With the ESMValTool, J. Geophys.
Res.-Atmos., 125, e2019JD032321, https://doi.org/10.1029/2019JD032321,
2020. a, b
Booth, B. B. B., Dunstone, N. J., Halloran, P. R., Andrews, T., and Bellouin,
N.: Aerosols implicated as a prime driver of twentieth-century North
Atlantic climate variability, Nature, 484, 228–232,
https://doi.org/10.1038/nature10946, 2012. a
Borchert, L. F., Pohlmann, H., Baehr, J., Neddermann, N.-C., Suarez-Gutierrez,
L., and Müller, W. A.: Decadal Predictions of the Probability of Occurrence
for Warm Summer Temperature Extremes, Geophys. Res. Lett., 46,
14042–14051, https://doi.org/10.1029/2019GL085385, 2019. a
Borchert, L. F., Koul, V., Menary, M. B., Befort, D. J., Swingedouw, D.,
Sgubin, G., and Mignot, J.: Skillful decadal prediction of unforced southern
European summer temperature variations, Environ. Res. Lett., 16,
104017, https://doi.org/10.1088/1748-9326/ac20f5, 2021a. a
Borchert, L. F., Menary, M. B., Swingedouw, D., Sgubin, G., Hermanson, L., and
Mignot, J.: Improved Decadal Predictions of North Atlantic Subpolar Gyre SST
in CMIP6, Geophys. Res. Lett., 48, e2020GL091307,
https://doi.org/10.1029/2020GL091307, 2021b. a, b, c
Börgel, F., Meier, H. E. M., Gröger, M., Rhein, M., Dutheil, C.,
and Kaiser, J. M.: Atlantic multidecadal variability and the implications
for North European precipitation, Environ. Res. Lett., 17,
044040, https://doi.org/10.1088/1748-9326/ac5ca1, 2022. a
Browning, K. A.: The sting at the end of the tail: Damaging winds associated
with extratropical cyclones, Q. J. Roy. Meteorol.
Soc., 130, 375–399, https://doi.org/10.1256/qj.02.143, 2004. a
Brunner, L., Lorenz, R., Zumwald, M., and Knutti, R.: Quantifying uncertainty
in European climate projections using combined performance-independence
weighting, Environ. Res. Lett., 14, 124010,
https://doi.org/10.1088/1748-9326/ab492f, 2019. a, b
Brunner, L., McSweeney, C., Ballinger, A. P., Befort, D. J., Benassi, M.,
Booth, B., Coppola, E., Vries, H. D., Harris, G., Hegerl, G. C., Knutti, R.,
Lenderink, G., Lowe, J., Nogherotto, R., O'Reilly, C., Qasmi, S., Ribes, A.,
Stocchi, P., and Undorf, S.: Comparing Methods to Constrain Future European
Climate Projections Using a Consistent Framework, J. Clim., 33,
8671–8692, https://doi.org/10.1175/JCLI-D-19-0953.1, 2020a. a, b, c
Carvalho-Oliveira, J., Borchert, L. F., Duchez, A., Dobrynin, M., and Baehr,
J.: Subtle influence of the Atlantic Meridional Overturning
Circulation (AMOC) on seasonal sea surface temperature (SST) hindcast skill
in the North Atlantic, Weather Clim. Dynam., 2, 739–757,
https://doi.org/10.5194/wcd-2-739-2021, 2021. a
Carvalho-Oliveira, J., Borchert, L. F., Zorita, E., and Baehr, J.:
Self-Organizing Maps Identify Windows of Opportunity for Seasonal European
Summer Predictions, Front. Clim., 4, 844634, https://doi.org/10.3389/fclim.2022.844634,
2022. a
Chaudhuri, A. H., Ponte, R. M., and Nguyen, A. T.: A Comparison of Atmospheric
Reanalysis Products for the Arctic Ocean and Implications for Uncertainties
in Air–Sea Fluxes, J. Clim., 27, 5411–5421,
https://doi.org/10.1175/JCLI-D-13-00424.1, 2014. a
Chen, Z., Zhou, T., Chen, X., Zhang, W., Zhang, L., Wu, M., and Zou, L.:
Observationally constrained projection of Afro-Asian monsoon precipitation,
Nat. Commun., 13, 2552, https://doi.org/10.1038/s41467-022-30106-z, 2022. a
CMIP: Coupled Model Intercomparison Project Phase 6 (CMIP6) data, Working Group on Coupled Modeling of the World Climate Research Programme, Earth System Grid Federation [data set], https://esgf-node.llnl.gov/projects/cmip6/, last access: 3 August 2022. a
Copernicus Climate Change Service (C3S): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate, Copernicus Climate Change Service Climate Data Store (CDS) [data set],
https://cds.climate.copernicus.eu/cdsapp#!/home (last access: October 2020), 2017. a
Cornes, R., van der Schrier, G., van den Besselaar, E. J. M., and Jones, P. D.: An Ensemble Version of the E-OBS Temperature and Precipitation Datasets, J. Geophys. Res.-Atmos., 123, https://doi.org/10.1029/2017JD028200, 2018 (data available at https://www.ecad.eu/download/ensembles/download.php, last access: 19 April 2023). a, b, c, d
D'Andrea, F.: Northern Hemisphere atmospheric blocking as simulated by 15
atmospheric general circulation models in the period 1979–1988, Clim.
Dynam., 14, 385–407, https://doi.org/10.1007/s003820050230, 1998. a
Davini, P., Cagnazzo, C., Gualdi, S., and Navarra, A.: Bidimensional
diagnostics, variability and trends of Northern Hemisphere blocking, J.
Clim., 25, 6496–6509, https://doi.org/10.1175/JCLI-D-12-00032.1, 2012. a, b
Dong, B., Sutton, R. T., Woollings, T., and Hodges, K.: Variability of the
North Atlantic summer storm track: mechanisms and impacts on European
climate, Environ. Res. Lett., 8, 034037,
https://doi.org/10.1088/1748-9326/8/3/034037, 2013. a
ESMValTool: Earth System Model Evaluation Tool, Zenodo [code], https://doi.org/10.5281/zenodo.3401363 and https://doi.org/10.5281/zenodo.3387139, 2022. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer,
R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison
Project Phase 6 (CMIP6) experimental design and organization, Geosci.
Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Eyring, V., Cox, P. M., Flato, G. M., Gleckler, P. J., Abramowitz, G.,
Caldwell, P., Collins, W. D., Gier, B. K., Hall, A. D., Hoffman, F. M.,
Hurtt, G. C., Jahn, A., Jones, C. D., Klein, S. A., Krasting, J. P.,
Kwiatkowski, L., Lorenz, R., Maloney, E., Meehl, G. A., Pendergrass, A. G.,
Pincus, R., Ruane, A. C., Russell, J. L., Sanderson, B. M., Santer, B. D.,
Sherwood, S. C., Simpson, I. R., Stouffer, R. J., and Williamson, M. S.:
Taking climate model evaluation to the next level, Nat. Clim. Change,
9, 102–110, https://doi.org/10.1038/s41558-018-0355-y, 2019. a
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W.,
Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P.,
Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., and Rummukainen, M.:
Evaluation of climate models, Cambridge University Press,
Cambridge, UK, 741–882, https://doi.org/10.1017/CBO9781107415324.020, 2013. a
Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J.-L., Frame, D., Lunt, D. J., Mauritsen, T., Palmer, M. D.,
Watanabe, M., Wild, M., and Zhang, H.: The Earth's Energy Budget, Climate Feedbacks, and Climate
Sensitivity, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth
Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A.,
Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E.,
Matthews,J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, 923–1054, 2021. a
Frajka-Williams, E., Moat, B. I., Smeed, D. A., Rayner, D., Johns, W. E., Baringer, M. O., Volkov, D., and Collins, J.: Atlantic meridional overturning circulation observed by the RAPID-MOCHA-WBTS (RAPID-Meridional Overturning Circulation and Heatflux Array-Western Boundary Time Series) array at 26N from 2004 to 2020 (v2020.1), British Oceanographic Data Centre – Natural Environment Research Council, UK [data set], https://doi.org/10.5285/cc1e34b3-3385-662b-e053-6c86abc03444, 2021. a, b
Gervais, M., Shaman, J., and Kushnir, Y.: Impacts of the North Atlantic
Warming Hole in Future Climate Projections: Mean Atmospheric Circulation and
the North Atlantic Jet, J. Clim., 32, 2673–2689,
https://doi.org/10.1175/JCLI-D-18-0647.1, 2019. a
Gutiérrez, J., Jones, R., Narisma, G., Alves, L., Amjad, M.,
Gorodetskaya, I., Grose, M., Klutse, N., S.Krakovska, Li, J.,
Martínez-Castro, D., Mearns, L., Mernild, S., Ngo-Duc, T., van den
Hurk, B., and Yoon, J.-H.: Atlas, in: Climate Change 2021: The Physical
Science Basis, Contribution of Working Group I to the Sixth Assessment Report
of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte,
V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S., Caud, N.,
Chen, Y., Goldfarb, L., Gomis, M., Huang, M., Leitzell, K., Lonnoy, E.,
Matthews, J., Maycock, T., Waterfield, T., Yelekçi, O., Yu, R., and
Zhou, B., chap. Atlas, Cambridge University Press, Cambridge,
United Kingdom and New York, NY, USA, 1927–2058,
2021. a, b, c
Hausfather, Z., Marvel, K., Schmidt, G. A., Nielsen-Gammon, J. W., and Zelinka,
M.: Climate simulations: recognize the “hot model” problem, Nature, 605,
26–29, https://doi.org/10.1038/d41586-022-01192-2, 2022. a, b
Hempel, S., Frieler, K., Warszawski, L., Schewe, J., and Piontek, F.: A
trend-preserving bias correction – the ISI-MIP approach, Earth Syst.
Dynam., 4, 219–236, https://doi.org/10.5194/esd-4-219-2013, 2013. a
Hersbach, H., Bell, B., Berrisford, P., et al.: The ERA5 global reanalysis, Q. J. R. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b
Hodges, K.: Feature tracking on the unit sphere, Mon. Weather Rev., 123,
3458–3465, 1995. a
Hodges, K. I.: A General Method for Tracking Analysis and Its Application to
Meteorological Data, Mon. Weather Rev., 122, 2573–2586,
https://doi.org/10.1175/1520-0493(1994)122<2573:AGMFTA>2.0.CO;2, 1994. a
IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B.,
Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.,
https://www.ipcc.ch/report/ar4/wg1/ (last access: 14 April 2023), 2007. a
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.,
https://www.ipcc.ch/report/ar5/wg1/ (last access: 14 April 2023), 2013. a
Ito, R., Shiogama, H., Nakaegawa, T., and Takayabu, I.: Uncertainties in
climate change projections covered by the ISIMIP and CORDEX model subsets
from CMIP5, Geosci. Model Dev., 13, 859–872,
https://doi.org/10.5194/gmd-13-859-2020, 2020. a
Jackson, L. C., Biastoch, A., Buckley, M. W., Desbruyères, D. G.,
Frajka-Williams, E., Moat, B., and Robson, J.: The evolution of the North
Atlantic Meridional Overturning Circulation since 1980, Nat. Rev. Earth
Environ., 3, 241–254, https://doi.org/10.1038/s43017-022-00263-2, 2022. a
Jin, C., Wang, B., and Liu, J.: Future Changes and Controlling Factors of the
Eight Regional Monsoons Projected by CMIP6 Models, J. Clim., 33,
9307–9326, https://doi.org/10.1175/JCLI-D-20-0236.1, 2020. a
Kaspi, Y. and Schneider, T.: The Role of Stationary Eddies in Shaping
Midlatitude Storm Tracks, J. Atmos. Sci., 70,
2596–2613, https://doi.org/10.1175/JAS-D-12-082.1, 2013. a
Keeley, S. P. E., Sutton, R. T., and Shaffrey, L. C.: The impact of North
Atlantic sea surface temperature errors on the simulation of North Atlantic
European region climate, Q. J. Roy. Meteorol.
Soc., 138, 1774–1783, https://doi.org/10.1002/qj.1912, 2012. a, b, c
Knutti, R.: The end of model democracy?, Climatic Change, 102, 395–404,
https://doi.org/10.1007/s10584-010-9800-2, 2010. a, b
Knutti, R., Sedláček, J., Sanderson, B. M., Lorenz, R., Fischer,
E. M., and Eyring, V.: A climate model projection weighting scheme
accounting for performance and interdependence, Geophys. Res.
Lett., 44, 1909–1918, https://doi.org/10.1002/2016GL072012, 2017. a, b
Lange, S. and Büchner, M.: ISIMIP3b bias-adjusted atmospheric climate input data (v1.1), ISIMIP Repository,
https://doi.org/10.48364/ISIMIP.842396.1, 2021. a
Lee, R. W., Woollings, T. J., Hoskins, B. J., Williams, K. D., O'Reilly, C. H.,
and Masato, G.: Impact of Gulf Stream SST biases on the global atmospheric
circulation, Clim. Dynam., 51, 3369–3387,
https://doi.org/10.1007/s00382-018-4083-9, 2018. a
Lorenz, R., Herger, N., Sedláček, J., Eyring, V., Fischer, E. M.,
and Knutti, R.: Prospects and Caveats of Weighting Climate Models for Summer
Maximum Temperature Projections Over North America, J. Geophys.
Res.-Atmos., 123, 4509–4526,
https://doi.org/10.1029/2017JD027992, 2018. a
Lutz, A. F., ter Maat, H. W., Biemans, H., Shrestha, A. B., Wester, P., and
Immerzeel, W. W.: Selecting representative climate models for climate change
impact studies: an advanced envelope-based selection approach, Int.
J. Clim., 36, 3988–4005,
https://doi.org/10.1002/joc.4608, 2016. a, b
Mahony, C. R., Wang, T., Hamann, A., and Cannon, A. J.: A global climate model
ensemble for downscaled monthly climate normals over North America,
Int. J. Climatol., 42, 5871–5891,
https://doi.org/10.1002/joc.7566, 2022. a
Masato, G., Hoskins, B. J., and Woollings, T.: Winter and summer Northern
Hemisphere blocking in CMIP5 models, J. Clim., 26, 7044–7059,
https://doi.org/10.1175/JCLI-D-12-00466.1, 2013. a
McDermid, S. P., Ruane, A. C., Rosenzweig, C., Hudson, N. I., Morales, M. D.,
Agalawatte, P., Ahmad, S., Ahuja, L. R., Amien, I., Anapalli, S. S., Anothai,
J., Asseng, S., Biggs, J., Bert, F., Bertuzzi, P., Bhatia, V. S., Bindi, M.,
Broad, I., Cammarano, D., Carretero, R., Chattha, A. A., Chung, U., Debats,
S., Deligios, P., De Sanctis, G., Dhliwayo, T., Dumont, B., Estes, L.,
Ewert, F., Ferrise, R., Gaiser, T., Garcia, G., Gbegbelegbe, S.,
Geethalakshmi, V., Gerardeaux, E., Goldberg, R., Grant, B., Guevara, E.,
Hickman, J., Hoffmann, H., Huang, H., Hussain, J., Justino, F. B.,
Karunaratne, A. S., Koehler, A.-K., Kouakou, P. K., Kumar, S. N., Lakshmanan,
A., Lieffering, M., Lin, X., Luo, Q., Magrin, G., Mancini, M., Marin, F. R.,
Marta, A. D., Masutomi, Y., Mavromatis, T., McLean, G., Meira, S., Mohanty,
M., Moriondo, M., Nasim, W., Negm, L., Orlando, F., Orlandini, S., Ozturk,
I., Soares Pinto, H. M., Podesta, G., Qi, Z., Ramarohetra, J., ur Rahman,
M. H., Raynal, H., Rodriguez, G., Rötter, R., Sharda, V., Shuo, L.,
Smith, W., Snow, V., Soltani, A., Srinivas, K., Sultan, B., Swain, D. K.,
Tao, F., Tesfaye, K., Travasso, M. I., Trombi, G., Topaj, A., Vanuytrecht,
E., Viscarra, F. E., Aftab Wajid, S., Wang, E., Wang, H., Wang, J.,
Wijekoon, E., Byun-Woo, L., Xiaoguang, Y., Young, B. H., Yun, J. I., Zhao,
Z., and Zubair, L.: The AgMIP Coordinated Climate-Crop Modeling Project
(C3MP): Methods and Protocols, in: Handbook of Climate Change and
Agroecosystems, Vol. 3, ICP Series on Climate Change Impacts,
Adaptation, and Mitigation, 191–220, IMPERIAL COLLEGE PRESS,
https://doi.org/10.1142/9781783265640_0008, 2014. a
McSweeney, C., Murphy, J., Sexton, D., Rostron, J., Yamazaki, K., and Harris,
G.: Selection of CMIP5 members to augment a perturbed–parameter ensemble
of global realisations of future climate for the UKCP18 scenarios, Tech.
rep., Hadley Centre Technical Note 102, HCTN_102_2018P, Met Office UA,
2018. a, b, c
McSweeney, C. F. and Jones, R. G.: How representative is the spread of climate
projections from the 5 CMIP5 GCMs used in ISI-MIP?, Clim. Serv., 1,
24–29, https://doi.org/10.1016/j.cliser.2016.02.001, 2016. a
McSweeney, C. F., Jones, R. G., and Booth, B. B. B.: Selecting Ensemble
Members to Provide Regional Climate Change Information, J. Clim.,
25, 7100–7121, https://doi.org/10.1175/JCLI-D-11-00526.1, 2012. a
Menary, M. B., Robson, J., Allan, R. P., Booth, B. B. B., Cassou, C.,
Gastineau, G., Gregory, J., Hodson, D., Jones, C., Mignot, J., Ringer, M.,
Sutton, R., Wilcox, L., and Zhang, R.: Aerosol‐Forced AMOC Changes in
CMIP6 Historical Simulations, Geophys. Res. Lett., 47, e2020GL088166,
https://doi.org/10.1029/2020GL088166, 2020. a, b, c, d, e
Merrifield, A. L., Brunner, L., Lorenz, R., Medhaug, I., and Knutti, R.: An
investigation of weighting schemes suitable for incorporating large ensembles
into multi-model ensembles, Earth Syst. Dynam., 11, 807–834,
https://doi.org/10.5194/esd-11-807-2020, 2020. a, b
Michelangeli, P.-A., Vautard, R., and Legras, B.: Weather Regimes: Recurrence
and Quasi Stationarity, J. Atmos. Sci., 52, 1237–1256,
https://doi.org/10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2, 1995. a
Ossó, A., Sutton, R., Shaffrey, L., and Dong, B.: Development,
Amplification, and Decay of Atlantic/European Summer Weather Patterns Linked
to Spring North Atlantic Sea Surface Temperatures, J. Clim., 33,
5939–5951, https://doi.org/10.1175/JCLI-D-19-0613.1, 2020. a, b
Oudar, T., Cattiaux, J., and Douville, H.: Drivers of the Northern
Extratropical Eddy-Driven Jet Change in CMIP5 and CMIP6 Models, Geophys.
Res. Lett., 47, e2019GL086695,
https://doi.org/10.1029/2019GL086695, 2020. a
Overland, J. E., Wang, M., Bond, N. A., Walsh, J. E., Kattsov, V. M., and
Chapman, W. L.: Considerations in the Selection of Global Climate Models for
Regional Climate Projections: The Arctic as a Case Study, J.
Clim., 24, 1583–1597, https://doi.org/10.1175/2010JCLI3462.1, 2011. a, b
Palmer, T. E., Booth, B. B. B., and McSweeney, C. F.: How does the CMIP6
ensemble change the picture for European climate projections?, Environ.
Res. Lett., 16, 094042, https://doi.org/10.1088/1748-9326/ac1ed9, 2021. a
Palmer, T. E., McSweeney, C. F., Booth, B. B. B., Priestley, M. D. K., Davini, P., Brunner, L., Borchert, L., and Menary, M. B.: tepmo42/cmip6_european_assessment: Performance-based sub-selection of CMIP6 models for impact assessments in Europe additional plots, Zenodo [data set], https://doi.org/10.5281/zenodo.7828845, 2023. a
Pelly, J. and Hoskins, B.: A new perspective on blocking, J. Atmos. Sci., 60,
743–755, https://doi.org/10.1175/1520-0469(2003)060<0743:ANPOB>2.0.CO;2, 2003. a
Priestley, M. D. K., Ackerley, D., Catto, J. L., and Hodges, K. I.: Drivers of
Biases in the CMIP6 Extratropical Storm Tracks, Part I: Northern Hemisphere,
J. Clim., 36, 1451–1467, https://doi.org/10.1175/JCLI-D-20-0976.1, 2023. a, b, c
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670, 2003 (data available at https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html, last access: December 2022). a, b
Rex, D.: Blocking action in the middle troposphere and its effect upon
regional climate: I. An aerological study of blocking action, Tellus, 2,
196–211, 1950. a
Ribes, A., Boé, J., Qasmi, S., Dubuisson, B., Douville, H., and Terray, L.:
An updated assessment of past and future warming over France based on a
regional observational constraint, Earth Syst. Dynam., 13, 1397–1415,
https://doi.org/10.5194/esd-13-1397-2022, 2022. a, b, c
Rosenzweig, C., Arnell, N. W., Ebi, K. L., Lotze-Campen, H., Raes, F., Rapley,
C., Smith, M. S., Cramer, W., Frieler, K., Reyer, C. P., Schewe, J., Van
Vuuren, D., and Warszawski, L.: Assessing inter-sectoral climate change
risks: The role of ISIMIP, Environ. Res. Lett., 12, 010301,
https://doi.org/10.1088/1748-9326/12/1/010301, 2017. a
Ruane, A. C. and McDermid, S. P.: Selection of a representative subset of
global climate models that captures the profile of regional changes for
integrated climate impacts assessment, Earth Perspect., 4, 1–20,
https://doi.org/10.1186/s40322-017-0036-4, 2017. a, b, c
Ruane, A. C., McDermid, S., Rosenzweig, C., Baigorria, G. A., Jones, J. W.,
Romero, C. C., and DeWayne Cecil, L.: Carbon–Temperature–Water change
analysis for peanut production under climate change: a prototype for the
AgMIP Coordinated Climate-Crop Modeling Project (C3MP), Glob. Change
Biol., 20, 394–407, https://doi.org/10.1111/gcb.12412, 2014. a
Scaife, A. A., Copsey, D., Gordon, C., Harris, C., Hinton, T., Keeley, S.,
O'Neill, A., Roberts, M., and Williams, K.: Improved Atlantic winter
blocking in a climate model, Geophys. Res. Lett., 38, L23703,
https://doi.org/10.1029/2011GL049573, 2011. a, b
Schiemann, R., Athanasiadis, P., Barriopedro, D., Doblas-Reyes, F., Lohmann,
K., Roberts, M. J., Sein, D. V., Roberts, C. D., Terray, L., and Vidale,
P. L.: Northern Hemisphere blocking simulation in current climate models:
evaluating progress from the Climate Model Intercomparison Project Phase 5 to
6 and sensitivity to resolution, Weather Clim. Dynam., 1, 277–292,
https://doi.org/10.5194/wcd-1-277-2020, 2020. a
Selten, F. M., Bintanja, R., Vautard, R., and van den Hurk, B. J. J. M.:
Future continental summer warming constrained by the present-day seasonal
cycle of surface hydrology, Sci. Rep., 10, 4721,
https://doi.org/10.1038/s41598-020-61721-9, 2020. a
Shepherd, T. G.: Atmospheric circulation as a source of uncertainty in climate
change projections, Nat. Geosci., 7, 703–708, https://doi.org/10.1038/ngeo2253,
2014. a
Shepherd, T. G.: Storyline approach to the construction of regional climate
change information, Proc. Roy. Soc. A, 475, 20190013,
https://doi.org/10.1098/rspa.2019.0013, 2019. a
Shiogama, H., Ishizaki, N. N., Hanasaki, N., Takahashi, K., Emori, S., Ito, R.,
Nakaegawa, T., Takayabu, I., Hijioka, Y., Takayabu, Y. N., and Shibuya, R.:
Selecting CMIP6-Based Future Climate Scenarios for Impact and Adaptation
Studies, SOLA, 17, 57–62, https://doi.org/10.2151/sola.2021-009, 2021. a, b
Simpson, I. R., Deser, C., McKinnon, K. A., and Barnes, E. A.: Modeled and
Observed Multidecadal Variability in the North Atlantic Jet Stream and Its
Connection to Sea Surface Temperatures, J. Clim., 31, 8313–8338,
https://doi.org/10.1175/JCLI-D-18-0168.1, 2018. a
Sutton, R. T. and Dong, B.: Atlantic Ocean influence on a shift in European
climate in the 1990s, Nat. Geosci., 5, 788–792,
https://doi.org/10.1038/ngeo1595, 2012. a, b
Tibaldi, S. and Molteni, F.: On the operational predictability of blocking,
Tellus A, 42, 343–365, https://doi.org/10.3402/tellusa.v42i3.11882, 1990. a
Tsujino, H., Urakawa, L. S., Griffies, S. M., Danabasoglu, G., Adcroft, A. J.,
Amaral, A. E., Arsouze, T., Bentsen, M., Bernardello, R., Böning, C. W.,
Bozec, A., Chassignet, E. P., Danilov, S., Dussin, R., Exarchou, E., Fogli,
P. G., Fox-Kemper, B., Guo, C., Ilicak, M., Iovino, D., Kim, W. M., Koldunov,
N., Lapin, V., Li, Y., Lin, P., Lindsay, K., Liu, H., Long, M. C., Komuro,
Y., Marsland, S. J., Masina, S., Nummelin, A., Rieck, J. K., Ruprich-Robert,
Y., Scheinert, M., Sicardi, V., Sidorenko, D., Suzuki, T., Tatebe, H., Wang,
Q., Yeager, S. G., and Yu, Z.: Evaluation of global ocean–sea-ice model
simulations based on the experimental protocols of the Ocean Model
Intercomparison Project phase 2 (OMIP-2), Geosci. Model Dev.,
13, 3643–3708, https://doi.org/10.5194/gmd-13-3643-2020, 2020. a
van den Hurk, B., Siegmund, P., Klien Tank (Eds), A., Attema, J., Bakker, A.,
Beersma, J., Bessembinder, J., Boers, R., Brandsma, T., van de Brink, H.,
Drijfhout, S., Eskes, H., Haarsma, R., Hazeleger, W., Jilderda, R., Katsman,
C., Lenderink, G., Loriaux, J., van de Meijgaard, E., van Noije, T., van
Oldenborgh, G. J., Selten, F., Siebesma, P., Sterl, A., de Vries, H., Van
Weele, M., de Winter, R., and van Zadelhoff, G.-J.: KNMI'14: Climate Change
scenarios for the 21st Century – A Netherlands perspective, Tech. Rep.,
Royal Netherlands Meteorological Istitute Ministry of Infrastructure and
Water Management,
https://www.knmiprojects.nl/projects/climate-scenarios (last access: 14 April 2023), 2014.
a
Whetton, P., Macadam, I., Bathols, J., and O'Grady, J.: Assessment of the use
of current climate patterns to evaluate regional enhanced greenhouse response
patterns of climate models, Geophys. Res. Lett., 34, L14701,
https://doi.org/10.1029/2007GL030025, 2007. a, b, c
White, J. W., Hoogenboom, G., Kimball, B. A., and Wall, G. W.: Methodologies
for simulating impacts of climate change on crop production, Field Crop.
Res., 124, 357–368, https://doi.org/10.1016/j.fcr.2011.07.001,
2011. a
Yeager, S. G. and Robson, J. I.: Recent Progress in Understanding and
Predicting Atlantic Decadal Climate Variability, Curr. Clim. Change
Rep., 3, 112–127, https://doi.org/10.1007/s40641-017-0064-z, 2017. a
Zappa, G. and Shepherd, T. G.: Storylines of atmospheric circulation change
for European regional climate impact assessment, J. Clim., 30, 6561–6577,
https://doi.org/10.1175/JCLI-D-16-0807.1, 2017. a
Zappa, G., Shaffrey, L. C., and Hodges, K. I.: The ability of CMIP5 models to
simulate North Atlantic extratropical cyclones, J. Clim., 26, 5379–5396,
https://doi.org/10.1175/JCLI-D-12-00501.1, 2013. a
Zhang, M.-Z., Xu, Z., Han, Y., and Guo, W.: Evaluation of CMIP6 models toward
dynamical downscaling over 14 CORDEX domains, Clim. Dynam., 1–15,
https://doi.org/10.1007/s00382-022-06355-5, 2022. a, b
Zhang, R.: Coherent surface-subsurface fingerprint of the Atlantic meridional
overturning circulation, Geophys. Res. Lett., 35, L20705,
https://doi.org/10.1029/2008GL035463, 2008. a
Zhang, R., Sutton, R., Danabasoglu, G., Kwon, Y., Marsh, R., Yeager, S. G.,
Amrhein, D. E., and Little, C. M.: A Review of the Role of the Atlantic
Meridional Overturning Circulation in Atlantic Multidecadal Variability and
Associated Climate Impacts, Rev. Geophys., 57, 316–375,
https://doi.org/10.1029/2019RG000644, 2019. a, b
Short summary
We carry out an assessment of an ensemble of general climate models (CMIP6) based on the ability of the models to represent the key physical processes that are important for representing European climate. Filtering the models with the assessment leads to more models with less global warming being removed, and this shifts the lower part of the projected temperature range towards greater warming. This is in contrast to the affect of weighting the ensemble using global temperature trends.
We carry out an assessment of an ensemble of general climate models (CMIP6) based on the ability...
Altmetrics
Final-revised paper
Preprint