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Abstract. Compound hazards refer to two or more different natural hazards occurring over the same time pe-
riod and spatial area. Compound hazards can operate on different spatial and temporal scales than their com-
ponent single hazards. This article proposes a definition of compound hazards in space and time, presents a
methodology for the spatiotemporal identification of compound hazards (SI–CH), and compiles two compound-
hazard-related open-access databases for extreme precipitation and wind in Great Britain over a 40-year period.
The SI–CH methodology is applied to hourly precipitation and wind gust values for 1979–2019 from climate
reanalysis (ERA5) within a region including Great Britain and the British Channel. Extreme values (above the
99 % quantile) of precipitation and wind gust are clustered with the Density-Based Spatial Clustering of Appli-
cations with Noise (DBSCAN) algorithm, creating clusters for precipitation and wind gusts. Compound hazard
clusters that correspond to the spatial overlap of single hazard clusters during the aggregated duration of the two
hazards are then identified. We compile these clusters into a detailed and comprehensive ERA5 Hazard Clusters
Database 1979–2019 (given in the Supplement), which consists of 18 086 precipitation clusters, 6190 wind clus-
ters, and 4555 compound hazard clusters for 1979–2019 in Great Britain. The methodology’s ability to identify
extreme precipitation and wind events is assessed with a catalogue of 157 significant events (96 extreme precip-
itation and 61 extreme wind events) in Great Britain over the period 1979–2019 (also given in the Supplement).
We find good agreement between the SI–CH outputs and the catalogue with an overall hit rate (ratio between
the number of joint events and the total number of events) of 93.7 %. The spatial variation of hazard intensity
within wind, precipitation, and compound hazard clusters is then visualised and analysed. The study finds that
the SI–CH approach (given as R code in the Supplement) can accurately identify single and compound hazard
events and represent spatial and temporal properties of these events. We find that compound wind and precip-
itation extremes, despite occurring on smaller scales than single extremes, can occur on large scales in Great
Britain with a decreasing spatial scale when the combined intensity of the hazards increases.
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1 Introduction

The spatial and temporal scales of natural processes influence
the spatial and temporal scales of the single or compound nat-
ural hazards that result (e.g. geomorphic: Naylor et al., 2017,
Fan et al., 2019, Temme et al., 2020; atmospheric: Orlan-
ski, 1975, Mastrantonas et al., 2020; hydrologic: Blöschl and
Sivapalan, 1995, Skøien et al., 2003, Diederen et al., 2019;
ecologic: Schneider, 1994, Lancaster, 2018). Here, the spa-
tial scale (the “footprint”) refers to the area over which the
hazard occurs. The temporal scale is the duration over which
the hazard acts on the natural environment. As displayed in
Fig. 1, the extent of the temporal and spatial scales of natu-
ral hazards includes many orders of magnitude, influencing
the relationship between natural hazards (Gill and Malamud,
2014; Leonard et al., 2014).

Spatiotemporal clustering methods applied to environ-
mental data can be powerful tools to understand the scales of
different natural hazards by identifying natural hazard clus-
ters (Barton et al., 2016). Such methods allow the extrac-
tion of spatiotemporal and intensity characteristics of natu-
ral hazard clusters. Estimating such characteristics is rele-
vant when defining and understanding the potential spatial–
temporal impacts of natural hazards (e.g. De Angeli et al.,
2022) and their interrelation with society. Examples include
the following:

– the duration of precipitation events (Yue, 2000; Voro-
gushyn et al., 2010) significantly affects dike failure,
landslide triggering, and flood losses;

– the increased duration of heatwaves significantly aggra-
vates their health impacts (Nitschke et al., 2011); and

– the spatial extent of drought influences its impact on so-
ciety (García-Herrera et al., 2019; Balch et al., 2020).

In this article, we propose a robust methodology for the
spatiotemporal identification of compound hazards (SI–CH),
which we use to analyse the spatiotemporal features of wind
and precipitation extremes in Great Britain at various scales
(from hours to days and from local to regional scale) during
the period 1979–2019. This SI–CH methodology is based on
spatiotemporal clustering of extreme values extracted from
a gridded atmospheric dataset, the ERA5 climate reanaly-
sis (Hersbach et al., 2019). Both extreme wind and precip-
itation are significant hazards in Great Britain (Pinto et al.,
2012; Huntingford et al., 2014). These two hazards are usu-
ally associated with extratropical cyclones and severe storms
(Zscheischler et al., 2020). Extreme wind and extreme pre-
cipitation have been defined as compound hazards (i.e. sta-
tistically dependent without causality) (Tilloy et al., 2019).

Events, including precipitation and wind extremes, have
been identified as multivariate compound events (co-
occurrence of multiple hazards in the same geographical re-
gion, causing an impact) (Zscheischler et al., 2020). The

combination of wind and precipitation extremes can result
in different and more significant impacts than the sum of the
individual impacts due to extreme wind and extreme precip-
itation (e.g. the access to a flooded power plant due to heavy
rain hindered by strong winds or road blocked by fallen trees)
(Martius et al., 2016). Previous studies have quantified ex-
treme wind and extreme precipitation co-occurrences at large
scales (Raveh-Rubin and Wernli, 2015; Martius et al., 2016;
Ridder et al., 2020) using climate reanalysis data, thus pro-
viding a spatiotemporal framework to study multiple vari-
ables. To detect the occurrence of extreme wind and extreme
precipitation events, Raveh-Rubin and Wernli (2015) aver-
aged wind and precipitation anomalies spatially and tempo-
rally, while Martius et al. (2016) used a threshold approach
to identify extreme occurrences of wind and precipitation.

This article is organised as follows. Section 2 provides
a brief background to spatiotemporal clustering. Then, in
Sect. 3, the Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) algorithm used in the study and the
gridded data retained for the analysis are introduced. This is
followed by Sect. 4, wherein the SI–CH methodology steps
for creating compound hazard clusters are presented, and
a definition of compound hazard events in space and time
is proposed. Section 5 presents the results, wherein we as-
sess the ability of the SI–CH methodology to identify hazard
events, with the resultant natural hazard clusters confronted
with a set of 157 major hazard events that impacted Great
Britain from 1979–2019. Spatiotemporal and intensity prop-
erties of detected single and compound hazard clusters are
then analysed and discussed. Finally, in Sect. 6, we discuss
the limitations of the SI–CH methodology and opportunities
for its generalisation to other compound hazards.

2 Spatiotemporal clustering brief background

Clustering is broadly defined as any process of grouping data
by their similarities (Ansari et al., 2020) and is generally con-
sidered an unsupervised learning method because it is not
guided by a priori ideas (Kassambara, 2017). It is funda-
mental to data analysis in various disciplines (e.g. biology,
epidemiology, communication, criminology) (Xu and Tian,
2015). Clustering can be considered spatially, temporally, or
the two together. In addition, two clusters of different hazards
can intersect in time and space, forming a compound hazard
cluster. Two hypothetical examples of spatial clustering for
two hazards and their intersections to become a compound
hazard event are shown in Fig. 2.

Figure 2 illustrates two compound hazard events spatially,
but one can also examine compound hazard events over-
lapping in time and both space and time together (De An-
geli et al., 2022). The significant increase in spatiotempo-
ral data now available has created increased opportunities for
spatiotemporal clustering approaches (Shi and Pun-Cheng,
2019; Ansari et al., 2020). Many methods have been devel-
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Figure 1. Spatial and temporal scales of 16 natural hazards. Shown on logarithmic axes are the spatial and temporal scales over which
the 16 natural hazards act. Here spatial scale refers to the area that the hazard impacts and temporal scale to the timescale on which the
single hazard acts upon the natural environment. Hazards are grouped into geophysical (green), hydrological (blue), shallow Earth processes
(orange), atmospheric (red), and biophysical (purple). From Gill and Malamud (2014).

Figure 2. Cartoon illustration of the footprint of two hypothetical
compound hazard events over Great Britain. Hazard A (yellow) is
a cluster of extreme occurrences of variable x, and Hazard B (vi-
olet) is a cluster of extreme occurrences of variable y. In (a) and
(b) two hypothetical examples of spatial overlaps are shown, each a
compound hazard event.

oped to cluster and classify data (e.g. partition, hierarchical,
density-based, model-based clustering; see for a review Mil-
ligan and Cooper, 1987; Xu and Tian, 2015). Some cluster-
ing methods have been adapted for spatiotemporal clustering
(e.g. Birant and Kut, 2007; Agrawal et al., 2016; Yuan et al.,
2017; Huang et al., 2019; Ansari et al., 2020). Spatiotemporal
clustering is usually done with three different values charac-
terising the data: two spatial coordinates and time (Ansari et
al., 2020).

Three main approaches to spatiotemporal clustering in-
clude the following.

– Point event clustering. This approach aims to discover
groups of events close to each other in space and time.
It is used, for example, to cluster seismic events in time
and space (Georgoulas et al., 2013).

– Moving clusters. This approach aims to detect be-
haviours of moving objects. While the identity of a
moving cluster does not change over time, other at-
tributes might change. An example is the spatiotempo-
ral clustering of lightning strikes resulting from moving
convective storms (Strauss et al., 2013).

– Trajectory clustering. This approach captures groups
of objects with similar movement behaviours, with the
variable of interest being the movement itself (Yuan et
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al., 2017). Trajectory clustering contrasts with the mov-
ing cluster approach, wherein the moving object is of
interest (vs. the movement itself). Examples of trajec-
tory clustering include cyclone track clustering in dif-
ferent world regions (Ramsay et al., 2012; Rahman et
al., 2018).

In spatiotemporal clustering, some approaches consider time
and space as separate dimensions (e.g. Birant and Kut, 2007)
with distinct clustering rules, while other approaches con-
sider a space–time cube (e.g. Zscheischler et al., 2013; Vo-
gel et al., 2020). In this article, we adopt a space–time cube
and use the spatiotemporal ratio (Sect. 4.2.1) to control the
relationship between space and time. Among other factors,
the characteristics of the data used influence the choice of
the spatiotemporal clustering method. Here we use climate
reanalysis data, which are gridded data. Our approach aims
to cluster extreme occurrences of climate variables, similarly
to Kholodovsky and Liang (2021). Extreme occurrences of
wind and precipitation are used to illustrate our methodol-
ogy. We consider such occurrences to be point events in time
and space (see Sect. 4.2) and thus select a point event clus-
tering approach.

3 Spatiotemporal data and study area

Spatiotemporal data include information about the location
(e.g. longitude and latitude) and time of the variable of inter-
est (Ansari et al., 2020). In this paper, we use climate data fo-
cusing on extreme wind and extreme precipitation. However,
the methodology we describe here can be applied to a wide
range of variables. Spatiotemporal datasets of climate vari-
ables have been derived from many different sources, includ-
ing the following: observations from instrumental stations
and their interpolations (e.g. E-OBS, Cornes et al., 2018),
climate model outputs and reanalysis (e.g. ERA5, Hahsler et
al., 2019), and remote sensing (e.g. CMORPH, Joyce et al.,
2004). These have been used to analyse natural hazards and
climate extremes in space and time.

To ensure spatial and temporal consistency between wind
and precipitation data, we extract both of these variables
from a climate reanalysis dataset. Climate reanalysis of-
fers homogeneous datasets for numerous environmental vari-
ables, including precipitation and wind gust, with differ-
ent spatial and temporal resolutions. Those data are outputs
of climate models calibrated on observed data worldwide
(Brönnimann et al., 2018). Two primary climate reanalysis
datasets include (i) the Climate Forecast System Reanalysis
(Saha et al., 2010) developed by the US National Center for
Atmospheric Research (NCAR) and (ii) ERA5 (Hersbach et
al., 2020) developed by the European Centre for Medium-
Range Weather Forecasts (ECMWF). ERA5 (ECMWF Re-
analysis 5th Generation) is used in the present study (Hers-
bach et al., 2018).

ERA5 was released in 2019 by ECMWF and benefits
from the latest improvements in the field (Hersbach et al.,
2020). The ERA5 data are available (Copernicus Climate
Data Store, 2020) from 1979 to the present (we use 1979 up
to September 2019), with a spatial resolution of 0.25◦×0.25◦

and an hourly temporal resolution. The data resolve the at-
mosphere using 137 levels from the Earth’s surface up to a
height of 80 km (Hersbach et al., 2020). ERA5 data are gen-
erated with a short (18 h) forecast twice a day (06:00 and
18:00 UTC) and assimilated with observed data (Hersbach et
al., 2020).

Reanalysis data are obtained from short-term model fore-
casts and can be affected by forecast errors; they are not ob-
servations (Pfahl and Wernli, 2012). Furthermore, reanalysis
data offer a large amount of usable data for spatiotemporal
clustering methods. The methodology described in this study
could be easily extended to other atmospheric or hydrologi-
cal hazards (e.g. extreme temperature, Sutanto et al., 2020).
The two following variables are extracted from the ERA5
product at a spatial resolution of 0.25◦× 0.25◦.

– Extreme precipitation (p) is accumulated liquid and
frozen water (mm), comprising rain and snow, that falls
to the Earth’s surface in 1 h (mm h−1). This value is av-
eraged over each 0.25◦× 0.25◦ grid cell.

– Extreme wind (w) is hourly maximum wind
gust (m s−1) at a height of 10 m above the Earth’s
surface. The WMO (2022) defines a wind gust as the
maximum wind speed averaged over 3 s intervals. As
this duration is shorter than a model time step, this
value is deduced from other parameters such as surface
stress, surface friction, wind shear, and stability. This
value is averaged over each 0.25◦× 0.25◦ grid cell.

When considering the study area boundaries, two factors
should be considered: (i) the variability of climate, geology,
or topography within the study area and (ii) the possibility
of not capturing an event in its totality because of edge ef-
fects (Cressie, 1993). Edge effects can potentially bias clus-
tering analyses as edge points have fewer neighbouring cells
compared to other cells within the domain (Cressie, 1993).
To mitigate this issue, we set a buffer area of two cells at
the edge of our study area (Fig. 3). Clusters need to include
extreme values (points) that are some distance away (here
two cells) from the edge of the study area. A cluster of ex-
treme values (points) exclusively within the buffer area will
not be retained, but values in the buffer area can be part of
other clusters. The study area chosen to illustrate the SI–
CH methodology with extreme wind and precipitation con-
tains most of Great Britain and part of northwestern France
(Fig. 3). The total area of the domain is 647 900 km2 and
represents a domain of approximately 1200 km (45 cells)
by 500 km (33 cells), or a total of 1485 cells, with each
cell 0.25◦× 0.25◦ (cells range from 18.6 km× 27.8 km in
the south of the study region to 14.3 km× 27.8 km in the
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Figure 3. Study area with a domain of 1485 cells
(45 cells× 33 cells, each 0.25◦× 0.25◦) used for spatiotem-
poral clustering of extreme precipitation and extreme wind for the
period January 1979 to September 2019 at 1 h time steps using
ERA5 data. The area includes most of Great Britain and parts of
northwestern France. The red frame is a buffer area of two cells
(included in the total study area).

north). The temporal resolution used is 1 h over the period
January 1979 to September 2019 (40 years and 9 months).

Both Great Britain and northern France share the same
temperate oceanic climate (Koppen climate classification
Cfb) (Beck et al., 2018). However, there are variations in
precipitation and wind exposure within this broad region,
particularly with coastal areas being more exposed to high
wind and mountainous areas being wetter (Hulme and Bar-
row, 1997). Our methodology accounts for this variability
when sampling extreme events (discussed below in Sect. 4).

Using a climate reanalysis product to study extreme events
induces several limitations compared to observational data
(Donat et al., 2014; Angélil et al., 2016). In climate reanaly-
sis, variables are computed over a grid cell, and the resulting
value is an average. This averaging often smooths local ex-
treme values (Donat et al., 2014). The accuracy of reanalysis
data also depends on various observation types (Hersbach et
al., 2019). ERA5 benefits from the latest methodological im-
provements in data assimilation and modelling (Hersbach et
al., 2020). Compared to its predecessor ERA-Interim, ERA5
offers finer spatial and temporal resolutions, but most impor-
tantly, it produces more accurate weather and climate data in
most regions of the world (Hersbach et al., 2019; Gleixner
et al., 2020; Tarek et al., 2020). Despite these improvements,
the spatial resolution is still relatively coarse and small-scale

convective events are still poorly captured, as is the case
for most reanalysis products (Holley et al., 2014; Kendon et
al., 2017; Beck et al., 2019). Furthermore, precipitation is
not assimilated (calibrated on observations) in ERA5. Nev-
ertheless, ERA5 seems to outperform other global reanalysis
products for extreme precipitation (Mahto and Mishra, 2019)
and captures most observed extreme precipitation events over
Europe (Rivoire et al., 2021). ERA5 reproduces wind speed
and wind gust more realistically compared to ERA-Interim
(Minola et al., 2020). ERA5 shows good agreement with
wind observations, particularly in the UK (Molina et al.,
2021). However, ERA5 wind gusts can be unrealistic over
high mountains and complex orography (Minola et al., 2020;
Zscheischler et al., 2021).

4 Methodology: spatiotemporal identification of
compound clusters (SI–CH)

We now discuss the methodology developed for spatiotem-
poral identification of compound hazard clusters. We use as
an illustration wind and precipitation extremes from ERA5
reanalysis (temporal resolution 1 h, January 1979 to Septem-
ber 2019; spatial resolution 0.25◦×0.25◦) over Great Britain
and northwestern France. The specific clustering method
used here to identify spatiotemporal clusters of extreme wind
and precipitation needs to comply with two characteristics of
our spatiotemporal data.

i. The large dataset size. ERA5 data are available for over
40 years with an hourly time step; this implies a signif-
icant amount of data over our study area of 1485 cells
(> 5× 108 values for each variable).

ii. Noise level. The sample of extreme wind gusts and pre-
cipitation can produce extremes in individual and lone
cells scattered in space and time, which cannot be asso-
ciated with a specific hazard cluster.

We do not assume a given shape for the natural hazard clus-
ters. This is to ensure flexibility in the specific point event
clustering methodology developed. The characteristics of re-
analysis climate data and the absence of assumptions about
the shape of our hazard clusters guided our choice of a clus-
tering algorithm toward the Density-Based Spatial Cluster-
ing of Applications with Noise (DBSCAN) algorithm (Ester
et al., 1996; Hahsler et al., 2019). DBSCAN is a clustering
algorithm for identifying clusters with arbitrary shapes (Shi
and Pun-Cheng, 2019); see Supplement 1 for further details.
The DBSCAN algorithm is used here as part of our over-
all methodology to create spatiotemporal clusters of extreme
wind and extreme precipitation. The methodology to create
spatiotemporal clusters is described in Fig. 4 as a flowchart
of the methodology steps.

– Variable data extraction with thresholds. Values of both
variables (extreme wind, extreme precipitation) are ex-
tracted for the study area (Fig. 4). A threshold approach
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with a threshold u is used to sample extreme values (see
Sect. 4.1).

– Single hazard spatiotemporal clusters. The different
parameters required for the clustering are set (see
Sect. 4.2). Extreme values are clustered in space and
time with a clustering algorithm (DBSCAN), creating
two sets of clusters: (i) extreme wind and (ii) extreme
precipitation.

– Compounds hazard spatiotemporal clusters. Extreme
wind and extreme precipitation clusters are paired ac-
cording to their spatiotemporal overlaps (see Sect. 4.3).
The footprints of compound hazard clusters in space
and their duration are then identified, allowing the spa-
tiotemporal attributes to be estimated.

The procedure’s sensitivity to the different input parameters
is displayed in Fig. 4 and is discussed and quantified in Sup-
plement 2. We aim to objectively detect hazard clusters by
setting the input parameters either according to physical as-
sumptions (Sect. 4.2.1 and 4.2.2) or by following an auto-
mated procedure (Sect. 4.2.3).

4.1 Defining a hazard threshold

The methodology developed here uses the occurrences of cli-
mate variables above a given threshold to represent that cli-
mate variable’s extremes. These peaks over threshold serve
as a proxy for the occurrence of natural hazards: in this case,
extreme wind and extreme precipitation. The use of a thresh-
old to analyse the spatiotemporal occurrence of different ex-
tremes and their potential combinations has been done with
daily data by Martius et al. (2016), Sedlmeier et al. (2018),
and Sutanto et al. (2020). In the latter two studies, two ap-
proaches are used to define the value of a threshold: (i) an
impact-based approach whereby the threshold is related to
a tipping point at which impacts start occurring (Sedlmeier
et al., 2018) and (ii) a percentile-based approach whereby
the threshold is related to an empirical extreme quantile of
the studied variable (Tencer et al., 2014; Visser-Quinn et al.,
2019; Sutanto et al., 2020). In the second approach, hazards
are extreme events relative to the distribution of the studied
variable.

The percentile-based approach was chosen because it pro-
vides a large sample size for robust statistical analysis.
While not being linked to a specific impact, the percentile-
based approach can also be impact-relevant (Zhang et al.,
2011), with extreme occurrences of hourly maximum wind
gusts and hourly accumulated precipitation potentially neg-
atively impacting society. The connection between maxi-
mum wind speed and impact has been broadly acknowl-
edged (Pinto et al., 2012). It has been shown that a local
98th percentile is an impact-relevant wind threshold (Ul-
brich et al., 2009). However, as our data are not local, a

Figure 4. Flowchart of the methodology developed, spatiotem-
poral identification of compound hazards (SI–CH), for wind and
precipitation data in Great Britain. DBSCAN (Density-Based Spa-
tial Clustering of Applications With Noise) is an integral step in
our methodology to identify compound hazard clusters in time and
space. The name (terminal, process, data) and function associated
with the three types of symbols used in the flowchart are given at
the bottom of the figure.

99th percentile was used to increase the probability of detect-
ing potentially damage-relevant events. For consistency, the
same percentile is used for the definition of extreme events
of both hazards. The threshold is computed for each of the
1485 cells of the domain studied. The threshold values vary
16.6≤ w ≤ 26.8 m s−1 for hourly maximum wind gust w
and 1.46≤ p ≤ 2.74 mm h−1 for precipitation p. The value
of the selected percentile (here 99th) and the corresponding
threshold value significantly influence the clustering proce-
dure (Supplement 2).

The threshold values w for wind gust and p for precip-
itation over the study area are displayed in Fig. 5. In this
figure, the wind gust threshold is higher in coastal regions
and the north of England, Scotland, and Wales. This contrasts
with southern England and northwestern France, which have
significantly lower threshold values. For precipitation, one
can observe a clear division between the eastern and western
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Figure 5. Threshold values (see legends) used to extract extreme values for the clustering process over Great Britain and northwestern
France. The values correspond to the 99th percentile on each grid cell during the period 1979–2019 for (a) hourly maximum wind gust (w)
and (b) hourly precipitation accumulation (p). Data from ERA5 (Hersbach et al., 2018).

parts of Great Britain, with the western part having signifi-
cantly higher threshold values. The sample of extreme events
is then composed of two distinct sets: (i) occurrences of ex-
treme wind gusts and (ii) occurrences of extreme precipita-
tion. These extreme events are then represented as point ob-
jects with coordinates in space (latitude and longitude) and
time (date). Here, both hazards are studied separately before
being paired into compound hazard events. The DBSCAN
clustering algorithm is then applied to the points represent-
ing extreme wind and precipitation values.

4.2 Construction of single hazard clusters

A method for sampling extreme values has been presented in
Sect. 4.1. These extreme values are the input data for the con-
struction of the cluster. In the present study, the spatiotem-
poral domain is assumed to be a space–time cube as done
in other studies (e.g. Bach et al., 2014). The Euclidean dis-
tance is preferred to other distance measures in our study for
simplicity. One of the advantages of this approach is that it
is possible to take advantage of the spatial index structure
(see Supplement 1 for more details about the DBSCAN al-
gorithm) to significantly speed up the runtime complexity
(Hahsler et al., 2019). Three parameters inform the clustering
procedure: (i) the relationship between spatial distance and
temporal lag (r), (ii) the density threshold (µ) for our cluster,
and (iii) the neighbour parameter (ε). These three parameters
are now discussed.

4.2.1 First parameter: the spatiotemporal ratio r

The first step of our cluster event construction is to define
the importance of spatial distance relative to temporal dis-

tance when computing the Euclidean distance between point
objects. This step is done according to physical considera-
tions. Each point object in our input data represents one oc-
currence of an extreme event in one grid cell. Each grid cell is
0.25◦ latitude (' 27.8 km) by 0.25◦ longitude (ranging from
14.3 km in the southern part of our study area to 18.6 km in
the northern part, Fig. 2). Grid cell areas range from 397 km2

(in the south of our study area) to 517 km2 (in the north).
The temporal distance between each extreme value is at least
1 h. Scaling factors are introduced to give more importance
to space or time distance in a three-dimensional space–time
cube (Ansari et al., 2020). We express the spatiotemporal Eu-
clidean distance dp,q (unitless) between two point objects p
and q as

dp,q =

√(
axp − axq

)2
+
(
ayp − ayq

)2
+
(
btp − btq

)2
, (1)

with xp and xq the latitudes of the extreme value, yp and
yq their longitudes, tp and tq their temporal coordinate, and
a and b two scaling parameters. The ratio r = a/b is the spa-
tiotemporal parameter controlling the relationship between
spatial distance and temporal lag. The scaling parameters
are set to a = 1/(0.25◦)= 4◦−1 and b = 1 h−1, giving a ratio
r = 4 h ◦−1. Setting the spatiotemporal ratio to r = 4 h ◦−1

normalises the three-dimensional space–time cube (Fig. 6).
A space–time cube with each point object having a spac-
ing of 1.0 (unitless) in each dimension (longitude, latitude,
time) favours the detection of continuous events in time and
space without giving more importance to one dimension or
the other and makes the most of the resolution of the input
dataset (here ERA5). In practice, this means that a distance
of 0.25◦ in space is weighted similarly to a distance of 1 h
in time (Fig. 6). Nevertheless, even if each point is equally
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Figure 6. Space–time cube as used in the SI–CH (spatiotemporal
identification of compound hazards) methodology proposed in this
paper. The three small red dots represent extreme values. Each cube
is for a normalised latitude× normalised longitude× normalised
time period. Each side of the cube is 1.0 and unitless, with nor-
malisation factors for latitude and longitude a (in units of ◦−1) as
well as a normalisation factor for time b (h−1). Normalised latitude
and longitude for our ERA5 data are (a× 0.25 ◦), with a = 4 ◦−1,
and normalised time is (b× 1 h), with b = 1 h−1.

spaced in terms of longitude and latitude, this is not the case
in terms of geographical distance. The sensitivity analysis
performed in Supplement 2 shows that this parameter has a
small influence on the number of clusters detected compared
to the two other parameters of this clustering procedure.

4.2.2 Second parameter: the density threshold µ

The density threshold parameter µ represents the number of
neighbours a point needs to be considered a core point, thus
generating a new cluster. This value needs to be greater than
four points in our dataset (number of dimensions plus one)
(Ester et al., 1996). However, it is not intended to detect in-
tense small-scale events (e.g. the Bracknell storm, Berkshire,
UK, on 7 May 2000) because of the relatively coarse reso-
lution of ERA5, which tends to underestimate local precip-
itation extremes (Rivoire et al., 2021) and wind extremes in
mountainous areas (Zscheischler et al., 2020). The aim is to
detect events of varying sizes. Small-scale and short-duration
extreme precipitation and/or wind events in Great Britain are
often associated with convective events. Such events vary
from hundreds to tens of thousands of square kilometres
(Chazette et al., 2016; Rigo et al., 2019), while their dura-
tion goes from hours to days. Knowing that the area of the
study area cells ranges between 400 and 520 km2, we take a
density threshold µ= 10 points, meaning that the minimum
spatiotemporal extent of a cluster composed of at least 10 ex-
treme values is

– 1 h over an area of 5200 km2 for a short and large cluster
and

– 10 h over an area of 400 km2 for a long and localised
cluster.

We refer the reader to Supplement 1 for more detailed infor-
mation about core points and the sensitivity threshold.

4.2.3 Third parameter: neighbour parameter ε

This third parameter is the neighbour radius ε, in which at
least µ points (here µ= 10) should be included to create a
cluster. In this study, the neighbourhood is a spatiotempo-
ral domain. This parameter controls the density of extreme
events required to create a cluster. An optimal value for ε
depends on the dataset to be clustered and is assessed semi-
automatically. The procedure to select a relevant radius for
our wind and precipitation dataset is to plot the points’ k–
NN distances (i.e. the distance to the kth nearest neighbour)
in increasing order to look for a knee in the plot. The distance
to the kth nearest neighbour allows classifying data points by
their similarity, here represented by their spatiotemporal dis-
tance. The idea behind this procedure is to separate points
located inside clusters (with low k–NN distance) from iso-
lated noise points (with large k–NN distance) (Hahsler et
al., 2019). Here k = µ= 10. More details about this step are
available in Supplement 1.

4.2.4 Single hazard cluster parameters summary

The three parameters of the clustering procedure (r , µ, ε)
are now set. The spatiotemporal space has been discretised
in a space–time cube (Fig. 6). Each grid point (represent-
ing one grid cell of input data) is spaced by a unit distance
in each direction (longitude, latitude, time). A unit distance
represents 0.25◦ in the spatial dimension and 1 h in time.
The density threshold (µ) has been fixed at µ= 10 points.
A k nearest neighbour (k–NN) search was performed with
k = µ= 10 points. The result is a distance matrix containing
the distance of each point to its 10–NN, allowing us to fix
the neighbour parameter at ε = 2.24 for extreme wind and
ε = 2.45 for extreme precipitation values. This information
makes it possible to estimate the spatiotemporal domain in
which the 10–NN needs to create a new cluster. This 10–
NN neighbourhood includes nmax = 44 points (see Fig. S1.3)
with a maximum temporal distance of 2.0 h and a maximum
spatial distance of 0.5◦ in latitude or longitude. The sensi-
tivity of the clustering procedure to (r , µ, ε) is assessed in
Supplement 2.

4.3 Compound hazard events

One commonly used option to study compound extremes is
to sample only the joint extreme events (i.e. extreme wind
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and extreme precipitation at a given location and time) (Mar-
tius et al., 2016; Tencer et al., 2016; Sutanto et al., 2020;
Zhang et al., 2021). However, when detecting the spatial and
temporal characteristics of compound extremes, this option
has the following weaknesses: (i) a high reliance on the spa-
tial and temporal resolution of the input data in the definition
of compound, (ii) lack of considering the lag time between
different extremes, and (iii) difficulty deciphering the spatial
structure of extreme events. Our approach aims to overcome
these weaknesses.

Here, single hazard event clusters are created for both
extreme wind and extreme precipitation. Compound hazard
events are then detected by spotting the overlap of the ex-
treme wind and extreme precipitation events in time and
space. The footprint of a compound hazard event is the to-
tal area impacted for a duration of time. To define a com-
pound hazard event’s spatial and temporal scales, one can
look at the overlap in time (t) and space (S) of single haz-
ard event clusters. This overlap can be the intersection AND
(tw∩r, Sw∩r) or the union OR (tw∪r, Sw∪r) of the two haz-
ard events in space and time. There are therefore four differ-
ent possible definitions of a compound hazard event in space
and time depending on the definition chosen for the over-
lap in space and time, as displayed in Fig. 7. The extent of
the compound hazard event footprint widely varies depend-
ing on which combination of spatial and temporal overlap is
retained. One can consider the following.

a. The duration of a compound hazard event can either
be defined as the time during which both hazards oc-
cur (AND) or as the aggregated duration of both haz-
ards (OR). As the potential impact caused by a haz-
ard can remain after the occurrence of this hazard (e.g.
fallen trees blocking a road), the temporal scale of a
compound hazard is then defined as the aggregated du-
ration (tw∪r) of both single hazard events.

b. Footprints from different hazards need to overlap at
least at one point to create a compound hazard event.
The spatial scale of compound hazards is defined here
as the intersection (Sw∩r) of the footprint of the two sin-
gle hazards.

An overlap of the two hazards’ footprints does not mean that
the two hazards occur in the overlapping area at the same
time (here same hour) but that the two hazards occurred, dur-
ing at least 1 h each, in that area during the same compound
hazard event. This approach overcomes the weaknesses as
mentioned above of constructing a joint occurrence sampling
method without introducing a lag time (Klerk et al., 2015;
Iordanidou et al., 2016). The time window in which a com-
pound event can occur is flexible and fixed by the duration of
both hazard events.

We define the compound hazard event footprint (Fig. 6a)
here as the intersecting area (AND) on which two (or more)
hazards develop during the aggregated union of the time peri-

Figure 7. Different spatial and temporal scales considered in this
study to define compound hazard events, with each case represent-
ing a combination of spatial and temporal overlap. Panel (a) shows
[spatial AND] with [temporal OR], (b) [spatial AND] with [tempo-
ral AND], (c) [spatial OR] with [temporal OR], and (d) [spatial OR]
with [temporal AND]. Hazard A is orange, hazard B is in purple,
compound hazard is in blue, and parts of the footprints outside the
temporal boundaries are grey. The definition retained for the rest of
the study is highlighted with a red frame (a).

ods (OR) of the two hazard events. We believe this definition
is the most relevant in terms of impacts as it accounts for po-
tential cascading or compounding impacts in time and space
of two (or more) hazards (e.g. flooding of a building caused
by a destroyed roof and heavy precipitation). From this defi-
nition and the illustration in Fig. 6a, the spatial (S) and tem-
poral (t) scales of a compound (“Comp”) hazard event that
includes wind (w) and precipitation (p) events are defined as
follows:

tComp = tw∪p = tw+ tp− tw∩p,

SComp = Sw∩p = Sw+ Sp− Sw∪p, (2)

with t the duration and S the area of the compound hazard
event (tComp, SComp), wind event (tw, Sw), and precipitation
event (tr, Sr). The duration of a compound hazard event cor-
responds to the union of the durations of both hazard events
involved, meaning that tComp ≥max(tw, tr). This paper ex-
amines compound wind–precipitation events; however, this
definition applies to other compound hazards (e.g. extremely
hot temperature and drought).
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Table 1. Intensity and spatiotemporal attributes of hazard clusters and their availability for wind, precipitation, and compound hazard events
in the present study.

Attribute Wind Precipitation Compound
clusters clusters wind–

precipitation
clusters

Intensity
pa (mm) X X

wg (m s−1) X X

Scales
Footprint (%) X X X
Duration (h) X X X

Historical
Start time (h) X X X
End time (h) X X X
Location (cells involved) X X X

4.4 Single and compound hazard cluster attributes

In our SI–CH methodology, each single and compound haz-
ard cluster created is characterised by a set of attributes.
Similarly to Visser-Quinn et al. (2019), three attributes (or
metrics) are developed here: (i) intensity attributes, (ii) spa-
tiotemporal attributes, and (iii) historical attributes as fol-
lows.

i. Intensity attributes for each variable

a. Maximum precipitation accumulation (pa). To rep-
resent the intensity and magnitude of precipitation
in a given grid cell, the accumulated precipitation
in millimetres (pa) over the total duration of a clus-
ter is used. Here, precipitation accumulation repre-
sents the total amount of precipitation accumulated
over the duration of a cluster over one grid cell, in-
cluding time steps when the precipitation value is
below the 99th percentile threshold. To retain a sin-
gle value characterising a cluster, the largest value
of pa among all the grid cells included in a cluster
is retained.

b. Peak wind gust (wg). The peak wind gust is the
maximum wind gust over a grid cell over the du-
ration of a cluster. The maximum peak wind gust
expresses the intensity of a wind cluster in the clus-
ter duration in metres per second (m s−1).

Intensity attributes for both precipitation and wind gust,
as given above, represent a local maximum within clus-
ters and not an average or a sum over the cluster foot-
print.

ii. Spatiotemporal attributes

a. The spatial extent is measured in grid cells (0.25◦×
0.25◦). It represents the total number of grid cells
(Fig. 2) involved in the cluster.

b. The temporal extent (or duration) is measured in
hours. The temporal extent represents the differ-
ence between the last and first time step in which
the cluster occurs.

iii. Historical attributes include the following:

a. the start and end date of an event;

b. the season of

– December–January–February (DJF),
– March–April–May (MAM),
– June–July–August (JJA), or
– September–October–November (SON); and

c. the location, meaning the grid cells involved in the
cluster.

These attributes are summarised in Table 1.

5 Results

This section presents the results of applying our SI–CH
methodology to ERA5 precipitation and wind variables
for 1979 to 2019 in the UK. From these attributes (Table 1),
the distribution of scales attributes is presented and discussed
along with other characteristics of the wind, precipitation,
and compound hazard database created (Sect. 5.1). Historical
attributes of the hazard clusters created are confronted with a
catalogue of 157 observed significant Great Britain weather
events. This confrontation highlights our methodology’s ca-
pabilities and the ability of the ERA5 reanalysis to detect
different types of extreme events in Great Britain (Sect. 5.2).
The scales and intensity attributes of detected clusters are
then analysed with examples from the significant events cat-
alogue (Sect. 5.3).
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5.1 Wind, precipitation, and compound clusters
identified using the SI–CH methodology

We apply the SI–CH methodology (Sect. 4) to the spa-
tiotemporal dataset presented in Sect. 3 for January 1979
to September 2019 and detect 18 086 precipitation clus-
ters, 6190 wind clusters, and 4555 compound hazard clus-
ters. The detailed attributes for these single and com-
pound hazard clusters are given in the ERA5 Hazard Clus-
ters Database 1979–2019 (Supplement 3), including the at-
tributes in Table 1.

A total of 10 examples of clusters of various sizes and du-
rations detected by the SI–CH methodology are displayed in
Fig. 8. For each type of cluster (precipitation, wind, com-
pound), the footprints of one small, one medium, and one
large cluster are presented. These examples illustrate the di-
versity of shape, area, and duration of wind and precipitation
clusters detected. For compound hazard clusters (Fig. 8g–
i), different configurations are displayed: a small compound
hazard cluster at the intersection of two large precipitation
and wind clusters (Fig. 8g), a small precipitation cluster con-
tained within a large wind cluster (Fig. 8h), and a large wind
cluster associated with two precipitation clusters (Fig. 8),
creating two distinct compound hazard clusters.

In our SI–CH methodology, we decided to have each com-
pound cluster comprised of just two clusters: one precipita-
tion and one wind cluster. Therefore, an extreme precipita-
tion (or wind) cluster with the same ID can be part of two
(or more) different compound hazard clusters, as displayed
in Fig. 8i. These compound clusters might overlap in time
and/or space. The 4555 compound hazard clusters we de-
tected consist of 3565 precipitation clusters with a unique ID
(20 % of the 18 086 single hazard precipitation clusters) and
2913 wind clusters with a unique ID (47 % of the 6190 sin-
gle hazard wind clusters). For example, an extratropical cy-
clone bringing extreme precipitation scattered in space and
time could be identified as several compound hazard clusters
composed of different precipitation clusters and one single
extreme wind cluster. In our database of 4555 compound haz-
ard clusters, we found the following distribution of unique
single event hazard cluster IDs.

– Of the 3565 precipitation clusters with a unique ID,
2912 (82 %) are each found in one unique compound
cluster, 578 (16 %) in two to three different compound
clusters, and 75 (2 %) in four to nine different com-
pound clusters.

– Of the 2913 wind clusters with a unique ID, 2053 (70 %)
are found in one unique compound cluster, 663 (23 %)
in two to three different compound clusters, 156 (5 %)
in four to five different compound clusters, and 41 (1 %)
in 6–14 different compound clusters.

Regarding the distribution of exclusive vs. non-exclusive sin-
gle hazard clusters making up the compound clusters, where

exclusive means a unique single hazard ID (wind or precipi-
tation) is found in only one compound hazard ID, we found
the following.

– Non-exclusive wind ID and non-exclusive precipita-
tion ID clusters: 559 (12 %) compound clusters.

– Non-exclusive wind ID and exclusive precipitation ID
clusters: 1943 (43 %) compound clusters.

– Exclusive wind ID and non-exclusive precipitation ID
clusters: 1084 (24 %) compound clusters.

– Exclusive wind ID and exclusive precipitation ID clus-
ters: 969 (2 %) compound clusters.

Figure 9 presents the probability distributions of duration (h)
and footprint (% of the study area) for the 4555 compound,
18 086 precipitation, and 6190 wind clusters. The diamond
for each violin plot represents the average of the values for
the given variable. Precipitation, wind, and compound clus-
ters vary in shape, size, and duration. In Fig. 9a, we ob-
serve that for the footprint, wind clusters (9.0 %) are on av-
erage larger than precipitation (5.0 %) and compound clus-
ters (4.6 %). Footprints range from one grid cell, represent-
ing < 0.1 % of the study area, to 100 % of the study area for
wind and precipitation clusters and 89 % for compound haz-
ard clusters. The duration (Fig. 9b) of single and compound
hazard clusters varies from 1 h to 4 d, with compound clusters
lasting on average 24 h, which is much longer than wind (av-
erage 9.6 h) and precipitation (average 6.8 h) clusters. Only
2.4 % of precipitation clusters have a duration longer than
24 h compared to 8.8 % of wind clusters and 43.5 % of com-
pound hazard clusters. The long duration of compound haz-
ard clusters can be explained by the definition of compound
hazard events presented in Sect. 4.3. Figure 9 highlights the
capacities of our approach to adapt to different input data.

5.2 Event identification: confrontation with significant
events

To assess the capacity of our methodology to identify ob-
served hazard events, natural hazard clusters from the ERA5
Hazard Cluster Database (Supplement 3) are confronted with
a set of past significant hazard events that impacted Great
Britain. To do so, we created a Great Britain Significant
Weather Events Catalogue 1979–2019 (Supplement 4) con-
sisting of 157 significant Great Britain weather events be-
tween January 1979 and September 2019. The 157 signifi-
cant events selected aim to represent a broad range of events,
including extreme precipitation and/or extreme wind impact-
ing Great Britain. The construction of the catalogue is done
using four primary sources.

– The British Weather Disasters (1901–2008) (Eden,
2008) is a chronology of severe weather events in
the UK.
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Figure 8. Footprints of 10 example natural hazard clusters from the ERA5 Hazard Cluster Database (Supplement 3): three precipitation
clusters (a–c), three wind clusters (d–f), and four compound hazard clusters (g–i) detected by the SI–CH methodology proposed in this paper.
The cluster ID (P = precipitation, W =wind, C= compound) is given at the top of each graph. The compound clusters shown include one
P and oneW cluster: (g)C233= P1162 andW387; (h)C141= PR766 andW220; (i)C2600= P 10041 andW3717; (i)C2601= P10042
andW3717.W3717 is shared by both compound clusters C2600 and C2601. Clusters with areas that are small (footprint< 9 cells) are shown
in the left column (a, d, g), medium (19 cells< footprint< 32 cells) in the middle column (b, e, h), and large (footprint> 316 cells) in the
right column (c, f, i). The definition of small, medium, and large for single and compound hazard clusters is derived from the quantiles of the
footprint distributions (q10, q50, q95). Circle size represents the duration of single or compound hazard clusters in each cell.
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Figure 9. Violin plots for 4555 compound, 18 086 precipitation,
and 6190 wind clusters for January 1979 to September 2019 from
the ERA5 Hazard Clusters Database 1979–2019 (Supplement 3).
Shown are (a) the spatial scale as a percentage of the total study area
and (b) duration in hours (h). Black diamonds represent the mean
of the distributions. Quantiles 0.05, 0.5, and 0.95 are also displayed
with horizontal lines. See Fig. 8 for 10 examples of clusters.

– The Global Active Archive of Large Flood Events
(1985–present) (Brakenridge, 2021) is an archive of
flood events derived from news, governmental, instru-
mental, and remote sensing sources.

– The EM-DAT (Emergency Events Database) (1984–
2020) (CRED, 2020) is a record of disasters maintained
by the Centre for Research on the Epidemiology of Dis-
asters (CRED).

– The past weather events website (1990–2020) (Met Of-
fice, 2020) is an archive of reports on past weather
events from the UK Met Office.

These sources do not focus exclusively on extreme pre-
cipitation and wind events. Therefore, creating our signifi-
cant Great Britain weather events catalogue involves a pre-
selection based on the event’s relevance to the study. We used
the following criteria for inclusion in our catalogue.

– An event must include extreme precipitation and/or ex-
treme wind (the source mentions that it is extreme,
which is often relative to the source and/or location).

– The event duration must not exceed 5 d (which is above
the maximum duration of clusters detected by the SI–
CH method, see e.g. Fig. 8b). For example, this removed
events which were “extreme precipitation/flood” events
recorded as occurring over weeks or months, for which
the source did not separate precipitation duration and
flooding duration. For these, the same event with the
duration of the extreme precipitation event was found
from another source and included (as they were usu-
ally ≤ 5 d). Overall, < 10 % of “extreme” events were
removed for having a time duration> 5 d.

– When multiple sources identified the same event, the au-
thors judged which source had the most accurate repre-
sentation of that event.

Most of the extreme events, according to the sources, were
selected, with an emphasis on events recorded in more than
one source. Particular attention was given to selecting events
of various sizes and durations. The four sources are used to
identify each event’s timing, location, and duration. Dura-
tion is expressed in days, while each event’s location cor-
responds to the 11 NUTS1 regions of Great Britain (ONS,
2021): Northeast (England), Northwest (England), Yorkshire
and the Humber, East Midlands (England), West Midlands
(England), East of England, London, Southeast (England),
Southwest (England), Wales, and Scotland. An event can oc-
cur over one or more NUTS1 regions. Their dominant haz-
ards are also characterised by significant events (the primary
hazard reported in the sources).

Events per year for 1979–2019 are divided into precipi-
tation events (P ) and wind events (W ), depending on their
dominant hazard as given in the four databases above (Eden,
2008; CRED, 2020; Met Office, 2020; Brakenridge, 2021).
Some significant events also include associated hazards (e.g.
landslides) when reported by the sources. We use these
sources to compile a significant Great Britain weather events
catalogue for 1979 to 2019, which contains 96 extreme pre-
cipitation events (P ) and 61 extreme wind events (W ) and
is given in its entirety in Supplement 4. Figure 10 shows the
date and region of occurrences of the 157 significant events in
our catalogue: 96 extreme precipitation events (heavyweight
blue circles) and 61 extreme wind events (heavyweight or-
ange crosses). Of the 157 events in the significant weather
events catalogue, 24 can be considered compound hazard
events (lightweight green circle overlain by a cross) in which
extreme wind and extreme precipitation are both reported in
Supplement 4. As mentioned previously, events can occur in
one or more NUTS1 regions. Of the 157 catalogue events,
63 (40 %) are in one NUTS1 region, 29 (18 %) in two NUTS1
regions, 23 (15 %) in three NUTS1 regions, 18 (11 %) in four
to six NUTS1 regions, and 24 (15 %) in 10 to 11 NUTS1 re-
gions. The latter are events covering the majority of Great
Britain.

In Fig. 10, we observe the interconnections between re-
gions impacted by the same events (e.g. January 2010 precip-
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Figure 10. Timeline of 157 events in our Great Britain Significant Weather Events Catalogue 1979–2019 (Supplement 4) used to assess the
detection abilities of the SI–CH methodology for the 11 NUTS1 regions of Great Britain. Significant events are considered to be precipitation
(96 events, heavyweight blue circles) or wind (61 events, heavyweight orange crosses). Of the 157 events in the significant weather events
catalogue (Supplement 4), 24 can be considered compound hazard events (lightweight green circle overlain by a cross) as given in the
sources.

itation event) and the clustering of events in time. Some re-
gions are also more represented than others in our catalogue.
The number of events per region is displayed in Fig. 11a,
with Southwest England and Wales being the regions with
the most events and Northeast England and the East of Eng-
land being the regions with the fewest events.

The date and locations of the 157 events are then used
to assess our clustering method’s ability to capture extreme
wind or extreme precipitation events. For each event in our
Great Britain Significant Weather Events Catalogue 1979–
2019 (Supplement 4), a temporal and spatial match is per-
formed to identify the corresponding cluster(s) in our ERA5-
based variable results from Sect. 5.1. There are 11 NUTS1
regions. For a spatiotemporal match to occur, the following
needs to be true.

– A cluster needs to occur in the same NUTS1 region(s)
as the significant weather event catalogue event.

– A cluster needs to occur during the same day(s) as a
significant weather event from the catalogue (Supple-
ment 4).

The hit rate (ratio between the number of events with corre-
sponding clusters and the total number of events) is used to
assess the capacity of the SI–CH methodology. Over Great
Britain, 147 out of 157 (hit rate 93.4 %) significant events
have one or more corresponding hazard cluster(s) when spa-
tial and temporal matching is done. The hit rate is slightly
higher for the subgroup of extreme wind events (95.1 %)
than for extreme precipitation events (92.6 %). Among these

147 events, 64 (43.5 %) have exactly one corresponding clus-
ter. The percentage of detected events for each NUTS1 re-
gion varies between 91.7 % (Southeast England) and 100 %
(Northwest England, Northeast England) and is displayed in
Fig. 10b. Among the 147 events with clusters associated,
109 are identified as compound hazard events by the SI–
CH method (21/24 for compound hazard events reported
in the weather events catalogue). More than 4 times more
compound hazard events are identified by the SI–CH method
compared to the catalogue, suggesting that compound hazard
events are underreported in our catalogue (Supplement 4).

A total of 10 of 157 events present in our Great Britain
weather events catalogue but not detected by the DBSCAN
algorithm are heterogeneous with no clear seasonal pattern.
Among these 10 events, 6 have temporally corresponding
clusters, with clusters occurring the same day as those de-
tected by the algorithm but occurring in other NUTS1 re-
gions. The 10 events are small- or medium-scale (8 of the
10 reported events occur in one or two NUTS1 regions), and
7 out of 10 events are extreme precipitation. The absence of
clusters associated with some events means that there is not a
sufficient number of extreme values of wind–precipitation in
the NUTS1 region where the significant event occurs to trig-
ger the creation of a cluster in that area. This could be due to
the high value of the threshold for extreme values (u= 0.99).
Another explanation is that ERA5 could not reproduce these
events, as the dataset can miss localised extremes, particu-
larly for precipitation (see Sect. 3).
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Figure 11. Map of Great Britain divided into 11 NUTS1 regions showing (a) the number of events per region from our Great Britain
Significant Weather Events Catalogue 1979–2019 (Supplement 4) and, (b) for each region, the hit rate (ratio between the number of joint
events and the total number of events in our significant weather events catalogue).

5.3 Spatiotemporal properties of compound wind and
precipitation extremes in Great Britain

Only a minority of the single and compound hazard clus-
ters detected during 1979–2019 can be associated with events
that led to considerable damage (e.g. Great Storm of 1987,
Storm Xaver). We now illustrate the SI–CH methodology
using three examples from the significant events catalogue.
Spatiotemporal properties of single and compound hazard
clusters in relation to hazard intensity are then discussed.

The intensity of precipitation and wind events is assessed
with the intensity attributes presented in Table 1. Values of
precipitation accumulation and peak wind gust are subject
to uncertainties (Sect. 3). Therefore, precipitation accumula-
tion and wind gust duration values are transformed onto the
standard uniform space on the interval [0, 1]. The empirical
cumulative probability expresses the intensity of hazards for
both wind peak and precipitation accumulation as follows:

P (xi)=
Rx,i

Nx + 1
, (3)

where Rx,i represents the rank of observation xi in the sorted
values of pa or w (i = 1 for the smallest observation, i =
N for the largest), and Nx is the sample size (here the total
number of values over the period of study). For compound
hazard clusters, the combined intensity is expressed by the
minimum cumulative probability of the two hazards:

P (xi,yi)=min
(
Rx,i

Nx + 1
,
Ry,i

Ny + 1

)
, (4)

where Rx,i (Ry,i) represents the rank of observation xi (yi)
in the sorted values of pa (w) (i = 1 for the smallest observa-
tion, i =N for the largest), and Nx (Ny) is the sample size.

Figure 12 highlights the footprint of three hazard clusters
and the intensity field of single and compound hazards within
the clusters. Figure 12a shows the footprint of a precipita-
tion cluster that occurred in July 2007 (Supplement 3, ERA5
Hazard Clusters Database 1979–2019, P12593). The total
footprint occupies the vast majority of Wales and southern
England. However, the most intense precipitation values are
confined to the West Midlands, where most flooding and im-
pacts were reported (Eden, 2008). Figure 12b shows the foot-
print associated with Storm Xaver (December 2013), which
develops over 73 % of the study area with varying inten-
sity (Supplement 3, ERA5 Hazard Clusters Database 1979–
2019, W5423). The most extreme winds occurred in North-
east England, Scotland, and the North Sea. Figure 12c high-
lights the compound hazard footprint of the cluster associated
with Storm Angus (November 2016), with extreme precipi-
tation and wind combining at high intensities, mainly over
the British Channel (Supplement 3, ERA5 Hazard Clusters
Database 1979–2019, C4172).

Figure 13 features spatial–quantile plots displaying the
footprint as a percentage of the study area in Fig. 3 of clus-
ters as a function of their intensity. The more the curve goes
toward the top right corner of the plot, the more severe the
cluster is (high intensity over a large footprint). The footprint
is expressed as the number of cells which have a varying spa-
tial area depending on the latitude (see Sect. 3), with cell ar-
eas in our study region varying from 398 km2 (in the north) to
517 km2 (in the south), a change of approximately 30 %. An
intensity of I = 0.00 represents the minimum intensity value
in our sample of extremes (1.42 mm for precipitation over
the duration of the event over all event cells and 17.11 m s−1

for wind over a given cell for all events). Clusters related
to events in the catalogue are highlighted in colours, while
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Figure 12. Footprint and intensity of precipitation and wind clusters (from the ERA5 Hazard Clusters Database 1979–2019, Supplement 3)
associated with three significant events from our Great Britain Significant Weather Events Catalogue 1979–2019 (Supplement 4). The foot-
print as a function of intensity for all pixels for each of these three events is given: (a) Catalogue Event 130, extreme precipitation (Hazard
Cluster Database P12593); (b) Catalogue Event 146, extreme wind, associated with Storm Xaver (Hazard Cluster Database W5423); (c) Cat-
alogue Event 154, compound wind and precipitation event associated with Storm Angus (Hazard Cluster Database C4172).

other events are grey. The three clusters displayed in Fig. 12
are in dark blue in Fig. 13 for (a) precipitation, (b) wind, and
(c) compound wind and precipitation extreme clusters. It is
important to note that compound hazard clusters in Fig. 13c
are constructed with single hazard clusters from (a) and (b).
In Fig. 13, each curve corresponds to a cluster and shows the
evolution of the footprint (number of cells) as a function of
their intensity. For example, cluster P12593 has a total foot-
print of approximately 28 % of the study area with an in-
tensity (I ) above 1.42 mm; this footprint drops to 25 % for
an intensity above q50 (9.99 mm) and 4 % for an intensity
above q99 (40.14 mm). The colour of each curve represents
the total duration of each cluster.

From Fig. 13, we also observe that the largest (highest
footprint at intensity 0.0) and most intense (highest footprint
at intensity 1.0) clusters are primarily associated with the
157 significant events presented in Sect. 5.2. This suggests
that events from the catalogue developed in Sect. 5.2 cor-
respond to the most noteworthy clusters obtained from the
SI–CH methodology. However, several clusters have a short
duration, small footprint, and moderate intensity associated
with the 157 significant events, particularly for precipitation
clusters (Fig. 13a). This is because more than one cluster can
have a spatiotemporal match with a significant event from
the catalogue. A significant precipitation event from the cat-
alogue has a spatiotemporal match with on average 2.8 pre-
cipitation clusters. A wind event from the catalogue matches
on average 1.6 wind clusters. A compound hazard event from
the catalogue matches on average 2.1 compound clusters. In
practice, a significant event can be associated with one large

and/or intense cluster and several small clusters. This is par-
ticularly true for events that have a long duration recorded in
the catalogue, such as event 62, which is associated with one
large and intense precipitation cluster (P6058) and several
small and low-intensity precipitation clusters (P6047; P6048;
P6049; P6054, and 6055). These clusters are displayed in
dark green in Fig. 13a.

6 Discussion

Assessing the characteristics of compound hazard events in
space and time brings valuable insight into the nature of the
relationship between the hazards involved in the event. It
overcomes the main limitations of compound hazard studies
which focus on interrelations at specific sites (Sadegh et al.,
2018). However, spatiotemporal analysis of compound haz-
ards brings its own set of uncertainties and limitations. This
section will discuss the following five main limitations aris-
ing from the presented study:

– parameters influencing the clustering procedure,

– the subjective definition of compound hazard events in
space and time,

– biases and uncertainties around the estimation of at-
tributes,

– influence of the method and the input data on the results,
and
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Figure 13. Spatial–quantile plot for 18 086 precipitation, 6190 wind, and 4555 compound clusters for January 1979 to September 2019
from the ERA5 Hazard Clusters Database 1979–2019 (Supplement 3). The footprint (in percent of the total area) is given as a function of the
intensity of single and compound hazard events. The intensity (from 0.00 to 1.00) is expressed by (a) the cumulative probability (Eq. 3) of the
precipitation accumulation at each grid cell during all precipitation events, (b) the cumulative probability (Eq. 3) of the wind “accumulation”
at each grid cell during all wind events, and (c) the minimum cumulative probability (Eq. 4) of the compound hazard (wind+ precipitation)
events. Coloured curves represent clusters associated with events from our Great Britain Significant Weather Events Catalogue 1979–2019
(Supplement 4); colours represent the duration of the events. Grey lines represent all other events in each database (Supplement 3). The blue
curve in each part represents the individual hazard event clusters for precipitation, wind, and compound displayed in Fig. 12. In panel (a),
the green curves represent the clusters matched with unique event 62 from our Great Britain Weather Events Catalogue.

– additional exploration of the spatiotemporal features
of compound wind–precipitation clusters in the ERA5
Hazard Clusters Database 1979–2019.

Parameters influencing the clustering procedure. Three main
parameters influence the clustering process and consequent
results; their influence is discussed further and quantified in
Supplement 2.

i. The first parameter is the threshold (u) selected to sam-
ple extreme events. This study is based on the assump-
tion that an extreme enough occurrence of an environ-
mental variable can be used as a proxy for natural haz-

ard identification. A threshold is then set to sample the
extreme occurrences of environmental variables. Even
if this threshold has been selected in light of previous
works on wind and precipitation extremes (Ulbrich et
al., 2009; Martius et al., 2016), its value remains sub-
jective. A seasonal threshold could also have been used
to detect more events during the extended summer. The
threshold value directly impacts the number of extreme
events sampled and therefore the selection of the other
clustering parameters (Supplement 2).
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ii. The second parameter is the ratio r of the spatiotem-
poral scaling parameters a and b. A three-dimensional
Euclidean distance is used as a distance measure for
the clustering procedure. The value of the distance be-
tween each extreme event is controlled by the impor-
tance given to the spatial (longitude and latitude) and
temporal (time) component in the input data. For sim-
plicity, each component was set to have the same impor-
tance in the distance computation, meaning that more
importance could be given to the time (or space) com-
ponent depending on a prior assumption (Zscheischler
et al., 2013; Vogel et al., 2020).

iii. The third parameter is density threshold µ. While
the neighbouring parameter ε is set systematically
(Sect. 4.2), its value depends on the density threshold,
giving the minimum number of detected events per clus-
ter. The selection of µ is based on a prior assumption
about the minimum size a compound hazard event can
have in the context of the study.

The subjective definition of compound hazards events in
space and time. Section 4.3 presented four possible defini-
tions for a compound hazard event in time and space. It was
chosen to define the duration as the aggregated duration of
all hazard clusters. However, one could be more interested in
extracting the simultaneous duration of both hazards or con-
sidering the total area impacted by the two hazards (Zscheis-
chler et al., 2020).

Biases and uncertainties around the estimation of at-
tributes. There are biases and uncertainties around the val-
ues of intensity attributes of the events. These biases are
partly due to the data used in this study: the ERA5 reanal-
ysis data (Sect. 2). Higher uncertainty arises from precipi-
tation accumulation estimation as precipitation observations
are not assimilated in ERA5. Biases might also be more pro-
nounced over mountainous areas (Skok et al., 2016; Sharifi
et al., 2019), which are more exposed to compound wind and
precipitation events (see Appendix A and below). The size
of the study area also leads to some events being detected
only partially, which could bias our estimates of the size and
duration of events.

Influence of the method and the input data on the re-
sults. The method’s performance developed here is assessed
using a catalogue of major events built using different ob-
servational datasets that are not related to ERA5. This ap-
proach makes disentangling the influence of the clustering
method (SI–CH) and the data (ERA5) difficult. A way to
identify the source of the performance would be to apply
the clustering method to a different dataset, ideally observa-
tional (e.g. CMORPH for precipitation). Additionally, the hit
rate observed in this study for extreme precipitation is higher
than the one obtained by Rivoire et al. (2021). This suggests
that the clustering method used in the present study improves
the ability to identify extreme events with ERA5. However,
differences in spatial and temporal resolution of the extremes

and the reference dataset complicate the comparison between
the two studies.

Additional exploration of the spatiotemporal features of
compound wind–precipitation clusters in the ERA5 Hazard
Clusters Database 1979–2019 (Supplement 3). The ERA5
Hazard Clusters Database 1979–2019 that we have produced
in this paper can also be exploited for a number of other
spatial–temporal attributes. In Appendix A we explore some
of these, including the following:

– the proportion of compound hazard clusters among
wind and precipitation clusters with respect to

a. the size and duration of these clusters (Fig. A1) and

b. their location (Fig. A2);

– the frequency of occurrence of compound wind–
precipitation events over Great Britain, allowing the
identification of compound wind–precipitation hotspots
(Fig. A3);

– the strength of the spatiotemporal dependence between
precipitation clusters and wind clusters using the likeli-
hood multiplication factor (LMF) (Fig. A3);

– the seasonality of wind, precipitation, and compound
hazard clusters (Fig. A4);

– the monthly frequency of compound hazard clusters
amongst the total number of clusters (Fig. A5); and

– the spatial dependence between different sites (Fig. A6).

The SI–CH methodology described in this paper has pro-
duced our ERA5 Hazard Clusters Database 1979–2019 (Sup-
plement 3), which has a richness of information which can be
exploited to better understand the spatial–temporal charac-
teristics of these compound events. Appendix A shows some
of these potential characteristics which can be explored. The
link between compound wind and precipitation extremes and
weather systems is discussed in Appendix A; nevertheless,
this link could be explored in greater depth with quantitative
approaches similar to Catto and Dowdy (2021), who examine
compound hazards from a weather system perspective.

7 Conclusion

To characterise compound hazard events of extreme pre-
cipitation and extreme wind in Great Britain more accu-
rately, their overlap in space and time has been analysed.
By clustering extreme occurrences of maximum hourly wind
gust and hourly precipitation from ERA5, 4555 compound
wind–precipitation clusters over Great Britain were identi-
fied for 1979–2019 (ERA5 Hazard Clusters Database 1979–
2019, Supplement 3). To assess the ability of the approach to
identify the occurrence of extreme events in time and space,
we identified 157 extreme precipitation and/or extreme wind

Earth Syst. Dynam., 13, 993–1020, 2022 https://doi.org/10.5194/esd-13-993-2022



A. Tilloy et al.: A methodology for the spatiotemporal identification of compound hazards 1011

events that occurred in Great Britain over the period 1979–
2019 (Significant Great Britain Weather Events Catalogue,
Supplement 4). The confrontation was done at a regional
(11 NUTS1 regions) and daily scale. The average hit rate
(the ratio between the number of identified events and the
total number of events) over the whole area is 93.7 %, mean-
ing that our approach successfully identifies most of the ex-
treme precipitation and wind events. A total of 24 (15 %) of
the 157 events in the catalogue were reported as compound
events (wind–precipitation). With the SI–CH methodology,
we identified 109 compound hazard clusters associated with
the 157 significant weather events (69 %). The approach’s
potential to analyse the footprint and intensity of events was
highlighted by examining three events from the catalogue.
Additionally, the importance of the intensity of natural haz-
ards within clusters is addressed, showing that some events
develop over large areas with localised spots of extreme in-
tensity. In contrast, other events have smaller but steady foot-
prints when increasing the intensity (e.g. precipitation cluster
associated with event 130). The strengths (ability to identify
significant extreme events) and weaknesses (more than one
cluster per significant event) are finally highlighted and dis-
cussed.

One significant limitation of our approach is its reliance
on input data. Estimating intensity attributes (particularly for
precipitation) with more accuracy would require using a sta-
tistical correction of the simulated precipitation (Widmann
and Bretherton, 2000) or other gridded datasets based on ob-
servations (e.g. E-OBS). Reanalysis data have the potential
to study compound hazard events as they offer homogenised
values for an important number of variables. Our SI–CH ap-
proach coupled with ERA5 data has shown its ability to iden-
tify significant single and compound hazard events and al-
lows the analysis of the spatial and temporal attributes of
such events. The sequencing of hazard events can also be
analysed with this SI–CH approach. For example, the ERA5
Hazard Clusters Database 1979–2019 (Supplement 3) cre-
ated in this study could be used to identify sequences of sin-
gle and compound hazard events (e.g. extratropical cyclones
sequences). The ability to consistently analyse the spatial and
temporal attributes of climate-related compound hazards is
particularly relevant in the context of climate change as the
intensity, frequency, and spatiotemporal scales of single and
compound hazards are expected to change in the future due
to human influences (AghaKouchak et al., 2020; Vogel et al.,
2020; Spinoni et al., 2021).

Finally, the SI–CH approach can be extended to analyse
other compound events such as compound hot and dry events
(Sutanto et al., 2020) and compound cold and snow events
(Hillier et al., 2020). The definition of the compound haz-
ard in time and space such as the one proposed in this pa-
per can also be extended to more than two hazards. This al-
lows the methodology to be potentially extended to identify
more complex compound events, such as compound hot–dry

events with extreme wind and extreme heat, drought, and
wildfires.

Appendix A: Additional exploration of
spatiotemporal features of compound
wind–precipitation clusters in the ERA5 Hazard
Clusters Database 1979–2019

Summary

This Appendix consists of additional analyses (with fig-
ures) of the spatiotemporal features of the compound wind–
precipitation clusters in Great Britain from our ERA5 Hazard
Clusters Database 1979–2019 (Supplement 3) and highlights
how the database of compound hazard clusters can be further
exploited. In this Appendix, we present six figures:

– the proportion of compound hazard clusters among
wind and precipitation clusters for

a. the size and duration of these clusters (Fig. A1) and

b. their location (Fig. A2);

– the frequency of occurrence of compound wind–
precipitation events over Great Britain is estimated,
allowing the identification of compound wind–
precipitation hotspots (Fig. A3);

– the strength of the spatiotemporal dependence be-
tween precipitation clusters and wind clusters assessed
through the likelihood multiplication factor (LMF)
(Fig. A3);

– the seasonality of wind, precipitation, and compound
hazard clusters (Fig. A4);

– the monthly frequency of compound hazard clusters
amongst the total number of clusters (Fig. A5); and

– the spatial dependence between different sites (Fig. A6).

Figure A1 shows the proportion of compound clusters
amongst wind and precipitation clusters conditioned on the
footprint (Fig. A1a) and duration (Fig. A1b) of clusters. The
proportion of precipitation clusters and wind clusters in-
volved in a compound cluster increases with the footprint
when the cluster footprint is above 1 % of the study area
(Fig. A1a). For clusters with a footprint greater than 10 % of
the study area (i.e. regional and multi-regional), the share of
compound cluster surges to 52 %. A similar pattern is visible
when the duration of the cluster increases (Fig. A1b), with a
sharp increase in the proportion of compound hazard clusters
up to a duration of 30 h and a slow increase above that value.
This could mean that above that duration, clusters belong to
a physically homogeneous group that could be extratropical
cyclones (as suggested by Figs. A4 and A5).
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Figure A1. Proportion of compound wind–precipitation clusters among wind clusters (orange) and precipitation clusters (blue) depending
on (a) footprint and (b) duration of the hazard clusters.

Over the study area, the proportion of compound wind–
precipitation clusters among the precipitation clusters de-
tected is 20 %, while 47 % of the wind clusters are com-
pound hazard clusters. However, this proportion is variable
across Great Britain. Figure A2 displays the fraction of com-
pound hazard clusters among (a) wind clusters and (b) pre-
cipitation clusters. It highlights the spatial variability of com-
pound cluster prevalence. Orography probably plays an im-
portant role in the geographical features that may influence
the frequency of compound hazard clusters among precipita-
tion and wind clusters. The frequency of compound wind–
precipitation clusters is the highest in mountainous areas,
while lowlands of the west coast have a much lower fre-
quency of compound wind–precipitation clusters among both
precipitation and wind clusters.

However, compound wind–precipitation clusters are more
prevalent among the most intense hazard clusters. The latter
represents 58 of the 100 most intense precipitation clusters
and 95 of the 100 most intense wind clusters. The intensity of
precipitation and wind clusters is assessed with the intensity
attributes presented in Table 1. The proportion of compound
wind–precipitation clusters increases with duration and foot-
print for both precipitation and wind clusters (Fig. A1).

As the duration of compound wind–precipitation clusters
highly varies, their frequency of occurrence in the study area
is assessed by counting the number of hours in a compound
cluster (as defined in Sect. 4.3) at each grid cell. The average
number of hours per year in a compound cluster for 1979–
2019 is displayed in Fig. A3a. This value varies between
20 and 95 h in the study area. Figure A3a highlights regions

more likely to be affected by compound wind–precipitation
clusters with hotspots in mountainous areas (as for Fig. A2).
Nevertheless, the southeastern coast of Great Britain is the
primary hotspot for compound wind–precipitation clusters.
The frequency of compound clusters gradually decreases
eastward from Cornwall and Wales toward Anglia and East
Midlands, showing a west–east decreasing gradient across all
Great Britain. A similar pattern has been found for extreme
precipitation (Blenkinsop et al., 2017) and compound flood-
ing (Hendry et al., 2019). The prevailing direction of cyclonic
weather systems and orography partly explains this pattern
for compound wind–precipitation clusters (Hulme and Bar-
row, 1997).

The dependence between extreme wind and extreme pre-
cipitation (w, p) can influence the estimation of the joint
return period. The influence of the dependence between
extreme wind and extreme rainfall cluster occurrence is
quantified using the likelihood multiplication factor (LMF)
(Zscheischler and Seneviratne, 2017). The LMF is the ratio
between the joint return period considering the two variables
dependently (Tdep) and independently (Tind) of each other
(Manning et al., 2019):

LMF=
Tind

Tdep
. (A1)

The likelihood multiplication factor (LMF) quantifies the in-
fluence of the dependence between wind clusters and rain
clusters on estimating the frequency of compound wind–
precipitation clusters (Fig. A3a). The LMF (Fig. A3b) shows
the strength of the dependence between wind and rain clus-
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Figure A2. Compound hazard (wind–precipitation) cluster proportion among (a) wind clusters and (b) precipitation clusters during the
period 1979–2019 in Great Britain. Data from ERA5 (Hersbach et al., 2018).

Figure A3. Hotspots for compound wind–precipitation clusters in Great Britain showing (a) the average number of hours in a compound
hazard cluster in a year for 1979–2019 and (b) the likelihood multiplication factor (LMF) that quantifies the influence of the dependence
between wind and rain clusters on the estimation of the probability of occurrence of compound hazard clusters. Data from ERA5 (Hersbach
et al., 2018).

ters. The LMF is > 1.0 in all parts of the study area, suggest-
ing that rain and wind clusters do not occur independently.
The LMF is particularly high along the southern coast of
Great Britain, in the British Channel, and in northwestern
France. While occurrences of compound wind–precipitation
clusters exhibit an east–west pattern, the strength of the de-
pendence between wind and rain hazard clusters has a south–
north pattern.

The spatial features of compound wind–rain clusters have
been identified in Figs. A2 and A3. Spatial disparities in their
frequency and their dependence between wind and rain clus-

ters have been highlighted. These features also vary in time
and with seasons. To characterise the seasonality of single
(wind only, rain only) and compound hazard clusters, all haz-
ard clusters have been taken into account and divided into
three categories: wind, rain, and compound. Wind clusters
that are part of a compound cluster are removed from the cat-
egory “wind”, while rain clusters that are part of a compound
cluster are removed from the category “rain”. Monthly occur-
rences of these three categories of clusters are displayed in
Fig. A4. While occurrences of wind and compound clusters
are correlated, with a high season in extended winter (OND-

https://doi.org/10.5194/esd-13-993-2022 Earth Syst. Dynam., 13, 993–1020, 2022



1014 A. Tilloy et al.: A methodology for the spatiotemporal identification of compound hazards

Figure A4. Box plots of the monthly number of wind (dark orange), rain (blue), and compound (green) hazard clusters in Great Britain over
the period 1979–2019. Background colours represent the two seasons. Data from ERA5 (Hersbach et al., 2018).

Figure A5. Monthly fraction of compound hazard clusters among the total number of clusters (wind only+rain only+compound clusters)
for that month for 1979–2019 over the study area. Each tile represents a month–year pair; darker tiles mean that the fraction of compound
hazard clusters is greater.

JFM) and a low season in the extended summer (AMJJAS),
rain cluster occurrence follows an opposite pattern, with a
high season in AMJJAS and a low season in ONDJFM.
Around 82 % of all recorded compound hazard clusters occur
during the extended winter.

Figure A5 provides a perspective on the seasonality of
compound wind–precipitation clusters. It displays the pro-
portion of compound wind–precipitation clusters among all
clusters, with a seasonal proportion pattern similar to the
one observed in Fig. A4. This suggests that extreme rain-
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Figure A6. Spatial dependence of compound wind–rain occurrence between different sites. Ps is the probability of each grid cell in the study
area to be in a compound wind–precipitation cluster, knowing that a given cell of reference is in a compound cluster.

fall and extreme wind clusters are more likely to co-occur
during the extended winter. One possible explanation is that
conditions leading to compound wind–precipitation clusters
occur during the extended winter (Hillier et al., 2020). This
season coincides with the extratropical season in western Eu-
rope (Mailier et al., 2006; Ulbrich et al., 2009; Deroche et al.,
2014). Extratropical cyclones can bring several hazards, in-
cluding strong wind, storm surge, heavy rainfall, and high
waves (Frame et al., 2017).

Figures A3–A5 suggest that extratropical cyclones could
influence compound wind and precipitation extremes, with a
west–east pattern characteristic of the British island (Hulme

and Barrow, 1997) and an increase in the frequency of com-
pound events in the extended winter. The influence of cy-
clonic weather systems coming from the Atlantic on precip-
itation and wind extremes in Great Britain has been high-
lighted in previous work (Hawcroft et al., 2012; Dowdy and
Catto, 2017). However, this does not mean that every com-
pound hazard cluster occurring during the extended winter is
an extratropical cyclone but suggests that such weather sys-
tems are drivers of compound wind–precipitation extreme
clusters. Other weather systems such as convective storms
can also lead to compound wind and precipitation extremes
(Zhang et al., 2021).
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The spatial dependence between different sites is investi-
gated in Fig. A6. This figure highlights each grid cell’s em-
pirical probability to be in a compound wind–precipitation
cluster, knowing that a given cell of reference is in a com-
pound cluster (displayed as Ps in Fig. A6). Four locations
in Great Britain are taken as cells of reference: Cumbria,
Sheffield, London, and Glasgow. The spatial extent of com-
pound wind–precipitation clusters is displayed differently
from the one adopted in Sect. 5, highlighting that London
is more likely to be in a large-scale cluster than Glasgow.
Spatial dependences between places are also visible; for ex-
ample, compound cluster occurrence in London is associ-
ated with compound cluster occurrence in southern England,
while compound clusters occurring in Sheffield are more
likely to develop over the Midlands and Wales.

Code availability. The codes used to generate the single and com-
pound hazard clusters in this study were produced with R (https:
//www.R-project.org/; R Core Team, 2022) and are publicly avail-
able on Zenodo (https://doi.org/10.5281/zenodo.6555825; Tilloy,
2022).

Data availability. The ERA5 data were downloaded from
the Copernicus Climate Data Store (2020) (https://cds.climate.
copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land). Input, inter-
mediary, and output data used in this article are available in
Tilloy (2021) (https://doi.org/10.5281/zenodo.4906264).
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– Supplement 1: Supplementary information on the DBSCAN
algorithm.

– Supplement 2: Sensitivity analysis of the spatiotemporal iden-
tification of compound hazards (SI–CH) procedure.
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(3.1. Wind, 3.2. Precipitation, 3.3. Compound hazards).

– Supplement 4: Great Britain Significant Weather Events Cata-
logue 1979–2019.
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