Articles | Volume 13, issue 2
https://doi.org/10.5194/esd-13-993-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-13-993-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A methodology for the spatiotemporal identification of compound hazards: wind and precipitation extremes in Great Britain (1979–2019)
Department of Geography, King's College London, London WC2B 4BG,
United Kingdom
European Commission, Joint Research Centre, Ispra, Italy
Bruce D. Malamud
Department of Geography, King's College London, London WC2B 4BG,
United Kingdom
Amélie Joly-Laugel
EDF Energy R & D UK Centre, Croydon CR0 2AJ, United Kingdom
Related authors
Mohammad Hadi Bahmanpour, Alois Tilloy, Michalis Vousdoukas, Ivan Federico, Giovanni Coppini, Luc Feyen, and Lorenzo Mentaschi
EGUsphere, https://doi.org/10.5194/egusphere-2025-843, https://doi.org/10.5194/egusphere-2025-843, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
As natural hazards evolve, understanding how extreme events interact over time is crucial. While single extremes have been widely studied, joint extremes remain challenging to analyze. We present a framework that combines advanced statistical modeling with copula theory to capture changing dependencies. Applying it to historical data reveals dynamic patterns in extreme events. To support broader use, we provide an open-source tool for improved hazard assessment.
Aloïs Tilloy, Dominik Paprotny, Stefania Grimaldi, Goncalo Gomes, Alessandra Bianchi, Stefan Lange, Hylke Beck, Cinzia Mazzetti, and Luc Feyen
Earth Syst. Sci. Data, 17, 293–316, https://doi.org/10.5194/essd-17-293-2025, https://doi.org/10.5194/essd-17-293-2025, 2025
Short summary
Short summary
This article presents a reanalysis of Europe's river streamflow for the period 1951–2020. Streamflow is estimated through a state-of-the-art hydrological simulation framework benefitting from detailed information about the landscape, climate, and human activities. The resulting Hydrological European ReAnalysis (HERA) can be a valuable tool for studying hydrological dynamics, including the impacts of climate change and human activities on European water resources and flood and drought risks.
Tiberiu-Eugen Antofie, Stefano Luoni, Aloïs Tilloy, Andrea Sibilia, Sandro Salari, Gustav Eklund, Davide Rodomonti, Christos Bountzouklis, and Christina Corbane
Nat. Hazards Earth Syst. Sci., 25, 287–304, https://doi.org/10.5194/nhess-25-287-2025, https://doi.org/10.5194/nhess-25-287-2025, 2025
Short summary
Short summary
This is the first study that uses spatial patterns (clusters/hotspots) and meta-analysis in order to identify the regions at a European level at risk of multi-hazards. The findings point out the socioeconomic dimension as a determining factor in the potential risk of multi-hazards. The outcome provides valuable input for the disaster risk management policy support and will assist national authorities on the implementation of a multi-hazard approach in national risk assessment preparation.
Mohammad Hadi Bahmanpour, Alois Tilloy, Michalis Vousdoukas, Ivan Federico, Giovanni Coppini, Luc Feyen, and Lorenzo Mentaschi
EGUsphere, https://doi.org/10.5194/egusphere-2025-843, https://doi.org/10.5194/egusphere-2025-843, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
As natural hazards evolve, understanding how extreme events interact over time is crucial. While single extremes have been widely studied, joint extremes remain challenging to analyze. We present a framework that combines advanced statistical modeling with copula theory to capture changing dependencies. Applying it to historical data reveals dynamic patterns in extreme events. To support broader use, we provide an open-source tool for improved hazard assessment.
Aloïs Tilloy, Dominik Paprotny, Stefania Grimaldi, Goncalo Gomes, Alessandra Bianchi, Stefan Lange, Hylke Beck, Cinzia Mazzetti, and Luc Feyen
Earth Syst. Sci. Data, 17, 293–316, https://doi.org/10.5194/essd-17-293-2025, https://doi.org/10.5194/essd-17-293-2025, 2025
Short summary
Short summary
This article presents a reanalysis of Europe's river streamflow for the period 1951–2020. Streamflow is estimated through a state-of-the-art hydrological simulation framework benefitting from detailed information about the landscape, climate, and human activities. The resulting Hydrological European ReAnalysis (HERA) can be a valuable tool for studying hydrological dynamics, including the impacts of climate change and human activities on European water resources and flood and drought risks.
Harriet E. Thompson, Joel C. Gill, Robert Šakić Trogrlić, Faith E. Taylor, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci., 25, 353–381, https://doi.org/10.5194/nhess-25-353-2025, https://doi.org/10.5194/nhess-25-353-2025, 2025
Short summary
Short summary
We present a methodology to compile single hazards and multi-hazard interrelationships in data-scarce urban settings, which we apply to the Kathmandu Valley, Nepal. Using blended sources, we collate evidence of 21 single natural hazard types and 83 multi-hazard interrelationships that could impact the Kathmandu Valley. We supplement these exemplars with multi-hazard scenarios developed by practitioner stakeholders, emphasising the need for inclusive disaster preparedness and response approaches.
Tiberiu-Eugen Antofie, Stefano Luoni, Aloïs Tilloy, Andrea Sibilia, Sandro Salari, Gustav Eklund, Davide Rodomonti, Christos Bountzouklis, and Christina Corbane
Nat. Hazards Earth Syst. Sci., 25, 287–304, https://doi.org/10.5194/nhess-25-287-2025, https://doi.org/10.5194/nhess-25-287-2025, 2025
Short summary
Short summary
This is the first study that uses spatial patterns (clusters/hotspots) and meta-analysis in order to identify the regions at a European level at risk of multi-hazards. The findings point out the socioeconomic dimension as a determining factor in the potential risk of multi-hazards. The outcome provides valuable input for the disaster risk management policy support and will assist national authorities on the implementation of a multi-hazard approach in national risk assessment preparation.
Uldis Zandovskis, Davide Pigoli, and Bruce D. Malamud
EGUsphere, https://doi.org/10.5194/egusphere-2024-2733, https://doi.org/10.5194/egusphere-2024-2733, 2024
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
This study looks at how lightning strikes happen over time and space, focusing on six storms in the UK during 2012 and 2015. By using real data, the research examines how often lightning strikes occur, how fast the storms move, and how far the strikes spread. The storms had different speeds (47–111 km/h) and times between strikes (0.01 to 100 seconds), with strikes spreading up to 80 km. The study’s findings help create models to better characterise severe storms.
Lakshmi S. Gopal, Rekha Prabha, Hemalatha Thirugnanam, Maneesha Vinodini Ramesh, and Bruce D. Malamud
EGUsphere, https://doi.org/10.5194/egusphere-2024-1536, https://doi.org/10.5194/egusphere-2024-1536, 2024
Short summary
Short summary
We critically reviewed 250 articles from 2010 to 2023, analysed how social media is used to manage disasters, and developed the Social Media Literature Database. We summarise the methods used for data collection and filtering. Key findings include the widespread use of the latest technologies to handle data, proficiency in spatiotemporal analysis, and gaps in community interaction and resource identification. We also propose best practices for using social media to enhance disaster management.
Robert Šakić Trogrlić, Amy Donovan, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci., 22, 2771–2790, https://doi.org/10.5194/nhess-22-2771-2022, https://doi.org/10.5194/nhess-22-2771-2022, 2022
Short summary
Short summary
Here we present survey responses of 350 natural hazard community members to key challenges in natural hazards research and step changes to achieve the Sustainable Development Goals. Challenges identified range from technical (e.g. model development, early warning) to governance (e.g. co-production with community members). Step changes needed are equally broad; however, the majority of answers showed a need for wider stakeholder engagement, increased risk management and interdisciplinary work.
Faith E. Taylor, Paolo Tarolli, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci., 20, 2585–2590, https://doi.org/10.5194/nhess-20-2585-2020, https://doi.org/10.5194/nhess-20-2585-2020, 2020
Cited articles
AghaKouchak, A., Chiang, F., Huning, L. S., Love, C. A., Mallakpour, I.,
Mazdiyasni, O., Moftakhari, H., Papalexiou, S. M., Ragno, E., and Sadegh, M.:
Climate extremes and compound hazards in a warming world, Annu. Rev. Earth
Planet. Sci., 48, 519–548, https://doi.org/10.1146/annurev-earth-071719-055228, 2020.
Agrawal, K. P., Garg, S., Sharma, S., and Patel, P.: Development and
validation of OPTICS based spatio-temporal clustering technique, Inf. Sci.,
369, 388–401, https://doi.org/10.1016/j.ins.2016.06.048, 2016.
Angélil, O., Perkins-Kirkpatrick, S., Alexander, L. V., Stone, D., Donat, M. G., Wehner, M., Shiogama, H., Ciavarella, A., and Christidis, N.: Comparing regional precipitation and temperature extremes in climate model and reanalysis products, Weather Clim. Extrem., 13, 35–43,
https://doi.org/10.1016/j.wace.2016.07.001, 2016.
Ansari, M. Y., Ahmad, A., Khan, S. S., Bhushan, G., and Mainuddin:
Spatiotemporal clustering: a review, Artif. Intell. Rev., 53, 2381–2423,
https://doi.org/10.1007/s10462-019-09736-1, 2020.
Bach, B., Dragicevic, P., Archambault, D., Hurter, C., and Carpendale, S.: A
review of temporal data visualizations based on space-time cube operations, in Eurographics Conference on Visualization (EuroVis), June 2014, Swansea, Wales, UK, 23–41, https://doi.org/10.2312/eurovisstar.20141171, 2014.
Balch, J. K., Iglesias, V., Braswell, A. E., Rossi, M. W., Joseph, M. B.,
Mahood, A. L., Shrum, T. R., White, C. T., Scholl, V. M., McGuire, B., Karban, C., Buckland, M., and Travis, W. R.: Social-environmental extremes:
Rethinking extraordinary events as outcomes of interacting biophysical and
social systems, Earth's Future, 8, e2019EF001319,
https://doi.org/10.1029/2019EF001319, 2020.
Barton, Y., Giannakaki, P., von Waldow, H., Chevalier, C., Pfahl, S., and
Martius, O.: Clustering of regional-scale extreme precipitation events in
southern Switzerland, Mon. Weather Rev., 144, 347–369,
https://doi.org/10.1175/MWR-D-15-0205.1, 2016.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and
Wood, E. F.: Present and future Köppen-Geiger climate classification maps at 1-km resolution, Sci. Data, 5, 1–12, https://doi.org/10.1038/sdata.2018.214, 2018.
Beck, H. E., Pan, M., Roy, T., Weedon, G. P., Pappenberger, F., van Dijk, A.
I. J. M., Huffman, G. J., Adler, R. F., and Wood, E. F.: Daily evaluation of
26 precipitation datasets using Stage-IV gauge-radar data for the CONUS,
Hydrol. Earth Syst. Sci., 23, 207–224, https://doi.org/10.5194/hess-23-207-2019, 2019.
Birant, D. and Kut, A.: ST-DBSCAN: An algorithm for clustering spatial-temporal data, Data Knowl. Eng., 60, 208–221, https://doi.org/10.1016/j.datak.2006.01.013, 2007.
Blenkinsop, S., Lewis, E., Chan, S. C., and Fowler, H. J.: Quality-control of
an hourly rainfall dataset and climatology of extremes for the UK, Int. J.
Climatol., 37, 722–740, https://doi.org/10.1002/joc.4735, 2017.
Blöschl, G. and Sivapalan, M.: Scale issues in hydrological modelling: A
review, Hydrol. Process., 9, 251–290, https://doi.org/10.1002/hyp.3360090305, 1995.
Brakenridge, G. R.: Global Active Archive of Large Flood Events. Dartmouth
Flood Observatory, University of Colorado, USA,
http://floodobservatory.colorado.edu/Archives/, last access: 29 June 2021.
Brönnimann, S., Allan, R., Atkinson, C., Buizza, R., Bulygina, O., Dahlgren, P., Dee, D., Dunn, R., Gomes, P., John, V. O., Jourdain, S., Haimberger, L., Hersbsbach, H., Kennedy, J., Poli, P., Pulliainen, J., Rayner, N., Saunders, R., Schulz, J., Sterin, A., Stickler, A., Titchner, H., Valente, M. A., Ventura, C., and Wilkinson, C.: Observations for reanalyses, B. Am. Meteorol. Soc., 99, 1851–1866, https://doi.org/10.1175/BAMS-D-17-0229.1, 2018.
Catto, J. L. and Dowdy, A.: Understanding compound hazards from a weather
system perspective, Weather Clim. Extrem., 32, 100313,
https://doi.org/10.1016/j.wace.2021.100313, 2021.
Chazette, P., Flamant, C., Raut, J., Totems, J., and Shang, X.: Tropical
moisture enriched storm tracks over the Mediterranean and their link with
intense rainfall in the Cevennes-Vivarais area during HyMeX, Q. J. Roy.
Meteorol. Soc., 142, 320–334, https://doi.org/10.1002/qj.2674, 2016.
Copernicus Climate Data Store: ERA5-Land hourly data, Copernicus Climate Data Store [data set], https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land (last access: 18 March 2022), 2020.
Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M., and Jones,
P. D.: An Ensemble Version of the E-OBS temperature and precipitation data
sets, J. Geophys. Res.-Atmos., 123, 9391–9409, https://doi.org/10.1029/2017JD028200, 2018.
CRED – Centre for Research on the Epidemiology of Disasters: EM-DAT – The
Emergency Events Database, Univ. Catholique Louvain, https://www.emdat.be/, last access: 22 December 2020.
Cressie, N. A. C.: Statistics for Spatial Data, John Wiley & Sons, Inc.,
New York, https://doi.org/10.1002/9781119115151, 1993.
De Angeli, S., Malamud, B. D., Rossi, L., Taylor, F. E., Trasforini, E., and
Rudari, R.: A multi-hazard framework for spatial-temporal impact analysis,
Int. J. Disast. Risk Reduct., 73, 102829, https://doi.org/10.1016/j.ijdrr.2022.102829, 2022.
Deroche, M. S., Choux, M., Codron, F., and Yiou, P.: Three variables are
better than one: Detection of european winter windstorms causing important
damages, Nat. Hazards Earth Syst. Sci., 14, 981–993,
https://doi.org/10.5194/nhess-14-981-2014, 2014.
Diederen, D., Liu, Y., Gouldby, B., Diermanse, F., and Vorogushyn, S.:
Stochastic generation of spatially coherent river discharge peaks for large-scale, event-based flood risk assessment, Nat. Hazards Earth Syst. Sci., 19, 1041–1053, https://doi.org/10.5194/nhess-19-1041-2019, 2019.
Donat, M. G., Sillmann, J., Wild, S., Alexander, L. V., Lippmann, T., and
Zwiers, F. W.: Consistency of temperature and precipitation extremes across
various global gridded in situ and reanalysis datasets, J. Climate, 27,
5019–5035, https://doi.org/10.1175/JCLI-D-13-00405.1, 2014.
Dowdy, A. J. and Catto, J. L.: Extreme weather caused by concurrent cyclone,
front and thunderstorm occurrences, Sci. Rep., 7, 1–8, https://doi.org/10.1038/srep40359, 2017.
Eden, P.: Great British Weather Disasters, Continuum, London, ISBN 10 1441145915, ISBN 13 978-1441145918, 2008.
Ester, M., Kriegel, H.-P., Sander, J., and Xu, X.: A density-based algorithm
for discovering clusters in large spatial databases with noise, in: KDD-1996
Proceedings of the Second International Conference on Knowledge Discovery
and Data Mining, 2–4 August 1996, Portland, Oregon, 226–231, https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf (last access: 1 May 2022), 1996.
Fan, X., Scaringi, G., Korup, O., West, A. J., van Westen, C. J., Tanyas, H., Hovius, N., Hales, T. C., Jibson, R. W., Allstadt, K. E., Zhang, L., Evans, S. G., Xu, C., Li, G., Pei, X., Xu, Q., and Huang, R.: Earthquake-induced chains of geologic hazards: Patterns, mechanisms, and impacts, Rev. Geophys., 57, 421–503, https://doi.org/10.1029/2018RG000626, 2019.
Frame, T., Harrisonm, G., Hewson, T., and Roberts, N.: Meteorological Risk:
extra-tropical cyclones, tropical cyclones and convective storms, in: Science
for Disaster Risk Management 2017: Knowing Better and Losing Less, Publications Office of the European Union, Luxembourg, 246–256, https://doi.org/10.2788/842809, 2017.
García-Herrera, R., Garrido-Perez, J. M., Barriopedro, D., Ordóñez, C., Vicente-Serrano, S. M., Nieto, R., Gimeno, L., Sorí, R., and Yiou, P.: The European 2016/17 drought, J. Climate, 32, 3169–3187, https://doi.org/10.1175/JCLI-D-18-0331.1, 2019.
Georgoulas, G., Konstantaras, A., Katsifarakis, E., Stylios, C. D., Maravelakis, E., and Vachtsevanos, G. J.: “Seismic-mass” density-based
algorithm for spatio-temporal clustering, Expert Syst. Appl., 40, 4183–4189, https://doi.org/10.1016/j.eswa.2013.01.028, 2013.
Gill, J. C. and Malamud, B. D.: Reviewing and visualizing the interactions
of natural hazards, Rev. Geophys., 52, 680–722, https://doi.org/10.1002/2013RG000445, 2014.
Gleixner, S., Demissie, T., and Diro, G. T.: Did ERA5 improve temperature and
precipitation reanalysis over East Africa?, Atmosphere (Basel), 11, 996,
https://doi.org/10.3390/atmos11090996, 2020.
Hahsler, M., Piekenbrock, M., and Doran, D.: dbscan: Fast density-based
clustering with R, J. Stat. Softw., 91, 1–30, https://doi.org/10.18637/jss.v091.i01, 2019.
Hawcroft, M. K., Shaffrey, L. C., Hodges, K. I., and Dacre, H. F.: How much
Northern Hemisphere precipitation is associated with extratropical cyclones?, Geophys. Res. Lett., 39, L24809, https://doi.org/10.1029/2012GL053866, 2012.
Hendry, A., Haigh, I. D., Nicholls, R. J., Winter, H. C., Neal, R., Wahl, T., Joly-Laugel, A., and Darby, S. E.: Assessing the characteristics and drivers of compound flooding events around the UK coast, Hydrol. Earth Syst. Sci., 23, 3117–3139, https://doi.org/10.5194/hess-23-3117-2019, 2019.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1979 to present. Copernicus Climate Change
Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.adbb2d47, 2018.
Hersbach, H., Bell, B., Berrisford, P., Horányi, A., Sabater, J. M.,
Nicolas, J., Radu, R., Schepers, D., Simmons, A., Soci, C., and Dee, D.:
Global reanalysis: goodbye ERA-Interim, hello ERA5, ECMWF Newslett., 159,
17–24, https://doi.org/10.21957/vf291hehd7, 2019.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global
reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hillier, J. K., Matthews, T., Wilby, R. L., and Murphy, C.: Multi-hazard
dependencies can increase or decrease risk, Nat. Clim. Change, 10, 595–598, https://doi.org/10.1038/s41558-020-0832-y, 2020.
Holley, D. M., Dorling, S. R., Steele, C. J., and Earl, N.: A climatology of
convective available potential energy in Great Britain, Int. J. Climatol., 34, 3811–3824, https://doi.org/10.1002/joc.3976, 2014.
Huang, W., Xu, S., Yan, Y., and Zipf, A.: An exploration of the interaction
between urban human activities and daily traffic conditions: A case study of
Toronto, Canada, Cities, 84, 8–22, https://doi.org/10.1016/j.cities.2018.07.001, 2019.
Hulme, M. and Barrow, E.: Climates of the British Isles, Routledge, London,
https://doi.org/10.4324/9781315870793, 1997.
Huntingford, C., Marsh, T., Scaife, A. A., Kendon, E. J., Hannaford, J., Kay, A. L., Lockwood, M., Prudhomme, C., Reynard, N. S., Parry, S., Lowe, J. A., Screen, J. A., Ward, H. C., Roberts, M., Stott, P. A., Bell, V. A., Bailey, M., Jenkins, A., Legg, T., Otto, F. E. L., Massey, N., Schaller, N., Slingo, J., and Allen, M. R.: Potential influences on the United Kingdom's floods of winter 2013/14, Nat. Clim. Change, 4, 769–777, https://doi.org/10.1038/nclimate2314, 2014.
Iordanidou, V., Koutroulis, A. G., and Tsanis, I. K.: Investigating the
relationship of lightning activity and rainfall: A case study for Crete Island, Atmos. Res., 172–173, 16–27, https://doi.org/10.1016/j.atmosres.2015.12.021, 2016.
Joyce, R. J., Janowiak, J. E., Arkin, P. A., and Xie, P.: CMORPH: A method that produces global precipitation estimates from passive microwave and
infrared data at high spatial and temporal resolution, J. Hydrometeorol., 5, 487–503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2, 2004.
Kassambara, A.: Practical Guide to Cluster Analysis in R: Unsupervised machine learning, STHDA, Poland, ISBN 10 1542462703, ISBN 13 978-1542462709, 2017.
Kendon, E. J., Ban, N., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan,
S. C., Evans, J. P., Fosser, G., and Wilkinson, J. M.: Do convection-permitting regional climate models improve projections of future
precipitation change?, B. Am. Meteorol. Soc., 98, 79–93, https://doi.org/10.1175/BAMS-D-15-0004.1, 2017.
Kholodovsky, V. and Liang, X.-Z.: A generalized spatio-temporal threshold
clustering method for identification of extreme event patterns, Adv. Stat.
Clim. Meteorol. Oceanogr., 7, 35–52, https://doi.org/10.5194/ascmo-7-35-2021, 2021.
Klerk, W. J., Winsemius, H. C., van Verseveld, W. J., Bakker, A. M. R., and
Diermanse, F. L. M.: The co-incidence of storm surges and extreme discharges
within the Rhine–Meuse Delta, Environ. Res. Lett., 10, 035005,
https://doi.org/10.1088/1748-9326/10/3/035005, 2015.
Lancaster, J.: What is the right scale? Encouraging fruitful engagement for
ecology with ecohydraulics, J. Ecohydraulics, 3, 63–76,
https://doi.org/10.1080/24705357.2018.1535260, 2018.
Leonard, M., Westra, S., Phatak, A., Lambert, M., van den Hurk, B. J., McInnes, K., Risbey, J., Schuster, S., Jakob, D., and Stafford-Smith, M.: A
compound event framework for understanding extreme impacts, Wiley Interdisciplin. Rev. Clim. Change, 5, 113–128, https://doi.org/10.1002/wcc.252, 2014.
Mahto, S. S. and Mishra, V.: Does ERA-5 Outperform Other Reanalysis Products
for Hydrologic Applications in India?, J. Geophys. Res.-Atmos., 124, 9423–9441, https://doi.org/10.1029/2019JD031155, 2019.
Mailier, P. J., Stephenson, D. B., Ferro, C. A. T., and Hodges, K. I.: Serial
clustering of extratropical cyclones, Mon. Weather Rev., 134, 2224–2240,
https://doi.org/10.1175/MWR3160.1, 2006.
Manning, C., Widmann, M., Bevacqua, E., Van Loon, A. F., Maraun, D., and
Vrac, M.: Increased probability of compound long-duration dry and hot events in Europe during summer (1950–2013), Environ. Res. Lett., 14, 094006,
https://doi.org/10.1088/1748-9326/ab23bf, 2019.
Martius, O., Pfahl, S., and Chevalier, C.: A global quantification of compound precipitation and wind extremes, Geophys. Res. Lett., 43, 7709–7717, https://doi.org/10.1002/2016GL070017, 2016.
Mastrantonas, N., Herrera-Lormendez, P., Magnusson, L., Pappenberger, F., and
Matschullat, J.: Extreme precipitation events in the Mediterranean:
Spatiotemporal characteristics and connection to large-scale atmospheric flow patterns, Int. J. Climatol., 41, 2710–2728, https://doi.org/10.1002/joc.6985, 2020.
Met Office: Past weather events, https://www.metoffice.gov.uk/weather/learn-about/past-uk-weather-events, last access: 1 October 2020.
Milligan, G. W. and Cooper, M. C.: Methodology review: Clustering methods,
Appl. Psychol. Meas., 11, 329–354, https://doi.org/10.1177/014662168701100401, 1987.
Minola, L., Zhang, F., Azorin-Molina, C., Pirooz, A. A. S., Flay, R. G. J.,
Hersbach, H., and Chen, D.: Near-surface mean and gust wind speeds in ERA5
across Sweden: towards an improved gust parametrization, Clim. Dynam., 55, 887–907, https://doi.org/10.1007/s00382-020-05302-6, 2020.
Molina, M. O., Gutiérrez, C., and Sánchez, E.: Comparison of ERA5
surface wind speed climatologies over Europe with observations from the HadISD dataset, Int. J. Climatol. 41, 4864–4878, https://doi.org/10.1002/joc.7103, 2021.
Naylor, L. A., Spencer, T., Lane, S. N., Darby, S. E., Magilligan, F. J.,
Macklin, M. G., and Möller, I.: Stormy geomorphology: geomorphic contributions in an age of climate extremes, Earth Surf. Proc. Land., 42, 166–190, https://doi.org/10.1002/esp.4062, 2017.
Nitschke, M., Tucker, G. R., Hansen, A. L., Williams, S., Zhang, Y., and Bi, P.: Impact of two recent extreme heat episodes on morbidity and mortality in
Adelaide, South Australia: a case-series analysis, Environ. Health, 10, 42, https://doi.org/10.1186/1476-069X-10-42, 2011.
ONS – Office for National Statistics: NUTS1 Regions,
https://www.ons.gov.uk/methodology/geography/ukgeographies/eurostat, last access: 29 June 2021.
Orlanski, I.: A rational subdivision of scales for atmospheric processes, Am. Meteorol. Soc., 56, 527–530, 1975.
Pfahl, S. and Wernli, H.: Quantifying the relevance of cyclones for precipitation extremes, J. Climate, 25, 6770–6780, https://doi.org/10.1175/JCLI-D-11-00705.1, 2012.
Pinto, J. G., Karremann, M. K., Born, K., Della-Marta, P. M., and Klawa, M.:
Loss potentials associated with European windstorms under future climate
conditions, Clim. Res., 54, 1–20, https://doi.org/10.3354/cr01111, 2012.
Rahman, M. S., Yang, R., and Di, L.: Clustering Indian Ocean tropical cyclone
tracks by the standard deviational ellipse, Climate, 6, 39, https://doi.org/10.3390/cli6020039, 2018.
Ramsay, H. A., Camargo, S. J., and Kim, D.: Cluster analysis of tropical
cyclone tracks in the Southern Hemisphere, Clim. Dynam., 39, 897–917,
https://doi.org/10.1007/s00382-011-1225-8, 2012.
Raveh-Rubin, S. and Wernli, H.: Large-scale wind and precipitation extremes
in the Mediterranean: A climatological analysis for 1979–2012, Q. J. Roy.
Meteorol. Soc., 141, 2404–2417, https://doi.org/10.1002/qj.2531, 2015.
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/, last access: 1 May 2022.
Ridder, N. N., Pitman, A. J., Westra, S., Ukkola, A., Do, H. X., Bador, M.,
Hirsch, A. L., Evans, J. P., Di Luca, A., and Zscheischler, J.: Global hotspots for the occurrence of compound events, Nat. Commun., 11, 5956,
https://doi.org/10.1038/s41467-020-19639-3, 2020.
Rigo, T., Berenguer, M., and del Llasat, M. C.: An improved analysis of
mesoscale convective systems in the western Mediterranean using weather radar, Atmos. Res., 227, 147–156, https://doi.org/10.1016/j.atmosres.2019.05.001, 2019.
Rivoire, P., Martius, O., and Naveau, P.: A comparison of moderate and extreme ERA-5 Daily precipitation with two observational data sets, Earth
Space Sci., 8, 1–23, https://doi.org/10.1029/2020EA001633, 2021.
Sadegh, M., Moftakhari, H. R., Gupta, H. V., Ragno, E., Mazdiyasni, O., Sanders, B. F., Matthew, R. A., and AghaKouchak, A.: Multihazard scenarios
for analysis of compound extreme events, Geophys. Res. Lett., 45, 5470–5480, https://doi.org/10.1029/2018GL077317, 2018.
Saha, S., Moorthi, S., Pan, H. L., Wu, X., Wang, J., Nadiga, S., Tripp, P.,
Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R.,
Gayno, G., Wang, J., Hou, Y. T., Chuang, H. Y., Juang, H. M. H., Sela, J.,
Iredell, M., Treadon, R., Kleist, D., Van Delst, P., Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., Van Den Dool, H., Kumar, A.,
Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J. K., Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C. Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W., Rutledge, G., and Goldberg, M.: The NCEP climate forecast system reanalysis, B. Am. Meteorol. Soc., 91, 1015–1057, https://doi.org/10.1175/2010BAMS3001.1, 2010.
Schneider, D. C.: Quantitative Ecology: Spatial and Temporal Scaling, Elsevier Inc., Oxford, UK, https://doi.org/10.1016/C2009-0-02445-3, 1994.
Sedlmeier, K., Feldmann, H., and Schädler, G.: Compound summer temperature and precipitation extremes over central Europe, Theor. Appl.
Climatol., 131, 1493–1501, https://doi.org/10.1007/s00704-017-2061-5, 2018.
Sharifi, E., Eitzinger, J., and Dorigo, W.: Performance of the state-of-the-art gridded precipitation products over mountainous terrain: A
regional study over Austria, Remote Sens., 11, 1–20, https://doi.org/10.3390/rs11172018, 2019.
Shi, Z. and Pun-Cheng, L.: Spatiotemporal Data Clustering: A survey of methods, ISPRS Int. J. Geo-Inform., 8, 112, https://doi.org/10.3390/ijgi8030112, 2019.
Skøien, J. O., Blöschl, G., and Western, A. W.: Characteristic space
scales and timescales in hydrology, Water Resour. Res., 39, 1304,
https://doi.org/10.1029/2002WR001736, 2003.
Skok, G., Žagar, N., Honzak, L., Žabkar, R., Rakovec, J., and Ceglar,
A.: Precipitation intercomparison of a set of satellite- and raingauge-derived datasets, ERA Interim reanalysis, and a single WRF regional climate simulation over Europe and the North Atlantic, Theor. Appl. Climatol., 123, 217–232, https://doi.org/10.1007/s00704-014-1350-5, 2016.
Spinoni, J., Barbosa, P., Bucchignani, E., Cassano, J., Cavazos, T., Cescatti, A., Christensen, J. H., Christensen, O. B., Coppola, E., Evans, J.
P., Forzieri, G., Geyer, B., Giorgi, F., Jacob, D., Katzfey, J., Koenigk, T., Laprise, R., Lennard, C. J., Kurnaz, M. L., Li, D., Llopart, M., McCormick, N., Naumann, G., Nikulin, G., Ozturk, T., Panitz, H., Rocha, R. P., Solman, S. A., Syktus, J., Tangang, F., Teichmann, C., Vautard, R., Vogt, J. V., Winger, K., Zittis, G., and Dosio, A.: Global exposure of population and land-use to meteorological droughts under different warming levels and SSPs: a CORDEX-based study, Int. J. Climatol., 41, 6825–6853, https://doi.org/10.1002/joc.7302, 2021.
Strauss, C., Rosa, M. B., and Stephany, S.: Spatio-temporal clustering and
density estimation of lightning data for the tracking of convective events,
Atmos. Res., 134, 87–99, https://doi.org/10.1016/j.atmosres.2013.07.008, 2013.
Sutanto, S. J., Vitolo, C., Di Napoli, C., D'Andrea, M., and Van Lanen, H. A.
J.: Heatwaves, droughts, and fires: Exploring compound and cascading dry
hazards at the pan-European scale, Environ. Int., 134, 105276,
https://doi.org/10.1016/j.envint.2019.105276, 2020.
Tarek, M., Brissette, F. P., and Arsenault, R.: Evaluation of the ERA5
reanalysis as a potential reference dataset for hydrological modelling over
North America, Hydrol. Earth Syst. Sci., 24, 2527–2544,
https://doi.org/10.5194/hess-24-2527-2020, 2020.
Temme, A., Guzzetti, F., Samia, J., and Mirus, B. B.: The future of
landslides' past – a framework for assessing consecutive landsliding
systems, Landslides, 17, 1519–1528, https://doi.org/10.1007/s10346-020-01405-7, 2020.
Tencer, B., Weaver, A., and Zwiers, F.: Joint occurrence of daily temperature
and precipitation extreme events over Canada, J. Appl. Meteorol. Clim., 53, 2148–2162, https://doi.org/10.1175/JAMC-D-13-0361.1, 2014.
Tencer, B., Bettolli, M. L., and Rusticucci, M.: Compound temperature and
precipitation extreme events in southern South America: Associated atmospheric circulation, and simulations by a multi-RCM ensemble, Clim. Res., 68, 183–199, https://doi.org/10.3354/cr01396, 2016.
Tilloy, A.: Wind and Precipitation Extremes in Great Britain (1979–2019) to apply the methodology for Spatiotemporal Identification of Compound Hazards, Zenodo [data set], https://doi.org/10.5281/zenodo.4906264, 2021.
Tilloy, A.: Alowis/SI-CH: A methodology for the spatiotemporal identification of compound hazards, Zenodo [code], https://doi.org/10.5281/zenodo.6555825, 2022.
Tilloy, A., Malamud, B. D., Winter, H., and Joly-Laugel, A.: A review of
quantification methodologies for multi-hazard interrelationships, Earth-Sci. Rev., 196, 102881, https://doi.org/10.1016/j.earscirev.2019.102881, 2019.
Ulbrich, U., Leckebusch, G. C., and Pinto, J. G.: Extra-tropical cyclones in
the present and future climate: A review, Theor. Appl. Climatol., 96, 117–131, https://doi.org/10.1007/s00704-008-0083-8, 2009.
Visser-Quinn, A., Beevers, L., Collet, L., Formetta, G., Smith, K., Wanders,
N., Thober, S., Pan, M., and Kumar, R.: Spatio-temporal analysis of compound
hydro-hazard extremes across the UK, Adv. Water Resour., 130, 77–90,
https://doi.org/10.1016/j.advwatres.2019.05.019, 2019.
Vogel, M. M., Zscheischler, J., Fischer, E. M., and Seneviratne, S. I.:
Development of future heatwaves for different hazard thresholds, J. Geophys.
Res.-Atmos., 125, e2019JD032070, https://doi.org/10.1029/2019JD032070, 2020.
Vorogushyn, S., Merz, B., Lindenschmidt, K.-E., and Apel, H.: A new
methodology for flood hazard assessment considering dike breaches, Water Resour. Res., 46, W08541, https://doi.org/10.1029/2009WR008475, 2010.
Widmann, M. and Bretherton, C. S.: Validation of mesoscale precipitation in
the NCEP reanalysis using a new gridcell dataset for the Northwestern United
States, J. Climate, 13, 1936–1950, https://doi.org/10.1175/1520-0442(2000)013<1936:VOMPIT>2.0.CO;2, 2000.
WMO – World Meteorological Organization: List of all Variables, https://space.oscar.wmo.int/variables, last access: 17 May 2022.
Xu, D. and Tian, Y.: A comprehensive survey of clustering algorithms, Ann.
Data Sci., 2, 165–193, https://doi.org/10.1007/s40745-015-0040-1, 2015.
Yuan, G., Sun, P., Zhao, J., Li, D., and Wang, C.: A review of moving object
trajectory clustering algorithms, Artif. Intell. Rev., 47, 123–144,
https://doi.org/10.1007/s10462-016-9477-7, 2017.
Yue, S.: The Gumbel logistic model for representing a multivariate storm
event, Adv. Water Resour., 24, 179–185, https://doi.org/10.1016/s0309-1708(00)00039-7, 2000.
Zhang, X., Alexander, L., Hegerl, G. C., Jones, P. D., Tank, A. K., Peterson, T. C., Trewin, B., and Zwiers, F. W.: Indices for monitoring changes in extremes based on daily temperature and precipitation data, Wiley Interdisciplin. Rev. Clim. Change, 2, 851–870, 2011.
Zhang, Y., Sun, X., and Chen, C.: Characteristics of concurrent precipitation
and wind speed extremes in China, Weather Clim. Extrem., 32, 100322,
https://doi.org/10.1016/j.wace.2021.100322, 2021.
Zscheischler, J. and Seneviratne, S. I.: Dependence of drivers affects risks
associated with compound events, Sci. Adv., 3, e1700263,
https://doi.org/10.1126/sciadv.1700263, 2017.
Zscheischler, J., Mahecha, M. D., Harmeling, S., and Reichstein, M.: Detection and attribution of large spatiotemporal extreme events in Earth
observation data, Ecol. Inform., 15, 66–73, https://doi.org/10.1016/j.ecoinf.2013.03.004, 2013.
Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C., Horton, R. M., van den Hurk, B., AghaKouchak, A., Jézéquel, A., Mahecha, M. D., Maraun, D., Ramos, A. M., Ridder, N. N., Thiery, W., and Vignotto, E.: A typology of compound weather and climate events, Nat. Rev. Earth Environ., 1, 333–347, https://doi.org/10.1038/s43017-020-0060-z, 2020.
Zscheischler, J., Naveau, P., Martius, O., Engelke, S., and Raible, C. C.: Evaluating the dependence structure of compound precipitation and wind speed extremes, Earth Syst. Dynam., 12, 1–16, https://doi.org/10.5194/esd-12-1-2021, 2021.
Short summary
Compound hazards occur when two different natural hazards impact the same time period and spatial area. This article presents a methodology for the spatiotemporal identification of compound hazards (SI–CH). The methodology is applied to compound precipitation and wind extremes in Great Britain for the period 1979–2019. The study finds that the SI–CH approach can accurately identify single and compound hazard events and represent their spatial and temporal properties.
Compound hazards occur when two different natural hazards impact the same time period and...
Altmetrics
Final-revised paper
Preprint