Articles | Volume 14, issue 2
https://doi.org/10.5194/esd-14-457-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-14-457-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Performance-based sub-selection of CMIP6 models for impact assessments in Europe
Tamzin E. Palmer
CORRESPONDING AUTHOR
Met Office Hadley Centre, FitzRoy Rd, Exeter, Devon, EX1 3PB, UK
Carol F. McSweeney
Met Office Hadley Centre, FitzRoy Rd, Exeter, Devon, EX1 3PB, UK
Ben B. B. Booth
Met Office Hadley Centre, FitzRoy Rd, Exeter, Devon, EX1 3PB, UK
Matthew D. K. Priestley
Department of Mathematics and Statistics, University of Exeter, Exeter, UK
Paolo Davini
Consiglio Nazionale delle Ricerche, Istituto di Scienze dell’Atmosfera e del Clima (CNR-ISAC), Turin, Italy
Lukas Brunner
Department of Meteorology and Geophysics, University of Vienna, Vienna, Austria
Leonard Borchert
Climate Statistics and Climate Extremes, Centre for Earth System Research and Sustainability (CEN), Universität Hamburg, Hamburg, Germany
Laboratoire de Météorologie Dynamique (LMD) at École Normale Supérieure (ENS), Paris, France
Matthew B. Menary
Met Office Hadley Centre, FitzRoy Rd, Exeter, Devon, EX1 3PB, UK
Laboratoire de Météorologie Dynamique (LMD) at École Normale Supérieure (ENS), Paris, France
Related authors
Nieves G. Valiente, Andrew Saulter, Breogan Gomez, Christopher Bunney, Jian-Guo Li, Tamzin Palmer, and Christine Pequignet
Geosci. Model Dev., 16, 2515–2538, https://doi.org/10.5194/gmd-16-2515-2023, https://doi.org/10.5194/gmd-16-2515-2023, 2023
Short summary
Short summary
We document the Met Office operational global and regional wave models which provide wave forecasts up to 7 d ahead. Our models present coarser resolution offshore to higher resolution near the coastline. The increased resolution led to replication of the extremes but to some overestimation during modal conditions. If currents are included, wave directions and long period swells near the coast are significantly improved. New developments focus on the optimisation of the models with resolution.
Francisco J. Doblas-Reyes, Jenni Kontkanen, Irina Sandu, Mario Acosta, Mohammed Hussam Al Turjmam, Ivan Alsina-Ferrer, Miguel Andrés-Martínez, Leo Arriola, Marvin Axness, Marc Batlle Martín, Peter Bauer, Tobias Becker, Daniel Beltrán, Sebastian Beyer, Hendryk Bockelmann, Pierre-Antoine Bretonnière, Sebastien Cabaniols, Silvia Caprioli, Miguel Castrillo, Aparna Chandrasekar, Suvarchal Cheedela, Victor Correal, Emanuele Danovaro, Paolo Davini, Jussi Enkovaara, Claudia Frauen, Barbara Früh, Aina Gaya Àvila, Paolo Ghinassi, Rohit Ghosh, Supriyo Ghosh, Iker González, Katherine Grayson, Matthew Griffith, Ioan Hadade, Christopher Haine, Carl Hartick, Utz-Uwe Haus, Shane Hearne, Heikki Järvinen, Bernat Jiménez, Amal John, Marlin Juchem, Thomas Jung, Jessica Kegel, Matthias Kelbling, Kai Keller, Bruno Kinoshita, Theresa Kiszler, Daniel Klocke, Lukas Kluft, Nikolay Koldunov, Tobias Kölling, Joonas Kolstela, Luis Kornblueh, Sergey Kosukhin, Aleksander Lacima-Nadolnik, Jeisson Javier Leal Rojas, Jonni Lehtiranta, Tuomas Lunttila, Anna Luoma, Pekka Manninen, Alexey Medvedev, Sebastian Milinski, Ali Omar Abdelazim Mohammed, Sebastian Müller, Devaraju Naryanappa, Natalia Nazarova, Sami Niemelä, Bimochan Niraula, Henrik Nortamo, Aleksi Nummelin, Matteo Nurisso, Pablo Ortega, Stella Paronuzzi, Xabier Pedruzo Bagazgoitia, Charles Pelletier, Carlos Peña, Suraj Polade, Himansu Pradhan, Rommel Quintanilla, Tiago Quintino, Thomas Rackow, Jouni Räisänen, Maqsood Mubarak Rajput, René Redler, Balthasar Reuter, Nuno Rocha Monteiro, Francesc Roura-Adserias, Silva Ruppert, Susan Sayed, Reiner Schnur, Tanvi Sharma, Dmitry Sidorenko, Outi Sievi-Korte, Albert Soret, Christian Steger, Bjorn Stevens, Jan Streffing, Jaleena Sunny, Luiggi Tenorio, Stephan Thober, Ulf Tigerstedt, Oriol Tinto, Juha Tonttila, Heikki Tuomenvirta, Lauri Tuppi, Ginka Van Thielen, Emanuele Vitali, Jost von Hardenberg, Ingo Wagner, Nils Wedi, Jan Wehner, Sven Willner, Xavier Yepes-Arbós, Florian Ziemen, and Janos Zimmermann
EGUsphere, https://doi.org/10.5194/egusphere-2025-2198, https://doi.org/10.5194/egusphere-2025-2198, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Climate Change Adaptation Digital Twin (Climate DT) pioneers the operationalisation of climate projections. The system produces global simulations with local granularity for adaptation decision-making. Applications are embedded to generate tailored indicators. A unified workflow orchestrates all components in several supercomputers. Data management ensures consistency and streaming enables real-time use. It is a complementary innovation to initiatives like CMIP, CORDEX, and climate services.
Eva Holtanová, Jan Koláček, and Lukas Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2025-3360, https://doi.org/10.5194/egusphere-2025-3360, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
Our global analysis assess temperature annual cycle and its changes using an innovative statistical approach. We reveal, e.g., slight temperature decreases during the historical period in some parts of the year. Future projections show different rates of warming between seasons, resulting in changes in the amplitude. The diagnostics introduced here can be tailored for different purposes and applied to other climatic variables, without making any prior assumptions about the annual cycle shape.
Arim Yoon, Cathy Hohenegger, Jiawei Bao, and Lukas Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2025-3221, https://doi.org/10.5194/egusphere-2025-3221, 2025
Short summary
Short summary
We studied how removing the Amazon rainforest impacts extreme weather by using an advanced global model that resolves convection. Our results show deforestation significantly intensifies short but severe rainfall, leading to more frequent droughts and flooding. Temperatures rise sharply, creating dangerous heat conditions harmful to human health and productivity. Wind speeds drastically increase. These findings provide a stark warning of the effects of continuing deforestation of the Amazon.
Toby P. Jones, David B. Stephenson, and Matthew D. K. Priestley
EGUsphere, https://doi.org/10.5194/egusphere-2025-3031, https://doi.org/10.5194/egusphere-2025-3031, 2025
Short summary
Short summary
Some hazards bring multiple perils, meaning their yearly losses are correlated. For example, storms cause losses from both wind and rain damage each year. Three models to understand the drivers of the relationship between these yearly losses are explored. These models can be applied to other hazards, but this study focuses on understanding drivers of wind and rain from windstorms. Storm duration near a location is important, having a positive/negative effect on windspeed/rainfall respectively.
Amanda C. Maycock, Christine M. McKenna, Matthew D. K. Priestley, Jacob Perez, and Julia F. Lockwood
EGUsphere, https://doi.org/10.5194/egusphere-2025-1131, https://doi.org/10.5194/egusphere-2025-1131, 2025
Short summary
Short summary
Winter North Atlantic storms cause significant financial losses and damage in Europe. This study shows that modes of seasonal large-scale climate variability called the North Atlantic Oscillation and East Atlantic Pattern modulate the exposure to cyclone related extreme wind, precipitation and storm surge hazards across many parts of Europe. The results have the potential to be combined with skilful seasonal climate forecasts of climate modes to inform the insurance sector.
Hans Segura, Xabier Pedruzo-Bagazgoitia, Philipp Weiss, Sebastian K. Müller, Thomas Rackow, Junhong Lee, Edgar Dolores-Tesillos, Imme Benedict, Matthias Aengenheyster, Razvan Aguridan, Gabriele Arduini, Alexander J. Baker, Jiawei Bao, Swantje Bastin, Eulàlia Baulenas, Tobias Becker, Sebastian Beyer, Hendryk Bockelmann, Nils Brüggemann, Lukas Brunner, Suvarchal K. Cheedela, Sushant Das, Jasper Denissen, Ian Dragaud, Piotr Dziekan, Madeleine Ekblom, Jan Frederik Engels, Monika Esch, Richard Forbes, Claudia Frauen, Lilli Freischem, Diego García-Maroto, Philipp Geier, Paul Gierz, Álvaro González-Cervera, Katherine Grayson, Matthew Griffith, Oliver Gutjahr, Helmuth Haak, Ioan Hadade, Kerstin Haslehner, Shabeh ul Hasson, Jan Hegewald, Lukas Kluft, Aleksei Koldunov, Nikolay Koldunov, Tobias Kölling, Shunya Koseki, Sergey Kosukhin, Josh Kousal, Peter Kuma, Arjun U. Kumar, Rumeng Li, Nicolas Maury, Maximilian Meindl, Sebastian Milinski, Kristian Mogensen, Bimochan Niraula, Jakub Nowak, Divya Sri Praturi, Ulrike Proske, Dian Putrasahan, René Redler, David Santuy, Domokos Sármány, Reiner Schnur, Patrick Scholz, Dmitry Sidorenko, Dorian Spät, Birgit Sützl, Daisuke Takasuka, Adrian Tompkins, Alejandro Uribe, Mirco Valentini, Menno Veerman, Aiko Voigt, Sarah Warnau, Fabian Wachsmann, Marta Wacławczyk, Nils Wedi, Karl-Hermann Wieners, Jonathan Wille, Marius Winkler, Yuting Wu, Florian Ziemen, Janos Zimmermann, Frida A.-M. Bender, Dragana Bojovic, Sandrine Bony, Simona Bordoni, Patrice Brehmer, Marcus Dengler, Emanuel Dutra, Saliou Faye, Erich Fischer, Chiel van Heerwaarden, Cathy Hohenegger, Heikki Järvinen, Markus Jochum, Thomas Jung, Johann H. Jungclaus, Noel S. Keenlyside, Daniel Klocke, Heike Konow, Martina Klose, Szymon Malinowski, Olivia Martius, Thorsten Mauritsen, Juan Pedro Mellado, Theresa Mieslinger, Elsa Mohino, Hanna Pawłowska, Karsten Peters-von Gehlen, Abdoulaye Sarré, Pajam Sobhani, Philip Stier, Lauri Tuppi, Pier Luigi Vidale, Irina Sandu, and Bjorn Stevens
EGUsphere, https://doi.org/10.5194/egusphere-2025-509, https://doi.org/10.5194/egusphere-2025-509, 2025
Short summary
Short summary
The nextGEMS project developed two Earth system models that resolve processes of the order of 10 km, giving more fidelity to the representation of local phenomena, globally. In its fourth cycle, nextGEMS performed simulations with coupled ocean, land, and atmosphere over the 2020–2049 period under the SSP3-7.0 scenario. Here, we provide an overview of nextGEMS, insights into the model development, and the realism of multi-decadal, kilometer-scale simulations.
Johanna Beckmann, Giorgia Di Capua, and Paolo Davini
EGUsphere, https://doi.org/10.5194/egusphere-2024-3998, https://doi.org/10.5194/egusphere-2024-3998, 2025
Short summary
Short summary
Greenland blocking, which enhances ice sheet melting, has increased, but climate models fail to capture this trend. Analysis using ERA5 data and SEAS5.1 forecasts shows model improvements help but miss the role of early North American snowmelt in blocking patterns. This gap may explain the discrepancy and suggests future projections could underestimate Greenland blocking and its impact on melting. Better representation of snow cover processes is essential for improving climate model accuracy.
Julianna Carvalho-Oliveira, Giorgia Di Capua, Leonard F. Borchert, Reik V. Donner, and Johanna Baehr
Weather Clim. Dynam., 5, 1561–1578, https://doi.org/10.5194/wcd-5-1561-2024, https://doi.org/10.5194/wcd-5-1561-2024, 2024
Short summary
Short summary
We demonstrate with a causal analysis that an important recurrent summer atmospheric pattern, the so-called East Atlantic teleconnection, was influenced by the extratropical North Atlantic in spring during the second half of the 20th century. This causal link is, however, not well represented by our evaluated seasonal climate prediction system. We show that simulations able to reproduce this link show improved surface climate prediction credibility over those that do not.
Nicola Maher, Adam S. Phillips, Clara Deser, Robert C. Jnglin Wills, Flavio Lehner, John Fasullo, Julie M. Caron, Lukas Brunner, and Urs Beyerle
EGUsphere, https://doi.org/10.5194/egusphere-2024-3684, https://doi.org/10.5194/egusphere-2024-3684, 2024
Short summary
Short summary
We present a new multi-model large ensemble archive (MMLEAv2) and introduce the newly updated Climate Variability Diagnostics Package version 6 (CVDPv6), which is designed specifically for use with large ensembles. For highly variable quantities, we demonstrate that a model might evaluate poorly or favourably compared to the single realisation of the world that the observations represent, highlighting the need for large ensembles for model evaluation.
Masaru Yoshioka, Daniel P. Grosvenor, Ben B. B. Booth, Colin P. Morice, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 13681–13692, https://doi.org/10.5194/acp-24-13681-2024, https://doi.org/10.5194/acp-24-13681-2024, 2024
Short summary
Short summary
A 2020 regulation has reduced sulfur emissions from shipping by about 80 %, leading to a decrease in atmospheric aerosols that have a cooling effect primarily by affecting cloud properties and amounts. Our climate model simulations predict a global temperature increase of 0.04 K over the next 3 decades as a result, which could contribute to surpassing the Paris Agreement's 1.5 °C target. Reduced aerosols may have also contributed to the recent temperature spikes.
Viet Dung Nguyen, Sergiy Vorogushyn, Katrin Nissen, Lukas Brunner, and Bruno Merz
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 195–216, https://doi.org/10.5194/ascmo-10-195-2024, https://doi.org/10.5194/ascmo-10-195-2024, 2024
Short summary
Short summary
We present a novel stochastic weather generator conditioned on circulation patterns and regional temperature, accounting for dynamic and thermodynamic atmospheric changes. We extensively evaluate the model for the central European region. It statistically downscales precipitation for future periods, generating long, spatially and temporally consistent series. Results suggest an increase in extreme precipitation over the region, offering key benefits for hydrological impact studies.
Benjamin M. Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin G. Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Séférian, Bjørn H. Samset, Detlef van Vuuren, and Sönke Zaehle
Geosci. Model Dev., 17, 8141–8172, https://doi.org/10.5194/gmd-17-8141-2024, https://doi.org/10.5194/gmd-17-8141-2024, 2024
Short summary
Short summary
We discuss how, in order to provide more relevant guidance for climate policy, coordinated climate experiments should adopt a greater focus on simulations where Earth system models are provided with carbon emissions from fossil fuels together with land use change instructions, rather than past approaches that have largely focused on experiments with prescribed atmospheric carbon dioxide concentrations. We discuss how these goals might be achieved in coordinated climate modeling experiments.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Michele Filippucci, Simona Bordoni, and Paolo Davini
Weather Clim. Dynam., 5, 1207–1222, https://doi.org/10.5194/wcd-5-1207-2024, https://doi.org/10.5194/wcd-5-1207-2024, 2024
Short summary
Short summary
Atmospheric blocking is a recurring phenomenon in midlatitudes, causing winter cold spells and summer heat waves. Current models underestimate it, hindering understanding of global warming's impact on extremes. In this paper, we investigate whether stochastic parameterizations can improve blocking representation. We find that blocking frequency representation slightly deteriorates, following a change in midlatitude winds. We conclude by suggesting a direction for future model development.
Federico Fabiano, Paolo Davini, Virna L. Meccia, Giuseppe Zappa, Alessio Bellucci, Valerio Lembo, Katinka Bellomo, and Susanna Corti
Earth Syst. Dynam., 15, 527–546, https://doi.org/10.5194/esd-15-527-2024, https://doi.org/10.5194/esd-15-527-2024, 2024
Short summary
Short summary
Even after the concentration of greenhouse gases is stabilized, the climate will continue to adapt, seeking a new equilibrium. We study this long-term stabilization through a set of 1000-year simulations, obtained by suddenly "freezing" the atmospheric composition at different levels. If frozen at the current state, global warming surpasses 3° in the long term with our model. We then study how climate impacts will change after various centuries and how the deep ocean will warm.
Matthew D. K. Priestley, David B. Stephenson, Adam A. Scaife, Daniel Bannister, Christopher J. T. Allen, and David Wilkie
Nat. Hazards Earth Syst. Sci., 23, 3845–3861, https://doi.org/10.5194/nhess-23-3845-2023, https://doi.org/10.5194/nhess-23-3845-2023, 2023
Short summary
Short summary
This research presents a model for estimating extreme gusts associated with European windstorms. Using observed storm footprints we are able to calculate the return level of events at the 200-year return period. The largest gusts are found across NW Europe, and these are larger when the North Atlantic Oscillation is positive. Using theoretical future climate states we find that return levels are likely to increase across NW Europe to levels that are unprecedented compared to historical storms.
Kristian Strommen, Tim Woollings, Paolo Davini, Paolo Ruggieri, and Isla R. Simpson
Weather Clim. Dynam., 4, 853–874, https://doi.org/10.5194/wcd-4-853-2023, https://doi.org/10.5194/wcd-4-853-2023, 2023
Short summary
Short summary
We present evidence which strongly suggests that decadal variations in the intensity of the North Atlantic winter jet stream can be predicted by current forecast models but that decadal variations in its position appear to be unpredictable. It is argued that this skill at predicting jet intensity originates from the slow, predictable variability in sea surface temperatures in the sub-polar North Atlantic.
Alice Portal, Fabio D'Andrea, Paolo Davini, Mostafa E. Hamouda, and Claudia Pasquero
Weather Clim. Dynam., 4, 809–822, https://doi.org/10.5194/wcd-4-809-2023, https://doi.org/10.5194/wcd-4-809-2023, 2023
Short summary
Short summary
The differences between climate models can be exploited to infer how specific aspects of the climate influence the Earth system. This work analyses the effects of a negative temperature anomaly over the Tibetan Plateau on the winter atmospheric circulation. We show that models with a colder-than-average Tibetan Plateau present a reinforcement of the eastern Asian winter monsoon and discuss the atmospheric response to the enhanced transport of cold air from the continent toward the Pacific Ocean.
Anna L. Merrifield, Lukas Brunner, Ruth Lorenz, Vincent Humphrey, and Reto Knutti
Geosci. Model Dev., 16, 4715–4747, https://doi.org/10.5194/gmd-16-4715-2023, https://doi.org/10.5194/gmd-16-4715-2023, 2023
Short summary
Short summary
Using all Coupled Model Intercomparison Project (CMIP) models is unfeasible for many applications. We provide a subselection protocol that balances user needs for model independence, performance, and spread capturing CMIP’s projection uncertainty simultaneously. We show how sets of three to five models selected for European applications map to user priorities. An audit of model independence and its influence on equilibrium climate sensitivity uncertainty in CMIP is also presented.
Emmanouil Flaounas, Leonardo Aragão, Lisa Bernini, Stavros Dafis, Benjamin Doiteau, Helena Flocas, Suzanne L. Gray, Alexia Karwat, John Kouroutzoglou, Piero Lionello, Mario Marcello Miglietta, Florian Pantillon, Claudia Pasquero, Platon Patlakas, María Ángeles Picornell, Federico Porcù, Matthew D. K. Priestley, Marco Reale, Malcolm J. Roberts, Hadas Saaroni, Dor Sandler, Enrico Scoccimarro, Michael Sprenger, and Baruch Ziv
Weather Clim. Dynam., 4, 639–661, https://doi.org/10.5194/wcd-4-639-2023, https://doi.org/10.5194/wcd-4-639-2023, 2023
Short summary
Short summary
Cyclone detection and tracking methods (CDTMs) have different approaches in defining and tracking cyclone centers. This leads to disagreements on extratropical cyclone climatologies. We present a new approach that combines tracks from individual CDTMs to produce new composite tracks. These new tracks are shown to correspond to physically meaningful systems with distinctive life stages.
Nina Raoult, Tim Jupp, Ben Booth, and Peter Cox
Earth Syst. Dynam., 14, 723–731, https://doi.org/10.5194/esd-14-723-2023, https://doi.org/10.5194/esd-14-723-2023, 2023
Short summary
Short summary
Climate models are used to predict the impact of climate change. However, poorly constrained parameters used in the physics of the models mean that we simulate a large spread of possible future outcomes. We can use real-world observations to reduce the uncertainty of parameter values, but we do not have observations to reduce the spread of possible future outcomes directly. We present a method for translating the reduction in parameter uncertainty into a reduction in possible model projections.
Nieves G. Valiente, Andrew Saulter, Breogan Gomez, Christopher Bunney, Jian-Guo Li, Tamzin Palmer, and Christine Pequignet
Geosci. Model Dev., 16, 2515–2538, https://doi.org/10.5194/gmd-16-2515-2023, https://doi.org/10.5194/gmd-16-2515-2023, 2023
Short summary
Short summary
We document the Met Office operational global and regional wave models which provide wave forecasts up to 7 d ahead. Our models present coarser resolution offshore to higher resolution near the coastline. The increased resolution led to replication of the extremes but to some overestimation during modal conditions. If currents are included, wave directions and long period swells near the coast are significantly improved. New developments focus on the optimisation of the models with resolution.
Amy H. Peace, Ben B. B. Booth, Leighton A. Regayre, Ken S. Carslaw, David M. H. Sexton, Céline J. W. Bonfils, and John W. Rostron
Earth Syst. Dynam., 13, 1215–1232, https://doi.org/10.5194/esd-13-1215-2022, https://doi.org/10.5194/esd-13-1215-2022, 2022
Short summary
Short summary
Anthropogenic aerosol emissions have been linked to driving climate responses such as shifts in the location of tropical rainfall. However, the interaction of aerosols with climate remains one of the most uncertain aspects of climate modelling and limits our ability to predict future climate change. We use an ensemble of climate model simulations to investigate what impact the large uncertainty in how aerosols interact with climate has on predicting future tropical rainfall shifts.
Paolo Davini, Federico Fabiano, and Irina Sandu
Weather Clim. Dynam., 3, 535–553, https://doi.org/10.5194/wcd-3-535-2022, https://doi.org/10.5194/wcd-3-535-2022, 2022
Short summary
Short summary
In climate models, improvements obtained in the winter mid-latitude circulation following horizontal resolution increase are mainly caused by the more detailed representation of the mean orography. A high-resolution climate model with low-resolution orography might underperform compared to a low-resolution model with low-resolution orography. The absence of proper model tuning at high resolution is considered the potential reason behind such lack of improvements.
Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Thomas Arsouze, Tommi Bergman, Raffaele Bernardello, Souhail Boussetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, François Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O'Donnell, Pirkka Ollinaho, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang
Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, https://doi.org/10.5194/gmd-15-2973-2022, 2022
Short summary
Short summary
The Earth system model EC-Earth3 is documented here. Key performance metrics show physical behavior and biases well within the frame known from recent models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
Matthew D. K. Priestley and Jennifer L. Catto
Weather Clim. Dynam., 3, 337–360, https://doi.org/10.5194/wcd-3-337-2022, https://doi.org/10.5194/wcd-3-337-2022, 2022
Short summary
Short summary
We use the newest set of climate model experiments from CMIP6 to investigate changes to mid-latitude storm tracks and cyclones from global warming. The overall number of cyclones will decrease. However in winter there will be more of the most intense cyclones, and these intense cyclones are likely to be stronger. Cyclone wind speeds will increase in winter, and as a result the area of strongest wind speeds will increase. By 2100 the area of strong wind speeds may increase by over 30 %.
Jie Zhang, Kalli Furtado, Steven T. Turnock, Jane P. Mulcahy, Laura J. Wilcox, Ben B. Booth, David Sexton, Tongwen Wu, Fang Zhang, and Qianxia Liu
Atmos. Chem. Phys., 21, 18609–18627, https://doi.org/10.5194/acp-21-18609-2021, https://doi.org/10.5194/acp-21-18609-2021, 2021
Short summary
Short summary
The CMIP6 ESMs systematically underestimate TAS anomalies in the NH midlatitudes, especially from 1960 to 1990. The anomalous cooling is concurrent in time and space with anthropogenic SO2 emissions. The spurious drop in TAS is attributed to the overestimated aerosol concentrations. The aerosol forcing sensitivity cannot well explain the inter-model spread of PHC biases. And the cloud-amount term accounts for most of the inter-model spread in aerosol forcing sensitivity.
Benjamin M. Sanderson, Angeline G. Pendergrass, Charles D. Koven, Florent Brient, Ben B. B. Booth, Rosie A. Fisher, and Reto Knutti
Earth Syst. Dynam., 12, 899–918, https://doi.org/10.5194/esd-12-899-2021, https://doi.org/10.5194/esd-12-899-2021, 2021
Short summary
Short summary
Emergent constraints promise a pathway to the reduction in climate projection uncertainties by exploiting ensemble relationships between observable quantities and unknown climate response parameters. This study considers the robustness of these relationships in light of biases and common simplifications that may be present in the original ensemble of climate simulations. We propose a classification scheme for constraints and a number of practical case studies.
Julianna Carvalho-Oliveira, Leonard Friedrich Borchert, Aurélie Duchez, Mikhail Dobrynin, and Johanna Baehr
Weather Clim. Dynam., 2, 739–757, https://doi.org/10.5194/wcd-2-739-2021, https://doi.org/10.5194/wcd-2-739-2021, 2021
Short summary
Short summary
This work questions the influence of the Atlantic Meridional Overturning Circulation, an important component of the climate system, on the variability in North Atlantic sea surface temperature (SST) a season ahead, particularly how this influence affects SST prediction credibility 2–4 months into the future. While we find this relationship is relevant for assessing SST predictions, it strongly depends on the time period and season we analyse and is more subtle than what is found in observations.
Federico Fabiano, Virna L. Meccia, Paolo Davini, Paolo Ghinassi, and Susanna Corti
Weather Clim. Dynam., 2, 163–180, https://doi.org/10.5194/wcd-2-163-2021, https://doi.org/10.5194/wcd-2-163-2021, 2021
Short summary
Short summary
Global warming not only affects the mean state of the climate (i.e. a warmer world) but also its variability. Here we analyze a set of future climate scenarios and show how some configurations of the wintertime atmospheric flow will become more frequent and persistent under continued greenhouse forcing. For example, over Europe, models predict an increase in the NAO+ regime which drives intense precipitation in northern Europe and the British Isles and dry conditions over the Mediterranean.
Lukas Brunner, Angeline G. Pendergrass, Flavio Lehner, Anna L. Merrifield, Ruth Lorenz, and Reto Knutti
Earth Syst. Dynam., 11, 995–1012, https://doi.org/10.5194/esd-11-995-2020, https://doi.org/10.5194/esd-11-995-2020, 2020
Short summary
Short summary
In this study, we weight climate models by their performance with respect to simulating aspects of historical climate and their degree of interdependence. Our method is found to increase projection skill and to correct for structurally similar models. The weighted end-of-century mean warming (2081–2100 relative to 1995–2014) is 3.7 °C with a likely (66 %) range of 3.1 to 4.6 °C for the strong climate change scenario SSP5-8.5; this is a reduction of 0.4 °C compared with the unweighted mean.
Anna Louise Merrifield, Lukas Brunner, Ruth Lorenz, Iselin Medhaug, and Reto Knutti
Earth Syst. Dynam., 11, 807–834, https://doi.org/10.5194/esd-11-807-2020, https://doi.org/10.5194/esd-11-807-2020, 2020
Short summary
Short summary
Justifiable uncertainty estimates of future change in northern European winter and Mediterranean summer temperature can be obtained by weighting a multi-model ensemble comprised of projections from different climate models and multiple projections from the same climate model. Weights reduce the influence of model biases and handle dependence by identifying a projection's model of origin from historical characteristics; contributions from the same model are scaled by the number of members.
Cited articles
Ashfaq, M., Rastogi, D., Kitson, J., Abid, M. A., and Kao, S.-C.: Evaluation of
CMIP6 GCMs Over the CONUS for Downscaling Studies, J. Geophys.
Res.-Atmos., 127, e2022JD036659,
https://doi.org/10.1029/2022JD036659, 2022. a
Athanasiadis, P. J., Ogawa, F., Omrani, N.-E., Keenlyside, N., Schiemann, R.,
Baker, A. J., Vidale, P. L., Bellucci, A., Ruggieri, P., Haarsma, R., and Roberts, M.:
Mitigating climate biases in the midlatitude North Atlantic by increasing
model resolution: SST gradients and their relation to blocking and the jet,
J. Clim., 35, 3385–3406, 2022. a
Bellomo, K., Angeloni, M., Corti, S., and von Hardenberg, J.: Future climate
change shaped by inter-model differences in Atlantic meridional overturning
circulation response, Nat. Commun., 12, 3659,
https://doi.org/10.1038/s41467-021-24015-w, 2021. a
Bock, L., Lauer, A., Schlund, M., Barreiro, M., Bellouin, N., Jones, C., Meehl,
G. A., Predoi, V., Roberts, M. J., and Eyring, V.: Quantifying Progress
Across Different CMIP Phases With the ESMValTool, J. Geophys.
Res.-Atmos., 125, e2019JD032321, https://doi.org/10.1029/2019JD032321,
2020. a, b
Booth, B. B. B., Dunstone, N. J., Halloran, P. R., Andrews, T., and Bellouin,
N.: Aerosols implicated as a prime driver of twentieth-century North
Atlantic climate variability, Nature, 484, 228–232,
https://doi.org/10.1038/nature10946, 2012. a
Borchert, L. F., Pohlmann, H., Baehr, J., Neddermann, N.-C., Suarez-Gutierrez,
L., and Müller, W. A.: Decadal Predictions of the Probability of Occurrence
for Warm Summer Temperature Extremes, Geophys. Res. Lett., 46,
14042–14051, https://doi.org/10.1029/2019GL085385, 2019. a
Borchert, L. F., Koul, V., Menary, M. B., Befort, D. J., Swingedouw, D.,
Sgubin, G., and Mignot, J.: Skillful decadal prediction of unforced southern
European summer temperature variations, Environ. Res. Lett., 16,
104017, https://doi.org/10.1088/1748-9326/ac20f5, 2021a. a
Borchert, L. F., Menary, M. B., Swingedouw, D., Sgubin, G., Hermanson, L., and
Mignot, J.: Improved Decadal Predictions of North Atlantic Subpolar Gyre SST
in CMIP6, Geophys. Res. Lett., 48, e2020GL091307,
https://doi.org/10.1029/2020GL091307, 2021b. a, b, c
Börgel, F., Meier, H. E. M., Gröger, M., Rhein, M., Dutheil, C.,
and Kaiser, J. M.: Atlantic multidecadal variability and the implications
for North European precipitation, Environ. Res. Lett., 17,
044040, https://doi.org/10.1088/1748-9326/ac5ca1, 2022. a
Browning, K. A.: The sting at the end of the tail: Damaging winds associated
with extratropical cyclones, Q. J. Roy. Meteorol.
Soc., 130, 375–399, https://doi.org/10.1256/qj.02.143, 2004. a
Brunner, L., Lorenz, R., Zumwald, M., and Knutti, R.: Quantifying uncertainty
in European climate projections using combined performance-independence
weighting, Environ. Res. Lett., 14, 124010,
https://doi.org/10.1088/1748-9326/ab492f, 2019. a, b
Brunner, L., McSweeney, C., Ballinger, A. P., Befort, D. J., Benassi, M.,
Booth, B., Coppola, E., Vries, H. D., Harris, G., Hegerl, G. C., Knutti, R.,
Lenderink, G., Lowe, J., Nogherotto, R., O'Reilly, C., Qasmi, S., Ribes, A.,
Stocchi, P., and Undorf, S.: Comparing Methods to Constrain Future European
Climate Projections Using a Consistent Framework, J. Clim., 33,
8671–8692, https://doi.org/10.1175/JCLI-D-19-0953.1, 2020a. a, b, c
Carvalho-Oliveira, J., Borchert, L. F., Duchez, A., Dobrynin, M., and Baehr,
J.: Subtle influence of the Atlantic Meridional Overturning
Circulation (AMOC) on seasonal sea surface temperature (SST) hindcast skill
in the North Atlantic, Weather Clim. Dynam., 2, 739–757,
https://doi.org/10.5194/wcd-2-739-2021, 2021. a
Carvalho-Oliveira, J., Borchert, L. F., Zorita, E., and Baehr, J.:
Self-Organizing Maps Identify Windows of Opportunity for Seasonal European
Summer Predictions, Front. Clim., 4, 844634, https://doi.org/10.3389/fclim.2022.844634,
2022. a
Chaudhuri, A. H., Ponte, R. M., and Nguyen, A. T.: A Comparison of Atmospheric
Reanalysis Products for the Arctic Ocean and Implications for Uncertainties
in Air–Sea Fluxes, J. Clim., 27, 5411–5421,
https://doi.org/10.1175/JCLI-D-13-00424.1, 2014. a
Chen, Z., Zhou, T., Chen, X., Zhang, W., Zhang, L., Wu, M., and Zou, L.:
Observationally constrained projection of Afro-Asian monsoon precipitation,
Nat. Commun., 13, 2552, https://doi.org/10.1038/s41467-022-30106-z, 2022. a
CMIP: Coupled Model Intercomparison Project Phase 6 (CMIP6) data, Working Group on Coupled Modeling of the World Climate Research Programme, Earth System Grid Federation [data set], https://esgf-node.llnl.gov/projects/cmip6/, last access: 3 August 2022. a
Copernicus Climate Change Service (C3S): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate, Copernicus Climate Change Service Climate Data Store (CDS) [data set],
https://cds.climate.copernicus.eu/cdsapp#!/home (last access: October 2020), 2017. a
Cornes, R., van der Schrier, G., van den Besselaar, E. J. M., and Jones, P. D.: An Ensemble Version of the E-OBS Temperature and Precipitation Datasets, J. Geophys. Res.-Atmos., 123, https://doi.org/10.1029/2017JD028200, 2018 (data available at https://www.ecad.eu/download/ensembles/download.php, last access: 19 April 2023). a, b, c, d
D'Andrea, F.: Northern Hemisphere atmospheric blocking as simulated by 15
atmospheric general circulation models in the period 1979–1988, Clim.
Dynam., 14, 385–407, https://doi.org/10.1007/s003820050230, 1998. a
Davini, P., Cagnazzo, C., Gualdi, S., and Navarra, A.: Bidimensional
diagnostics, variability and trends of Northern Hemisphere blocking, J.
Clim., 25, 6496–6509, https://doi.org/10.1175/JCLI-D-12-00032.1, 2012. a, b
Dong, B., Sutton, R. T., Woollings, T., and Hodges, K.: Variability of the
North Atlantic summer storm track: mechanisms and impacts on European
climate, Environ. Res. Lett., 8, 034037,
https://doi.org/10.1088/1748-9326/8/3/034037, 2013. a
ESMValTool: Earth System Model Evaluation Tool, Zenodo [code], https://doi.org/10.5281/zenodo.3401363 and https://doi.org/10.5281/zenodo.3387139, 2022. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer,
R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison
Project Phase 6 (CMIP6) experimental design and organization, Geosci.
Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Eyring, V., Cox, P. M., Flato, G. M., Gleckler, P. J., Abramowitz, G.,
Caldwell, P., Collins, W. D., Gier, B. K., Hall, A. D., Hoffman, F. M.,
Hurtt, G. C., Jahn, A., Jones, C. D., Klein, S. A., Krasting, J. P.,
Kwiatkowski, L., Lorenz, R., Maloney, E., Meehl, G. A., Pendergrass, A. G.,
Pincus, R., Ruane, A. C., Russell, J. L., Sanderson, B. M., Santer, B. D.,
Sherwood, S. C., Simpson, I. R., Stouffer, R. J., and Williamson, M. S.:
Taking climate model evaluation to the next level, Nat. Clim. Change,
9, 102–110, https://doi.org/10.1038/s41558-018-0355-y, 2019. a
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W.,
Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P.,
Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., and Rummukainen, M.:
Evaluation of climate models, Cambridge University Press,
Cambridge, UK, 741–882, https://doi.org/10.1017/CBO9781107415324.020, 2013. a
Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J.-L., Frame, D., Lunt, D. J., Mauritsen, T., Palmer, M. D.,
Watanabe, M., Wild, M., and Zhang, H.: The Earth's Energy Budget, Climate Feedbacks, and Climate
Sensitivity, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth
Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A.,
Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E.,
Matthews,J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, 923–1054, 2021. a
Frajka-Williams, E., Moat, B. I., Smeed, D. A., Rayner, D., Johns, W. E., Baringer, M. O., Volkov, D., and Collins, J.: Atlantic meridional overturning circulation observed by the RAPID-MOCHA-WBTS (RAPID-Meridional Overturning Circulation and Heatflux Array-Western Boundary Time Series) array at 26N from 2004 to 2020 (v2020.1), British Oceanographic Data Centre – Natural Environment Research Council, UK [data set], https://doi.org/10.5285/cc1e34b3-3385-662b-e053-6c86abc03444, 2021. a, b
Gervais, M., Shaman, J., and Kushnir, Y.: Impacts of the North Atlantic
Warming Hole in Future Climate Projections: Mean Atmospheric Circulation and
the North Atlantic Jet, J. Clim., 32, 2673–2689,
https://doi.org/10.1175/JCLI-D-18-0647.1, 2019. a
Gutiérrez, J., Jones, R., Narisma, G., Alves, L., Amjad, M.,
Gorodetskaya, I., Grose, M., Klutse, N., S.Krakovska, Li, J.,
Martínez-Castro, D., Mearns, L., Mernild, S., Ngo-Duc, T., van den
Hurk, B., and Yoon, J.-H.: Atlas, in: Climate Change 2021: The Physical
Science Basis, Contribution of Working Group I to the Sixth Assessment Report
of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte,
V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S., Caud, N.,
Chen, Y., Goldfarb, L., Gomis, M., Huang, M., Leitzell, K., Lonnoy, E.,
Matthews, J., Maycock, T., Waterfield, T., Yelekçi, O., Yu, R., and
Zhou, B., chap. Atlas, Cambridge University Press, Cambridge,
United Kingdom and New York, NY, USA, 1927–2058,
2021. a, b, c
Hausfather, Z., Marvel, K., Schmidt, G. A., Nielsen-Gammon, J. W., and Zelinka,
M.: Climate simulations: recognize the “hot model” problem, Nature, 605,
26–29, https://doi.org/10.1038/d41586-022-01192-2, 2022. a, b
Hempel, S., Frieler, K., Warszawski, L., Schewe, J., and Piontek, F.: A
trend-preserving bias correction – the ISI-MIP approach, Earth Syst.
Dynam., 4, 219–236, https://doi.org/10.5194/esd-4-219-2013, 2013. a
Hersbach, H., Bell, B., Berrisford, P., et al.: The ERA5 global reanalysis, Q. J. R. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b
Hodges, K.: Feature tracking on the unit sphere, Mon. Weather Rev., 123,
3458–3465, 1995. a
Hodges, K. I.: A General Method for Tracking Analysis and Its Application to
Meteorological Data, Mon. Weather Rev., 122, 2573–2586,
https://doi.org/10.1175/1520-0493(1994)122<2573:AGMFTA>2.0.CO;2, 1994. a
IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B.,
Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.,
https://www.ipcc.ch/report/ar4/wg1/ (last access: 14 April 2023), 2007. a
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.,
https://www.ipcc.ch/report/ar5/wg1/ (last access: 14 April 2023), 2013. a
Ito, R., Shiogama, H., Nakaegawa, T., and Takayabu, I.: Uncertainties in
climate change projections covered by the ISIMIP and CORDEX model subsets
from CMIP5, Geosci. Model Dev., 13, 859–872,
https://doi.org/10.5194/gmd-13-859-2020, 2020. a
Jackson, L. C., Biastoch, A., Buckley, M. W., Desbruyères, D. G.,
Frajka-Williams, E., Moat, B., and Robson, J.: The evolution of the North
Atlantic Meridional Overturning Circulation since 1980, Nat. Rev. Earth
Environ., 3, 241–254, https://doi.org/10.1038/s43017-022-00263-2, 2022. a
Jin, C., Wang, B., and Liu, J.: Future Changes and Controlling Factors of the
Eight Regional Monsoons Projected by CMIP6 Models, J. Clim., 33,
9307–9326, https://doi.org/10.1175/JCLI-D-20-0236.1, 2020. a
Kaspi, Y. and Schneider, T.: The Role of Stationary Eddies in Shaping
Midlatitude Storm Tracks, J. Atmos. Sci., 70,
2596–2613, https://doi.org/10.1175/JAS-D-12-082.1, 2013. a
Keeley, S. P. E., Sutton, R. T., and Shaffrey, L. C.: The impact of North
Atlantic sea surface temperature errors on the simulation of North Atlantic
European region climate, Q. J. Roy. Meteorol.
Soc., 138, 1774–1783, https://doi.org/10.1002/qj.1912, 2012. a, b, c
Knutti, R.: The end of model democracy?, Climatic Change, 102, 395–404,
https://doi.org/10.1007/s10584-010-9800-2, 2010. a, b
Knutti, R., Sedláček, J., Sanderson, B. M., Lorenz, R., Fischer,
E. M., and Eyring, V.: A climate model projection weighting scheme
accounting for performance and interdependence, Geophys. Res.
Lett., 44, 1909–1918, https://doi.org/10.1002/2016GL072012, 2017. a, b
Lange, S. and Büchner, M.: ISIMIP3b bias-adjusted atmospheric climate input data (v1.1), ISIMIP Repository,
https://doi.org/10.48364/ISIMIP.842396.1, 2021. a
Lee, R. W., Woollings, T. J., Hoskins, B. J., Williams, K. D., O'Reilly, C. H.,
and Masato, G.: Impact of Gulf Stream SST biases on the global atmospheric
circulation, Clim. Dynam., 51, 3369–3387,
https://doi.org/10.1007/s00382-018-4083-9, 2018. a
Lorenz, R., Herger, N., Sedláček, J., Eyring, V., Fischer, E. M.,
and Knutti, R.: Prospects and Caveats of Weighting Climate Models for Summer
Maximum Temperature Projections Over North America, J. Geophys.
Res.-Atmos., 123, 4509–4526,
https://doi.org/10.1029/2017JD027992, 2018. a
Lutz, A. F., ter Maat, H. W., Biemans, H., Shrestha, A. B., Wester, P., and
Immerzeel, W. W.: Selecting representative climate models for climate change
impact studies: an advanced envelope-based selection approach, Int.
J. Clim., 36, 3988–4005,
https://doi.org/10.1002/joc.4608, 2016. a, b
Mahony, C. R., Wang, T., Hamann, A., and Cannon, A. J.: A global climate model
ensemble for downscaled monthly climate normals over North America,
Int. J. Climatol., 42, 5871–5891,
https://doi.org/10.1002/joc.7566, 2022. a
Masato, G., Hoskins, B. J., and Woollings, T.: Winter and summer Northern
Hemisphere blocking in CMIP5 models, J. Clim., 26, 7044–7059,
https://doi.org/10.1175/JCLI-D-12-00466.1, 2013. a
McDermid, S. P., Ruane, A. C., Rosenzweig, C., Hudson, N. I., Morales, M. D.,
Agalawatte, P., Ahmad, S., Ahuja, L. R., Amien, I., Anapalli, S. S., Anothai,
J., Asseng, S., Biggs, J., Bert, F., Bertuzzi, P., Bhatia, V. S., Bindi, M.,
Broad, I., Cammarano, D., Carretero, R., Chattha, A. A., Chung, U., Debats,
S., Deligios, P., De Sanctis, G., Dhliwayo, T., Dumont, B., Estes, L.,
Ewert, F., Ferrise, R., Gaiser, T., Garcia, G., Gbegbelegbe, S.,
Geethalakshmi, V., Gerardeaux, E., Goldberg, R., Grant, B., Guevara, E.,
Hickman, J., Hoffmann, H., Huang, H., Hussain, J., Justino, F. B.,
Karunaratne, A. S., Koehler, A.-K., Kouakou, P. K., Kumar, S. N., Lakshmanan,
A., Lieffering, M., Lin, X., Luo, Q., Magrin, G., Mancini, M., Marin, F. R.,
Marta, A. D., Masutomi, Y., Mavromatis, T., McLean, G., Meira, S., Mohanty,
M., Moriondo, M., Nasim, W., Negm, L., Orlando, F., Orlandini, S., Ozturk,
I., Soares Pinto, H. M., Podesta, G., Qi, Z., Ramarohetra, J., ur Rahman,
M. H., Raynal, H., Rodriguez, G., Rötter, R., Sharda, V., Shuo, L.,
Smith, W., Snow, V., Soltani, A., Srinivas, K., Sultan, B., Swain, D. K.,
Tao, F., Tesfaye, K., Travasso, M. I., Trombi, G., Topaj, A., Vanuytrecht,
E., Viscarra, F. E., Aftab Wajid, S., Wang, E., Wang, H., Wang, J.,
Wijekoon, E., Byun-Woo, L., Xiaoguang, Y., Young, B. H., Yun, J. I., Zhao,
Z., and Zubair, L.: The AgMIP Coordinated Climate-Crop Modeling Project
(C3MP): Methods and Protocols, in: Handbook of Climate Change and
Agroecosystems, Vol. 3, ICP Series on Climate Change Impacts,
Adaptation, and Mitigation, 191–220, IMPERIAL COLLEGE PRESS,
https://doi.org/10.1142/9781783265640_0008, 2014. a
McSweeney, C., Murphy, J., Sexton, D., Rostron, J., Yamazaki, K., and Harris,
G.: Selection of CMIP5 members to augment a perturbed–parameter ensemble
of global realisations of future climate for the UKCP18 scenarios, Tech.
rep., Hadley Centre Technical Note 102, HCTN_102_2018P, Met Office UA,
2018. a, b, c
McSweeney, C. F. and Jones, R. G.: How representative is the spread of climate
projections from the 5 CMIP5 GCMs used in ISI-MIP?, Clim. Serv., 1,
24–29, https://doi.org/10.1016/j.cliser.2016.02.001, 2016. a
McSweeney, C. F., Jones, R. G., and Booth, B. B. B.: Selecting Ensemble
Members to Provide Regional Climate Change Information, J. Clim.,
25, 7100–7121, https://doi.org/10.1175/JCLI-D-11-00526.1, 2012. a
Menary, M. B., Robson, J., Allan, R. P., Booth, B. B. B., Cassou, C.,
Gastineau, G., Gregory, J., Hodson, D., Jones, C., Mignot, J., Ringer, M.,
Sutton, R., Wilcox, L., and Zhang, R.: Aerosol‐Forced AMOC Changes in
CMIP6 Historical Simulations, Geophys. Res. Lett., 47, e2020GL088166,
https://doi.org/10.1029/2020GL088166, 2020. a, b, c, d, e
Merrifield, A. L., Brunner, L., Lorenz, R., Medhaug, I., and Knutti, R.: An
investigation of weighting schemes suitable for incorporating large ensembles
into multi-model ensembles, Earth Syst. Dynam., 11, 807–834,
https://doi.org/10.5194/esd-11-807-2020, 2020. a, b
Michelangeli, P.-A., Vautard, R., and Legras, B.: Weather Regimes: Recurrence
and Quasi Stationarity, J. Atmos. Sci., 52, 1237–1256,
https://doi.org/10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2, 1995. a
Ossó, A., Sutton, R., Shaffrey, L., and Dong, B.: Development,
Amplification, and Decay of Atlantic/European Summer Weather Patterns Linked
to Spring North Atlantic Sea Surface Temperatures, J. Clim., 33,
5939–5951, https://doi.org/10.1175/JCLI-D-19-0613.1, 2020. a, b
Oudar, T., Cattiaux, J., and Douville, H.: Drivers of the Northern
Extratropical Eddy-Driven Jet Change in CMIP5 and CMIP6 Models, Geophys.
Res. Lett., 47, e2019GL086695,
https://doi.org/10.1029/2019GL086695, 2020. a
Overland, J. E., Wang, M., Bond, N. A., Walsh, J. E., Kattsov, V. M., and
Chapman, W. L.: Considerations in the Selection of Global Climate Models for
Regional Climate Projections: The Arctic as a Case Study, J.
Clim., 24, 1583–1597, https://doi.org/10.1175/2010JCLI3462.1, 2011. a, b
Palmer, T. E., Booth, B. B. B., and McSweeney, C. F.: How does the CMIP6
ensemble change the picture for European climate projections?, Environ.
Res. Lett., 16, 094042, https://doi.org/10.1088/1748-9326/ac1ed9, 2021. a
Palmer, T. E., McSweeney, C. F., Booth, B. B. B., Priestley, M. D. K., Davini, P., Brunner, L., Borchert, L., and Menary, M. B.: tepmo42/cmip6_european_assessment: Performance-based sub-selection of CMIP6 models for impact assessments in Europe additional plots, Zenodo [data set], https://doi.org/10.5281/zenodo.7828845, 2023. a
Pelly, J. and Hoskins, B.: A new perspective on blocking, J. Atmos. Sci., 60,
743–755, https://doi.org/10.1175/1520-0469(2003)060<0743:ANPOB>2.0.CO;2, 2003. a
Priestley, M. D. K., Ackerley, D., Catto, J. L., and Hodges, K. I.: Drivers of
Biases in the CMIP6 Extratropical Storm Tracks, Part I: Northern Hemisphere,
J. Clim., 36, 1451–1467, https://doi.org/10.1175/JCLI-D-20-0976.1, 2023. a, b, c
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670, 2003 (data available at https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html, last access: December 2022). a, b
Rex, D.: Blocking action in the middle troposphere and its effect upon
regional climate: I. An aerological study of blocking action, Tellus, 2,
196–211, 1950. a
Ribes, A., Boé, J., Qasmi, S., Dubuisson, B., Douville, H., and Terray, L.:
An updated assessment of past and future warming over France based on a
regional observational constraint, Earth Syst. Dynam., 13, 1397–1415,
https://doi.org/10.5194/esd-13-1397-2022, 2022. a, b, c
Rosenzweig, C., Arnell, N. W., Ebi, K. L., Lotze-Campen, H., Raes, F., Rapley,
C., Smith, M. S., Cramer, W., Frieler, K., Reyer, C. P., Schewe, J., Van
Vuuren, D., and Warszawski, L.: Assessing inter-sectoral climate change
risks: The role of ISIMIP, Environ. Res. Lett., 12, 010301,
https://doi.org/10.1088/1748-9326/12/1/010301, 2017. a
Ruane, A. C. and McDermid, S. P.: Selection of a representative subset of
global climate models that captures the profile of regional changes for
integrated climate impacts assessment, Earth Perspect., 4, 1–20,
https://doi.org/10.1186/s40322-017-0036-4, 2017. a, b, c
Ruane, A. C., McDermid, S., Rosenzweig, C., Baigorria, G. A., Jones, J. W.,
Romero, C. C., and DeWayne Cecil, L.: Carbon–Temperature–Water change
analysis for peanut production under climate change: a prototype for the
AgMIP Coordinated Climate-Crop Modeling Project (C3MP), Glob. Change
Biol., 20, 394–407, https://doi.org/10.1111/gcb.12412, 2014. a
Scaife, A. A., Copsey, D., Gordon, C., Harris, C., Hinton, T., Keeley, S.,
O'Neill, A., Roberts, M., and Williams, K.: Improved Atlantic winter
blocking in a climate model, Geophys. Res. Lett., 38, L23703,
https://doi.org/10.1029/2011GL049573, 2011. a, b
Schiemann, R., Athanasiadis, P., Barriopedro, D., Doblas-Reyes, F., Lohmann,
K., Roberts, M. J., Sein, D. V., Roberts, C. D., Terray, L., and Vidale,
P. L.: Northern Hemisphere blocking simulation in current climate models:
evaluating progress from the Climate Model Intercomparison Project Phase 5 to
6 and sensitivity to resolution, Weather Clim. Dynam., 1, 277–292,
https://doi.org/10.5194/wcd-1-277-2020, 2020. a
Selten, F. M., Bintanja, R., Vautard, R., and van den Hurk, B. J. J. M.:
Future continental summer warming constrained by the present-day seasonal
cycle of surface hydrology, Sci. Rep., 10, 4721,
https://doi.org/10.1038/s41598-020-61721-9, 2020. a
Shepherd, T. G.: Atmospheric circulation as a source of uncertainty in climate
change projections, Nat. Geosci., 7, 703–708, https://doi.org/10.1038/ngeo2253,
2014. a
Shepherd, T. G.: Storyline approach to the construction of regional climate
change information, Proc. Roy. Soc. A, 475, 20190013,
https://doi.org/10.1098/rspa.2019.0013, 2019. a
Shiogama, H., Ishizaki, N. N., Hanasaki, N., Takahashi, K., Emori, S., Ito, R.,
Nakaegawa, T., Takayabu, I., Hijioka, Y., Takayabu, Y. N., and Shibuya, R.:
Selecting CMIP6-Based Future Climate Scenarios for Impact and Adaptation
Studies, SOLA, 17, 57–62, https://doi.org/10.2151/sola.2021-009, 2021. a, b
Simpson, I. R., Deser, C., McKinnon, K. A., and Barnes, E. A.: Modeled and
Observed Multidecadal Variability in the North Atlantic Jet Stream and Its
Connection to Sea Surface Temperatures, J. Clim., 31, 8313–8338,
https://doi.org/10.1175/JCLI-D-18-0168.1, 2018. a
Sutton, R. T. and Dong, B.: Atlantic Ocean influence on a shift in European
climate in the 1990s, Nat. Geosci., 5, 788–792,
https://doi.org/10.1038/ngeo1595, 2012. a, b
Tibaldi, S. and Molteni, F.: On the operational predictability of blocking,
Tellus A, 42, 343–365, https://doi.org/10.3402/tellusa.v42i3.11882, 1990. a
Tsujino, H., Urakawa, L. S., Griffies, S. M., Danabasoglu, G., Adcroft, A. J.,
Amaral, A. E., Arsouze, T., Bentsen, M., Bernardello, R., Böning, C. W.,
Bozec, A., Chassignet, E. P., Danilov, S., Dussin, R., Exarchou, E., Fogli,
P. G., Fox-Kemper, B., Guo, C., Ilicak, M., Iovino, D., Kim, W. M., Koldunov,
N., Lapin, V., Li, Y., Lin, P., Lindsay, K., Liu, H., Long, M. C., Komuro,
Y., Marsland, S. J., Masina, S., Nummelin, A., Rieck, J. K., Ruprich-Robert,
Y., Scheinert, M., Sicardi, V., Sidorenko, D., Suzuki, T., Tatebe, H., Wang,
Q., Yeager, S. G., and Yu, Z.: Evaluation of global ocean–sea-ice model
simulations based on the experimental protocols of the Ocean Model
Intercomparison Project phase 2 (OMIP-2), Geosci. Model Dev.,
13, 3643–3708, https://doi.org/10.5194/gmd-13-3643-2020, 2020. a
van den Hurk, B., Siegmund, P., Klien Tank (Eds), A., Attema, J., Bakker, A.,
Beersma, J., Bessembinder, J., Boers, R., Brandsma, T., van de Brink, H.,
Drijfhout, S., Eskes, H., Haarsma, R., Hazeleger, W., Jilderda, R., Katsman,
C., Lenderink, G., Loriaux, J., van de Meijgaard, E., van Noije, T., van
Oldenborgh, G. J., Selten, F., Siebesma, P., Sterl, A., de Vries, H., Van
Weele, M., de Winter, R., and van Zadelhoff, G.-J.: KNMI'14: Climate Change
scenarios for the 21st Century – A Netherlands perspective, Tech. Rep.,
Royal Netherlands Meteorological Istitute Ministry of Infrastructure and
Water Management,
https://www.knmiprojects.nl/projects/climate-scenarios (last access: 14 April 2023), 2014.
a
Whetton, P., Macadam, I., Bathols, J., and O'Grady, J.: Assessment of the use
of current climate patterns to evaluate regional enhanced greenhouse response
patterns of climate models, Geophys. Res. Lett., 34, L14701,
https://doi.org/10.1029/2007GL030025, 2007. a, b, c
White, J. W., Hoogenboom, G., Kimball, B. A., and Wall, G. W.: Methodologies
for simulating impacts of climate change on crop production, Field Crop.
Res., 124, 357–368, https://doi.org/10.1016/j.fcr.2011.07.001,
2011. a
Yeager, S. G. and Robson, J. I.: Recent Progress in Understanding and
Predicting Atlantic Decadal Climate Variability, Curr. Clim. Change
Rep., 3, 112–127, https://doi.org/10.1007/s40641-017-0064-z, 2017. a
Zappa, G. and Shepherd, T. G.: Storylines of atmospheric circulation change
for European regional climate impact assessment, J. Clim., 30, 6561–6577,
https://doi.org/10.1175/JCLI-D-16-0807.1, 2017. a
Zappa, G., Shaffrey, L. C., and Hodges, K. I.: The ability of CMIP5 models to
simulate North Atlantic extratropical cyclones, J. Clim., 26, 5379–5396,
https://doi.org/10.1175/JCLI-D-12-00501.1, 2013. a
Zhang, M.-Z., Xu, Z., Han, Y., and Guo, W.: Evaluation of CMIP6 models toward
dynamical downscaling over 14 CORDEX domains, Clim. Dynam., 1–15,
https://doi.org/10.1007/s00382-022-06355-5, 2022. a, b
Zhang, R.: Coherent surface-subsurface fingerprint of the Atlantic meridional
overturning circulation, Geophys. Res. Lett., 35, L20705,
https://doi.org/10.1029/2008GL035463, 2008. a
Zhang, R., Sutton, R., Danabasoglu, G., Kwon, Y., Marsh, R., Yeager, S. G.,
Amrhein, D. E., and Little, C. M.: A Review of the Role of the Atlantic
Meridional Overturning Circulation in Atlantic Multidecadal Variability and
Associated Climate Impacts, Rev. Geophys., 57, 316–375,
https://doi.org/10.1029/2019RG000644, 2019. a, b
Short summary
We carry out an assessment of an ensemble of general climate models (CMIP6) based on the ability of the models to represent the key physical processes that are important for representing European climate. Filtering the models with the assessment leads to more models with less global warming being removed, and this shifts the lower part of the projected temperature range towards greater warming. This is in contrast to the affect of weighting the ensemble using global temperature trends.
We carry out an assessment of an ensemble of general climate models (CMIP6) based on the ability...
Altmetrics
Final-revised paper
Preprint