Articles | Volume 12, issue 2
https://doi.org/10.5194/esd-12-545-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-12-545-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comparison of CMIP6 historical climate simulations and future projected warming to an empirical model of global climate
Department of Chemistry and Biochemistry, University of Maryland
College Park, College Park, 20740, USA
Austin P. Hope
Department of Atmospheric and Oceanic Science, University of Maryland
College Park, College Park, 20740, USA
Timothy P. Canty
Department of Atmospheric and Oceanic Science, University of Maryland
College Park, College Park, 20740, USA
Brian F. Bennett
Department of Atmospheric and Oceanic Science, University of Maryland
College Park, College Park, 20740, USA
Walter R. Tribett
Department of Atmospheric and Oceanic Science, University of Maryland
College Park, College Park, 20740, USA
Ross J. Salawitch
Department of Chemistry and Biochemistry, University of Maryland
College Park, College Park, 20740, USA
Department of Atmospheric and Oceanic Science, University of Maryland
College Park, College Park, 20740, USA
Earth System Science Interdisciplinary Center, University of Maryland
College Park, College Park, 20740, USA
Related authors
Megan J. Lickley, John S. Daniel, Laura A. McBride, Ross J. Salawitch, and Guus J. M. Velders
Atmos. Chem. Phys., 24, 13081–13099, https://doi.org/10.5194/acp-24-13081-2024, https://doi.org/10.5194/acp-24-13081-2024, 2024
Short summary
Short summary
The expected ozone recovery date was delayed by 17 years between the 2006 and 2022 international scientific assessments of ozone depletion. We quantify the primary drivers of this delay. Changes in the metric used to estimate ozone recovery explain ca. 5 years of this delay. Of the remaining 12 years, changes in estimated banks, atmospheric lifetimes, and emission projections explain 4, 3.5, and 3 years of this delay, respectively.
Endre Z. Farago, Laura A. McBride, Austin P. Hope, Timothy P. Canty, Brian F. Bennett, and Ross J. Salawitch
EGUsphere, https://doi.org/10.5194/egusphere-2025-342, https://doi.org/10.5194/egusphere-2025-342, 2025
Short summary
Short summary
We use a reduced-complexity climate model trained by observations to compute the future rise in global mean surface temperature (GMST) for radiative forcing (RF) due to greenhouse gases (GHGs) and tropospheric aerosols, provided by the IPCC AR5 and AR6 reports. We show that the AR6 updates to RF lead to a 0.2 to 0.4 °C rise in GMST at the end of this century, for the same underlying Shared Socioeconomic Pathway emissions projections of GHGs and aerosols, relative to GMST found using RF from AR5.
Megan J. Lickley, John S. Daniel, Laura A. McBride, Ross J. Salawitch, and Guus J. M. Velders
Atmos. Chem. Phys., 24, 13081–13099, https://doi.org/10.5194/acp-24-13081-2024, https://doi.org/10.5194/acp-24-13081-2024, 2024
Short summary
Short summary
The expected ozone recovery date was delayed by 17 years between the 2006 and 2022 international scientific assessments of ozone depletion. We quantify the primary drivers of this delay. Changes in the metric used to estimate ozone recovery explain ca. 5 years of this delay. Of the remaining 12 years, changes in estimated banks, atmospheric lifetimes, and emission projections explain 4, 3.5, and 3 years of this delay, respectively.
Sarah E. Benish, Hao He, Xinrong Ren, Sandra J. Roberts, Ross J. Salawitch, Zhanqing Li, Fei Wang, Yuying Wang, Fang Zhang, Min Shao, Sihua Lu, and Russell R. Dickerson
Atmos. Chem. Phys., 20, 14523–14545, https://doi.org/10.5194/acp-20-14523-2020, https://doi.org/10.5194/acp-20-14523-2020, 2020
Short summary
Short summary
Airborne observations of ozone and related pollutants show smog was pervasive in spring 2016 over Hebei Province, China. We find high amounts of ozone precursors throughout and even above the PBL, continuing to generate ozone at high rates to be potentially transported downwind. Concentrations even in the rural areas of this highly industrialized province promote widespread ozone production, and we show that to improve air quality over Hebei both NOx and VOCs should be targeted.
Zebedee R. J. Nicholls, Malte Meinshausen, Jared Lewis, Robert Gieseke, Dietmar Dommenget, Kalyn Dorheim, Chen-Shuo Fan, Jan S. Fuglestvedt, Thomas Gasser, Ulrich Golüke, Philip Goodwin, Corinne Hartin, Austin P. Hope, Elmar Kriegler, Nicholas J. Leach, Davide Marchegiani, Laura A. McBride, Yann Quilcaille, Joeri Rogelj, Ross J. Salawitch, Bjørn H. Samset, Marit Sandstad, Alexey N. Shiklomanov, Ragnhild B. Skeie, Christopher J. Smith, Steve Smith, Katsumasa Tanaka, Junichi Tsutsui, and Zhiang Xie
Geosci. Model Dev., 13, 5175–5190, https://doi.org/10.5194/gmd-13-5175-2020, https://doi.org/10.5194/gmd-13-5175-2020, 2020
Short summary
Short summary
Computational limits mean that we cannot run our most comprehensive climate models for all applications of interest. In such cases, reduced complexity models (RCMs) are used. Here, researchers working on 15 different models present the first systematic community effort to evaluate and compare RCMs: the Reduced Complexity Model Intercomparison Project (RCMIP). Our research ensures that users of RCMs can more easily evaluate the strengths, weaknesses and limitations of their tools.
Cited articles
Arfeuille, F., Weisenstein, D., Mack, H., Rozanov, E., Peter, T., and Brönnimann, S.: Volcanic forcing for climate modeling: a new microphysics-based data set covering years 1600–present, Clim. Past, 10, 359–375, https://doi.org/10.5194/cp-10-359-2014, 2014.
Armour, K. C.: Energy budget constraints on climate sensitivity in light of
inconstant climate feedbacks, Nat. Clim. Chang., 7, 331–335,
https://doi.org/10.1038/nclimate3278, 2017.
Balmaseda, M. A., Trenberth, K. E., and Källén, E.: Distinctive
climate signals in reanalysis of global ocean heat content, Geophys. Res.
Lett., 40, 1754–1759, https://doi.org/10.1002/grl.50382, 2013.
Barnett, T. P., Pierce, D. W., Latif, M., Dommenget, D., and Saravan, R.:
Interdecadal interactions between the tropics and midlatitudes in the
Pacific basin, Geophys. Res. Lett., 26, 615–618, 1999.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
Deangelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne,
S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,
Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C.
S.: Bounding the role of black carbon in the climate system: A scientific
assessment, J. Geophys. Res.-Atmos., 118, 5380–5552,
https://doi.org/10.1002/jgrd.50171, 2013.
Bony, S., Colman, R., Kattsov, V. M., Allan, R. P., Bretherton, C. S.,
Dufresne, J. L., Hall, A., Hallegatte, S., Holland, M. M., Ingram, W.,
Randall, D. A., Soden, B. J., Tselioudis, G., and Webb, M. J.: How well do we
understand and evaluate climate change feedback processes?, J. Clim.,
19, 3445–3482, https://doi.org/10.1175/JCLI3819.1, 2006.
Calvin, K., Bond-Lamberty, B., Clarke, L., Edmonds, J., Eom, J., Hartin, C.,
Kim, S., Kyle, P., Link, R., Moss, R., McJeon, H., Patel, P., Smith, S.,
Waldhoff, S., and Wise, M.: The SSP4: A world of deepening inequality, Glob.
Environ. Chang., 42, 284–296, https://doi.org/10.1016/j.gloenvcha.2016.06.010, 2017.
Canty, T., Mascioli, N. R., Smarte, M. D., and Salawitch, R. J.: An empirical model of global climate – Part 1: A critical evaluation of volcanic cooling, Atmos. Chem. Phys., 13, 3997–4031, https://doi.org/10.5194/acp-13-3997-2013, 2013.
Carpenter, L. J., Daniel, J. S., Lead, A., Fleming, E. L., Hanaoka, T.,
Ravishankara, A. R., Ross, M. N., Tilmes, S., Wallington, T. J., and
Wuebbles, D. J.: Scenarios and information for policymakers, World Meteorological Organization, Geneva, Switzerland, 2018.
Carton, J.: SODA: A reanalysis of climate, available at: https://www2.atmos.umd.edu/~ocean/soda3_readme.htm, last access: 18 February 2019.
Carton, J. A., Chepurin, G. A., and Chen, L.: SODA3: A New Ocean Climate
Reanalysis, J. Clim., 31, 6967–6983, https://doi.org/10.1175/jcli-d-18-0149.1,
2018.
Charette, M. A. and Smith, W. H. F.: The Volume of Earth' s Ocean,
Oceanography, 23, 112–114, 2010.
Chen, X. and Tung, K. K.: Global surface warming enhanced by weak Atlantic
overturning circulation, Nature, 559, 387–391,
https://doi.org/10.1038/s41586-018-0320-y, 2018.
Cheng, L.: Global mean OHC time series of 0–700 m, available at: http://159.226.119.60/cheng, last access: 6 March 2020a.
Cheng, L.: Four observational time series 1955–2017, available at: http://159.226.119.60/cheng/images_files/New_observational_OHC_0_2000m_record.txt, last access: 6 March 2020b.
Cheng, L., Trenberth, K. E., Fasullo, J., Boyer, T., Abraham, J., and Zhu,
J.: Improved estimates of ocean heat content from 1960 to 2015, Sci. Adv.,
3, 1–11, https://doi.org/10.1126/sciadv.1601545, 2017.
Chylek, P., Klett, J. D., Lesins, G., Dubey, M. K., and Hengartner, N.: The
Atlantic Multidecadal Oscillation as a dominant factor of oceanic influence
on climate, Geophys. Res. Lett., 1689–1697,
https://doi.org/10.1002/2014GL059274, 2014.
CONSTRAIN: ZERO IN ON: A new generation of climate models, COVID-19 and the
Paris Agreement, CONSTRAIN Proj. Annu. Rep. 2020, https://doi.org/10.5281/zenodo.4282461,
2020.
Cowtan, K. and Way, R. G.: Coverage bias in the HadCRUT4 temperature series
and its impact on recent temperature trends, Q. J. Roy. Meteor. Soc.,
140, 1935–1944, https://doi.org/10.1002/qj.2297, 2014.
Cowtan, K., Hausfather, Z., Hawkins, E., Jacobs, P., Mann, M. E., Miller, S.
K., Steinman, B. A., Stolpe, M. B., and Way, R. G.: Robust comparison of
climate models with observations using blended land air and ocean sea
surface temperatures, Geophys. Res. Lett., 42, 6526–6534,
https://doi.org/10.1002/2015GL064888, 2015.
Cox, P. M., Huntingford, C., and Williamson, M. S.: Emergent constraint on
equilibrium climate sensitivity from global temperature variability, Nature,
553, 319–322, https://doi.org/10.1038/nature25450, 2018.
Dessler, A. E., Mauritsen, T., and Stevens, B.: The influence of internal variability on Earth's energy balance framework and implications for estimating climate sensitivity, Atmos. Chem. Phys., 18, 5147–5155, https://doi.org/10.5194/acp-18-5147-2018, 2018.
Dlugokencky, E.: Trends in Atmospheric Methane, available at:
https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/, last access: 28 January 2020.
Dlugokencky, E. and Tans, P.: Trends in Atmospheric Carbon Dioxide, available at: https://www.esrl.noaa.gov/gmd/ccgg/trends/, last access: 28 January 2020.
Domingues, C. M., Church, J. A., White, N. J., Gleckler, P. J., Wijffels, S.
E., Barker, P. M., and Dunn, J. R.: Improved estimates of upper-ocean warming
and multi-decadal sea-level rise, Nature, 453, 1090–1093,
https://doi.org/10.1038/nature07080, 2008.
Dong, Y., Armour, K. C., Zelinka, M. D., Proistosescu, C., Battisti, D. S.,
Zhou, C., and Andrews, T.: Intermodel spread in the pattern effect and its
contribution to climate sensitivity in CMIP5 and CMIP6 models, J. Clim.,
33, 7755–7775, https://doi.org/10.1175/JCLI-D-19-1011.1, 2020.
Douglass, D. H. and Knox, R. S.: Climate forcing by the volcanic eruption of Mount Pinatubo, Geophys. Res. Lett., 32, 1–5, https://doi.org/10.1029/2004GL022119, 2005.
Dudok de Wit, T., Kopp, G., Fröhlich, C., and Schöll, M.: Methodology
to create a new total solar irradiance record: Making a composite out of
multiple data records, Geophys. Res. Lett., 44, 1196–1203,
https://doi.org/10.1002/2016GL071866, 2017.
Durack, P. and Taylor, K.: CMIP6 Forcing Datasets Summary, available at: https://docs.google.com/document/d/1pU9IiJvPJwRvIgVaSDdJ4O0Jeorv_2ekEtted34K9cA/edit#heading=h.jdoykiw7tpen, last access: 3 January 2020.
England, M. H., Mcgregor, S., Spence, P., Meehl, G. A., Timmermann, A., Cai,
W., Gupta, A. Sen, Mcphaden, M. J., Purich, A., and Santoso, A.: Recent
intensification of wind-driven circulation in the Pacific and the ongoing
warming hiatus, Nat. Clim. Chang., 4, 222–227, https://doi.org/10.1038/nclimate2106,
2014.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Fasullo, J. and Balmaseda, M.: Climate analysis section, available at: https://www.cgd.ucar.edu/cas/catalog/ocean/oras4.html, last access: 28 January 2020.
Forster, P. M., Maycock, A. C., McKenna, C. M. and Smith, C. J.: Latest climate models confirm need for urgent mitigation, Nat. Clim. Chang., 10,
7–10, https://doi.org/10.1038/s41558-019-0660-0, 2020.
Foster, G. and Rahmstorf, S.: Global temperature evolution 1979–2010,
Environ. Res. Lett., 6, 044022, https://doi.org/10.1088/1748-9326/6/4/044022, 2011.
Foster, M. J. and Heidinger, A.: PATMOS-x: Results from a diurnally
corrected 30-yr satellite cloud climatology, J. Clim., 26, 414–425,
https://doi.org/10.1175/JCLI-D-11-00666.1, 2013.
Fricko, O., Havlik, P., Rogelj, J., Klimont, Z., Gusti, M., Johnson, N.,
Kolp, P., Strubegger, M., Valin, H., Amann, M., Ermolieva, T., Forsell, N.,
Herrero, M., Heyes, C., Kindermann, G., Krey, V., McCollum, D. L.,
Obersteiner, M., Pachauri, S., Rao, S., Schmid, E., Schoepp, W., and Riahi,
K.: The marker quantification of the Shared Socioeconomic Pathway 2: A
middle-of-the-road scenario for the 21st century, Glob. Environ. Chang., 42,
251–267, https://doi.org/10.1016/j.gloenvcha.2016.06.004, 2017.
Friedlingstein, P., Meinshausen, M., Arora, V. K., Jones, C. D., Anav, A.,
Liddicoat, S. K., and Knutti, R.: Uncertainties in CMIP5 climate projections
due to carbon cycle feedbacks, J. Clim., 27, 511–526,
https://doi.org/10.1175/JCLI-D-12-00579.1, 2014.
Fujimori, S., Hasegawa, T., Masui, T., Takahashi, K., Herran, D. S., Dai,
H., Hijioka, Y., and Kainuma, M.: SSP3: AIM implementation of Shared
Socioeconomic Pathways, Glob. Environ. Chang., 42, 268–283,
https://doi.org/10.1016/j.gloenvcha.2016.06.009, 2017.
Gettelman, A., Hannay, C., Bacmeister, J. T., Neale, R. B., Pendergrass, A.
G., Danabasoglu, G., Lamarque, J. F., Fasullo, J. T., Bailey, D. A.,
Lawrence, D. M., and Mills, M. J.: High Climate Sensitivity in the Community
Earth System Model Version 2 (CESM2), Geophys. Res. Lett., 46,
8329–8337, https://doi.org/10.1029/2019GL083978, 2019.
Goodwin, P.: On the Time Evolution of Climate Sensitivity and Future Warming, Earth's Future, 6, 1336–1348, https://doi.org/10.1029/2018EF000889, 2018.
Gregory, J. M., Ingram, W. J., Palmer, M. A., Jones, G. S., Stott, P. A.,
Thorpe, R. B., Lowe, J. A., Johns, T. C., and Williams, K. D.: A new method
for diagnosing radiative forcing and climate sensitivity, Geophys. Res.
Lett., 31, 2–5, https://doi.org/10.1029/2003GL018747, 2004.
Griffies, S. M., Danabasoglu, G., Durack, P. J., Adcroft, A. J., Balaji, V., Böning, C. W., Chassignet, E. P., Curchitser, E., Deshayes, J., Drange, H., Fox-Kemper, B., Gleckler, P. J., Gregory, J. M., Haak, H., Hallberg, R. W., Heimbach, P., Hewitt, H. T., Holland, D. M., Ilyina, T., Jungclaus, J. H., Komuro, Y., Krasting, J. P., Large, W. G., Marsland, S. J., Masina, S., McDougall, T. J., Nurser, A. J. G., Orr, J. C., Pirani, A., Qiao, F., Stouffer, R. J., Taylor, K. E., Treguier, A. M., Tsujino, H., Uotila, P., Valdivieso, M., Wang, Q., Winton, M., and Yeager, S. G.: OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project, Geosci. Model Dev., 9, 3231–3296, https://doi.org/10.5194/gmd-9-3231-2016, 2016.
Hansen, J., Ruedy, R., Sato, M., and Lo, K.: Global surface temperature
change, Rev. Geophys., 48, RG4004,
https://doi.org/10.1029/2010RG000345, 2010.
Hausfather, Z., Drake, H. F., Abbott, T., and Schmidt, G. A.: Evaluating the
Performance of Past Climate Model Projections, Geophys. Res. Lett., 47, 1–10, https://doi.org/10.1029/2019GL085378, 2020.
Haustein, K., Otto, F. E. L., Venema, V., Jacobs, P., Cowtan, K.,
Hausfather, Z., Way, R. G., White, B., Subramanian, A., and Schurer, A. P.: A
limited role for unforced internal variability in twentieth-century warming,
J. Clim., 32, 4893–4917, https://doi.org/10.1175/JCLI-D-18-0555.1, 2019.
Hope, A. P., Canty, T. P., Salawitch, R. J., Tribett, W. R., and Bennett, B.
F.: Forecasting Global Warming, in Paris Climate Agreement: Beacon of Hope, 51–114, Springer Climate, Cham, Switzerland, 2017.
IIASA: SSP database (Shared Socioeconomic Pathways) – version 2.0, available at: https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=about, last access: 17 February 2020.
Ishihara, K.: Calculation of global surface temperature anomalies with
COBE-SST, Weather Serv. Bull., 73, S19–S25, 2006.
Ishii, M., Shouji, A., Sugimoto, S., and Matsumoto, T.: Objective analyses of
sea-surface temperature and marine meteorological variables for the 20th
century using ICOADS and the Kobe Collection, Int. J. Climatol., 25,
865–879, https://doi.org/10.1002/joc.1169, 2005.
Ishii, M., Fukuda, Y., Hirahara, S., Yasui, S., Suzuki, T., and Sato, K.:
Accuracy of Global Upper Ocean Heat Content Estimation Expected from Present
Observational Data Sets, Sci. Online Lett. Atmos., 13, 163–167,
https://doi.org/10.2151/sola.2017-030, 2017.
Jackson, L. C., Kahana, R., Graham, T., Ringer, M. A., Woollings, T.,
Mecking, J. V., and Wood, R. A.: Global and European climate impacts of a
slowdown of the AMOC in a high resolution GCM, Clim. Dyn., 45,
3299–3316, https://doi.org/10.1007/s00382-015-2540-2, 2015.
Kavvada, A., Ruiz-Barradas, A., and Nigam, S.: AMO's structure and climate
footprint in observations and IPCC AR5 climate simulations, Clim. Dyn.,
41, 1345–1364, https://doi.org/10.1007/s00382-013-1712-1, 2013.
Kennedy, J. J., Rayner, N. A., Smith, R. O., Parker, D. E., and Saunby, M.:
Reassessing biases and other uncertainties in sea surface temperature
observations measured in situ since 1850: 2. Biases and homogenization, J.
Geophys. Res., 116, 1–22, https://doi.org/10.1029/2010jd015220, 2011.
Kennedy, J. J., Rayner, N. A., Atkinson, C. P., and Killick, R. E.: An
Ensemble Data Set of Sea Surface Temperature Change From 1850: The Met
Office Hadley Centre HadSST.4.0.0.0 Data Set, J. Geophys. Res.-Atmos.,
124, 7719–7763, https://doi.org/10.1029/2018JD029867, 2019.
Kiehl, J. T.: Twentieth century climate model response and climate
sensitivity, Geophys. Res. Lett., 34, 1–4, https://doi.org/10.1029/2007GL031383,
2007.
Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G.,
Dlugokencky, E. J., Bergamaschi, P., Bergmann, D., Blake, D. R., Bruhwiler,
L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A.,
Heimann, M., Hodson, E. L., Houweling, S., Josse, B., Fraser, P. J.,
Krummel, P. B., Lamarque, J. F., Langenfelds, R. L., Le Quéré, C.,
Naik, V., O'doherty, S., Palmer, P. I., Pison, I., Plummer, D., Poulter, B.,
Prinn, R. G., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell,
D. T., Simpson, I. J., Spahni, R., Steele, L. P., Strode, S. A., Sudo, K.,
Szopa, S., Van Der Werf, G. R., Voulgarakis, A., Van Weele, M., Weiss, R.
F., Williams, J. E., and Zeng, G.: Three decades of global methane sources
and sinks, Nat. Geosci., 6, 813–823, https://doi.org/10.1038/ngeo1955, 2013.
Kirtman, B., Power, S. B., Adedoyin, A. J., Boer, G. J., Bojariu, R.,
Camilloni, I., Doblas-Reyes, F., Fiore, A. M., Kimoto, M., Meehl, G.,
Prather, M., Sarr, A., Schär, C., Sutton, R., van Oldenborgh, G. J.,
Vecchi, G., and Wang, H. J.: Near-term climate change: Projections and
predictability, Clim. Chang. 2013 Phys. Sci. Basis Work. Gr. I Contrib. to
Fifth Assess. Rep. Intergov. Panel Clim. Chang., 9781107057, 953–1028,
https://doi.org/10.1017/CBO9781107415324.023, 2013.
Klein, S. A., Hall, A., Norris, J. R., and Pincus, R.: Low-Cloud Feedbacks
from Cloud-Controlling Factors: A Review, Surv. Geophys., 38, 1307–1329,
https://doi.org/10.1007/s10712-017-9433-3, 2017.
Knight, J. R., Allan, R. J., Folland, C. K., Vellinga, M., and Mann, M. E.: A
signature of persistent natural thermohaline circulation cycles in observed
climate, Geophys. Res. Lett., 32, 1–4, https://doi.org/10.1029/2005GL024233, 2005.
Kriegler, E., Weyant, J. P., Blanford, G. J., Krey, V., Clarke, L., Edmonds,
J., Fawcett, A., Luderer, G., Riahi, K., Richels, R., Rose, S. K., Tavoni,
M., and van Vuuren, D. P.: The role of technology for achieving climate
policy objectives: Overview of the EMF 27 study on global technology and
climate policy strategies, Clim. Change, 123, 353–367,
https://doi.org/10.1007/s10584-013-0953-7, 2014.
Kriegler, E., Riahi, K., Bauer, N., Schwanitz, V. J., Petermann, N.,
Bosetti, V., Marcucci, A., Otto, S., Paroussos, L., Rao, S., Arroyo
Currás, T., Ashina, S., Bollen, J., Eom, J., Hamdi-Cherif, M., Longden,
T., Kitous, A., Méjean, A., Sano, F., Schaeffer, M., Wada, K., Capros,
P., P. van Vuuren, D., and Edenhofer, O.: Making or breaking climate targets:
The AMPERE study on staged accession scenarios for climate policy, Technol.
Forecast. Soc. Change, 90, 24–44, https://doi.org/10.1016/j.techfore.2013.09.021, 2015.
Kriegler, E., Bauer, N., Popp, A., Humpenöder, F., Leimbach, M.,
Strefler, J., Baumstark, L., Bodirsky, B. L., Hilaire, J., Klein, D.,
Mouratiadou, I., Weindl, I., Bertram, C., Dietrich, J. P., Luderer, G.,
Pehl, M., Pietzcker, R., Piontek, F., Lotze-Campen, H., Biewald, A., Bonsch,
M., Giannousakis, A., Kreidenweis, U., Müller, C., Rolinski, S.,
Schultes, A., Schwanitz, J., Stevanovic, M., Calvin, K., Emmerling, J.,
Fujimori, S., and Edenhofer, O.: Fossil-fueled development (SSP5): An energy
and resource intensive scenario for the 21st century, Glob. Environ. Chang.,
42, 297–315, https://doi.org/10.1016/j.gloenvcha.2016.05.015, 2017.
Kushnir, Y.: Interdecadal Variations in North Atlantic Sea Surface
Temperature and Associated Atmospheric Conditions, J. Clim., 7, 141–157,
https://doi.org/10.1175/1520-0442(1994)007<0141:IVINAS>2.0.CO;2,
1994.
Laboratory for Atmospheric and Space Physics: Total solar irradiance data, available at: https://lasp.colorado.edu/home/sorce/data/tsi-data/, last access: 28 January 2020.
Lean, J. L. and Rind, D. H.: How natural and anthropogenic influences alter
global and regional surface temperatures: 1889 to 2006, Geophys. Res. Lett.,
35, 1–6, https://doi.org/10.1029/2008GL034864, 2008.
Lean, J. L. and Rind, D. H.: How will Earth's surface temperature change in
future decades?, Geophys. Res. Lett., 36, 1–5,
https://doi.org/10.1029/2009GL038932, 2009.
Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The
contribution of outdoor air pollution sources to premature mortality on a
global scale, Nature, 525, 367–371, https://doi.org/10.1038/nature15371, 2015.
Levitus, S., Antonov, J. I., Boyer, T. P., Baranova, O. K., Garcia, H. E.,
Locarnini, R. A., Mishonov, A. V., Reagan, J. R., Seidov, D., Yarosh, E. S., and Zweng, M. M.: World ocean heat content and thermosteric sea level change
(0–2000 m), 1955–2010, Geophys. Res. Lett., 39, 1–5,
https://doi.org/10.1029/2012GL051106, 2012.
Lewis, N. and Curry, J.: The impact of recent forcing and ocean heat uptake
data on estimates of climate sensitivity, J. Clim., 31, 6051–6071,
https://doi.org/10.1175/JCLI-D-17-0667.1, 2018.
Lewis, N. and Grünwald, P.: Objectively combining AR5 instrumental
period and paleoclimate climate sensitivity evidence, Clim. Dyn., 50,
2199–2216, https://doi.org/10.1007/s00382-017-3744-4, 2018.
Mantua, N.: PDO Index, available at: http://research.jisao.washington.edu/pdo/PDO.latest.txt, last access: 2 March 2020.
Marvel, K., Pincus, R., Schmidt, G. A., and Miller, R. L.: Internal
Variability and Disequilibrium Confound Estimates of Climate Sensitivity
From Observations, Geophys. Res. Lett., 45, 1595–1601,
https://doi.org/10.1002/2017GL076468, 2018.
Mascioli, N. R., Canty, T., and Salawitch, R. J.: An empirical model of global climate – Part 2: Implications for future temperature, Atmos. Chem. Phys. Discuss., 12, 23913–23974, https://doi.org/10.5194/acpd-12-23913-2012, 2012.
Matthes, K., Funke, B., Andersson, M. E., Barnard, L., Beer, J., Charbonneau, P., Clilverd, M. A., Dudok de Wit, T., Haberreiter, M., Hendry, A., Jackman, C. H., Kretzschmar, M., Kruschke, T., Kunze, M., Langematz, U., Marsh, D. R., Maycock, A. C., Misios, S., Rodger, C. J., Scaife, A. A., Seppälä, A., Shangguan, M., Sinnhuber, M., Tourpali, K., Usoskin, I., van de Kamp, M., Verronen, P. T., and Versick, S.: Solar forcing for CMIP6 (v3.2), Geosci. Model Dev., 10, 2247–2302, https://doi.org/10.5194/gmd-10-2247-2017, 2017.
McBride, L. A., Hope, A. P., Canty, T. P., Bennett, B. F., Tribett, W. R., and Salawitch, R. J.: Input and Output Files EMGC, Zenodo, https://doi.org/10.5281/zenodo.4300780, 2021.
Medhaug, I. and Furevik, T.: North Atlantic 20th century multidecadal
variability in coupled climate models: Sea surface temperature and ocean
overturning circulation, Ocean Sci., 7, 389–404,
https://doi.org/10.5194/os-7-389-2011, 2011.
Meehl, G. A., Senior, C. A., Eyring, V., Flato, G., Lamarque, J. F.,
Stouffer, R. J., Taylor, K. E., and Schlund, M.: Context for interpreting
equilibrium climate sensitivity and transient climate response from the
CMIP6 Earth system models, Sci. Adv., 6, 1–11,
https://doi.org/10.1126/sciadv.aba1981, 2020.
Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T.,
Lamarque, J., Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K.,
Thomson, A., Velders, G. J. M., and van Vuuren, D. P. P.: The RCP greenhouse
gas concentrations and their extensions from 1765 to 2300, Clim. Change,
109, 213–241, https://doi.org/10.1007/s10584-011-0156-z, 2011.
Meinshausen, M., Smith, S., van Vuuren, D., Thomson, A., Masui, T., and Riahi, K.: RCP Concentration Calculations and Data, available at: http://www.pik-potsdam.de/~mmalte/rcps/, last access: 16 November 2017a.
Meinshausen, M., Vogel, E., Nauels, A., Lorbacher, K., Meinshausen, N., Etheridge, D. M., Fraser, P. J., Montzka, S. A., Rayner, P. J., Trudinger, C. M., Krummel, P. B., Beyerle, U., Canadell, J. G., Daniel, J. S., Enting, I. G., Law, R. M., Lunder, C. R., O'Doherty, S., Prinn, R. G., Reimann, S., Rubino, M., Velders, G. J. M., Vollmer, M. K., Wang, R. H. J., and Weiss, R.: Historical greenhouse gas concentrations for climate modelling (CMIP6), Geosci. Model Dev., 10, 2057–2116, https://doi.org/10.5194/gmd-10-2057-2017, 2017b.
Millar, R. J., Fuglestvedt, J. S., Friedlingstein, P., Rogelj, J., Grubb, M.
J., Matthews, H. D., Skeie, R. B., Forster, P. M., Frame, D. J., and Allen,
M. R.: Emission budgets and pathways consistent with limiting warming to
1.5 ∘C, Nat. Geosci., 11, 454–455,
https://doi.org/10.1038/s41561-018-0153-1, 2017.
Morice, C. P., Kennedy, J. J., Rayner, N. A., and Jones, P. D.: Quantifying
uncertainties in global and regional temperature change using an ensemble of
observational estimates: The HadCRUT4 data set, J. Geophys. Res.-Atmos.,
117, 1–22, https://doi.org/10.1029/2011JD017187, 2012.
Morice, C. P., Kennedy, J. J., Rayner, N. A., Winn, J. P., Hogan, E.,
Killick, R. E., Dunn, R. J. H., Osborn, T. J., Jones, P. D., and Simpson, I.
R.: An updated assessment of near-surface temperature change from 1850: the
HadCRUT5 dataset, J. Geophys. Res.-Atmos., 126, 1–28, https://doi.org/10.1029/2019jd032361, 2021.
Murphy, J. M., Booth, B. B. B., Boulton, C. A., Clark, R. T., Harris, G. R.,
Lowe, J. A., and Sexton, D. M. H.: Transient climate changes in a perturbed
parameter ensemble of emissions-driven earth system model simulations, Clim.
Dyn., 43, 2855–2885, https://doi.org/10.1007/s00382-014-2097-5, 2014.
Myhre, G., Highwood, E. J., Shine, K. P., and Stordal, F.: New estimates of
radiative forcing due to wel mixed greenhouse gases, Geophys. Res. Lett.,
25, 2715–2718, 1998.
Myhre, G., Nilsen, J. S., Gulstad, L., Shine, K. P., Rognerud, B., and Isaksen, I. S. A.: Radiative forcing due to stratospheric water vapour from
CH4 oxidation, Geophys. Res. Lett., 34, 3–7, https://doi.org/10.1029/2006GL027472,
2007.
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J.,
Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T.,
Robock, A., Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic and
Natural Radiative Forcing, Clim. Chang. 2013 Phys. Sci. Basis. Contrib.
Work. Gr. I to Fifth Assess. Rep. Intergov. Panel Clim. Chang., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 659–740,
https://doi.org/10.1017/CBO9781107415324.018, 2013.
Nigam, S., Guan, B., and Ruiz-Barradas, A.: Key role of the Atlantic
Multidecadal Oscillation in 20th century drought and wet periods over the
Great Plains, Geophys. Res. Lett., 38, 1–6, https://doi.org/10.1029/2011GL048650,
2011.
Nijsse, F. J. M. M., Cox, P. M., and Williamson, M. S.: Emergent constraints on transient climate response (TCR) and equilibrium climate sensitivity (ECS) from historical warming in CMIP5 and CMIP6 models, Earth Syst. Dynam., 11, 737–750, https://doi.org/10.5194/esd-11-737-2020, 2020.
NOAA/NCEI: Global ocean heat and salt content, available at: https://www.ncei.noaa.gov/access/global-ocean-heat-content/, 17 February 2020.
NOAA/OAR/ESRL PSL: COBE SST, available at: https://psl.noaa.gov/data/gridded/data.cobe.html, last access: 2 March 2020.
NOAA/PSL: Multivariate ENSO Index Version 2 (MEI.v2), available at: https://psl.noaa.gov/enso/mei/data/meiv2.data, last access: 28 January 2020.
O'Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter,
T. R., Mathur, R., and van Vuuren, D. P.: A new scenario framework for
climate change research: The concept of shared socioeconomic pathways, Clim.
Change, 122, 387–400, https://doi.org/10.1007/s10584-013-0905-2, 2014.
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016.
O'Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K.,
Rothman, D. S., van Ruijven, B. J., van Vuuren, D. P., Birkmann, J., Kok,
K., Levy, M., and Solecki, W.: The roads ahead: Narratives for shared
socioeconomic pathways describing world futures in the 21st century, Glob.
Environ. Chang., 42, 169–180, https://doi.org/10.1016/j.gloenvcha.2015.01.004, 2017.
Otto, A., Otto, F. E. L., Boucher, O., Church, J., Hegerl, G., Forster, P.
M., Gillett, N. P., Gregory, J., Johnson, G. C., Knutti, R., Lewis, N.,
Lohmann, U., Marotzke, J., Myhre, G., Shindell, D., Stevens, B., and Allen,
M. R.: Energy budget constraints on climate response, Nat. Geosci., 6,
415–416, https://doi.org/10.1038/ngeo1836, 2013.
Proistosescu, C. and Huybers, P. J.: Slow climate mode reconciles historical and model-based estimates of climate sensitivity, Sci. Adv., 3, 1–7,
https://doi.org/10.1126/sciadv.1602821, 2017.
Raper, S. C. B., Gregory, J. M., and Stouffer, R. J.: The role of climate
sensitivity and ocean heat uptake on AOGCM transient temperature response,
J. Clim., 15, 124–130, https://doi.org/10.1175/1520-0442(2002)015<0124:TROCSA>2.0.CO;2, 2002.
Riahi, K., Kriegler, E., Johnson, N., Bertram, C., den Elzen, M., Eom, J.,
Schaeffer, M., Edmonds, J., Isaac, M., Krey, V., Longden, T., Luderer, G.,
Méjean, A., McCollum, D. L., Mima, S., Turton, H., van Vuuren, D. P.,
Wada, K., Bosetti, V., Capros, P., Criqui, P., Hamdi-Cherif, M., Kainuma, M., and Edenhofer, O.: Locked into Copenhagen pledges – Implications of
short-term emission targets for the cost and feasibility of long-term
climate goals, Technol. Forecast. Soc. Change, 90, 8–23,
https://doi.org/10.1016/j.techfore.2013.09.016, 2015.
Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O'Neill, B. C.,
Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W.,
Popp, A., Cuaresma, J. C., KC, S., Leimbach, M., Jiang, L., Kram, T., Rao,
S., Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenöder, F., Da
Silva, L. A., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D.,
Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G.,
Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J. C., Kainuma, M.,
Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A., and Tavoni, M.: The Shared Socioeconomic Pathways and their energy, land
use, and greenhouse gas emissions implications: An overview, Glob. Environ.
Chang., 42, 153–168, https://doi.org/10.1016/j.gloenvcha.2016.05.009, 2017.
Rogelj, J., Popp, A., Calvin, K. V., Luderer, G., Emmerling, J., Gernaat,
D., Fujimori, S., Strefler, J., Hasegawa, T., Marangoni, G., Krey, V.,
Kriegler, E., Riahi, K., Van Vuuren, D. P., Doelman, J., Drouet, L.,
Edmonds, J., Fricko, O., Harmsen, M., Havlík, P., Humpenöder, F.,
Stehfest, E., and Tavoni, M.: Scenarios towards limiting global mean
temperature increase below 1.5 ∘C, Nat. Clim. Chang., 8,
325–332, https://doi.org/10.1038/s41558-018-0091-3, 2018.
Rohde, R. A. and Hausfather, Z.: The Berkeley Earth Land/Ocean Temperature Record, Earth Syst. Sci. Data, 12, 3469–3479, https://doi.org/10.5194/essd-12-3469-2020, 2020.
Rugenstein, M., Bloch-Johnson, J., Gregory, J., Andrews, T., Mauritsen, T.,
Li, C., Frölicher, T. L., Paynter, D., Danabasoglu, G., Yang, S.,
Dufresne, J. L., Cao, L., Schmidt, G. A., Abe-Ouchi, A., Geoffroy, O., and
Knutti, R.: Equilibrium Climate Sensitivity Estimated by Equilibrating
Climate Models, Geophys. Res. Lett., 47, 1–12, https://doi.org/10.1029/2019GL083898,
2020.
Saji, N. H., Goswami, B. N., Vinayachandran, P. N., and Yamagata, T.: A
dipole mode in the tropical Indian ocean, Nature, 401, 360–363,
https://doi.org/10.1038/43854, 1999.
Schiffer, R. A. and Rossow, W. B.: The International Satellite Cloud
Climatology Project (ISCCP): The first project of the World Climate Research
Programme, B. Am. Meteorol. Soc., 76, 779–784, 1983.
Schlesinger, M. E. and Ramankutty, N.: An oscillation in the global climate
system of period 65–70 years, Nature, 367, 723–726, 1994.
Schwartz, S. E.: Determination of Earth's Transient and Equilibrium Climate
Sensitivities from Observations Over the Twentieth Century: Strong
Dependence on Assumed Forcing, Surv. Geophys., 33, 745–777,
https://doi.org/10.1007/s10712-012-9180-4, 2012.
Sellar, A. A., Walton, J., Jones, C. G., Wood, R., Abraham, N. L.,
Andrejczuk, M., Andrews, M. B., Andrews, T., Archibald, A. T., de Mora, L.,
Dyson, H., Elkington, M., Ellis, R., Florek, P., Good, P., Gohar, L.,
Haddad, S., Hardiman, S. C., Hogan, E., Iwi, A., Jones, C. D., Johnson, B.,
Kelley, D. I., Kettleborough, J., Knight, J. R., Köhler, M. O.,
Kuhlbrodt, T., Liddicoat, S., Linova-Pavlova, I., Mizielinski, M. S.,
Morgenstern, O., Mulcahy, J., Neininger, E., O'Connor, F. M., Petrie, R.,
Ridley, J., Rioual, J. C., Roberts, M., Robertson, E., Rumbold, S., Seddon,
J., Shepherd, H., Shim, S., Stephens, A., Teixiera, J. C., Tang, Y.,
Williams, J., Wiltshire, A., and Griffiths, P. T.: Implementation of U.K.
Earth System Models for CMIP6, J. Adv. Model. Earth Syst., 12, 1–27,
https://doi.org/10.1029/2019MS001946, 2020.
Shen, Z., Ming, Y., and Held, I. M.: Using the fast impact of anthropogenic
aerosols on regional land temperature to constrain aerosol forcing, Sci.
Adv., 6, 1–7, https://doi.org/10.1126/sciadv.abb5297, 2020.
Sherwood, A. S., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. M.,
Hargreaves, J. C., Hegerl, G., Klein, S. A., Marvel, K. D., Rohling, E. J.,
Watanabe, M., Andrews, T., Braconnot, P., Bretherton, C. S., Foster, G. L.,
Hausfather, Z., von der Heydt, A. S., Knutti, R., Mauritsen, T., Norris, J.
R., Proistosescu, C., Rugenstein, M., Schmidt, G. A., and Tokarska, K. B.,
Zelinka, M. D.: An assessment of Earth ' s climate sensitivity using
multiple lines of evidence, Rev. Geophys., 58, 1–166, 2020.
Shindell, D. T., Lee, Y., and Faluvegi, G.: Climate and health impacts of US
emissions reductions consistent with 2 ∘C, Nat. Clim. Chang.,
6, 503–507, https://doi.org/10.1038/nclimate2935, 2016.
Skeie, R. B., Berntsen, T., Aldrin, M., Holden, M., and Myhre, G.: Climate sensitivity estimates – sensitivity to radiative forcing time series and observational data, Earth Syst. Dynam., 9, 879–894, https://doi.org/10.5194/esd-9-879-2018, 2018.
Smith, S. J. and Bond, T. C.: Two hundred fifty years of aerosols and climate: the end of the age of aerosols, Atmos. Chem. Phys., 14, 537–549, https://doi.org/10.5194/acp-14-537-2014, 2014.
Smith, T. M., Reynolds, R. W., Peterson, T. C., and Lawrimore, J.:
Improvements to NOAA's historical merged land-ocean surface temperature
analysis (1880–2006), J. Clim., 21, 2283–2296,
https://doi.org/10.1175/2007JCLI2100.1, 2008.
Solomon, S.: Climate change 2007-the physical science basis: Working group I
contribution to the fourth assessment report of the IPCC, Cambridge
University Press, New York, NY, USA, 2007.
Stocker, T., Qin, D., Plattner, G., Tignor, M., Allen, S., Boschung, J.,
Nauels, A., Xia, Y., Bex, V., and Midgely, P.: IPCC, 2013: climate change
2013: The physical science basis. Conribution of working group I to the
fifth assessment report of the intergovernmental panel on climate change,
Cambridge, UK and New York, NY, USA, 2013.
Stouffer, R. J., Yin, J., Gregory, J. M., Dixon, K. W., Spelman, M. J.,
Hurlin, W., Weaver, A. J., Eby, M., Flato, G. M., Hasumi, H., Hu, A.,
Jungclaus, J. H., Kamenkovich, I. V., Levermann, A., Montoya, M., Murakami,
S., Nawrath, S., Oka, A., Peltier, W. R., Robitaille, D. Y., Sokolov, A.,
Vettoretti, G., and Weber, S. L.: Investigating the cause of the response of
the thermohaline circulation to past and future climage changes, J. Clim.,
19, 1365–1387, https://doi.org/10.1175/JCLI3689.1, 2006.
Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Hanna, S., Jiao, Y., Lee, W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Sigmond, M., Solheim, L., von Salzen, K., Yang, D., and Winter, B.: The Canadian Earth System Model version 5 (CanESM5.0.3), Geosci. Model Dev., 12, 4823–4873, https://doi.org/10.5194/gmd-12-4823-2019, 2019.
Tatebe, H., Ogura, T., Nitta, T., Komuro, Y., Ogochi, K., Takemura, T., Sudo, K., Sekiguchi, M., Abe, M., Saito, F., Chikira, M., Watanabe, S., Mori, M., Hirota, N., Kawatani, Y., Mochizuki, T., Yoshimura, K., Takata, K., O'ishi, R., Yamazaki, D., Suzuki, T., Kurogi, M., Kataoka, T., Watanabe, M., and Kimoto, M.: Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6, Geosci. Model Dev., 12, 2727–2765, https://doi.org/10.5194/gmd-12-2727-2019, 2019.
Taylor, K. E., Stouffer, R. J. and Meehl, G. A.: An overview of CMIP5 and
the experiment design, B. Am. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Thomason, L.: Global Satellite-based Stratospheric Aerosol Climatology, available at: https://asdc.larc.nasa.gov/project/GloSSAC, last access: 11 August 2020.
Thomason, L. W., Ernest, N., Millán, L., Rieger, L., Bourassa, A., Vernier, J.-P., Manney, G., Luo, B., Arfeuille, F., and Peter, T.: A global space-based stratospheric aerosol climatology: 1979–2016, Earth Syst. Sci. Data, 10, 469–492, https://doi.org/10.5194/essd-10-469-2018, 2018.
Thompson, D. W. J., Wallace, J. M., Jones, P. D., and Kennedy, J. J.:
Identifying signatures of natural climate variability in time series of
global-mean surface temperature: Methodology and insights, J. Clim., 22,
6120–6141, https://doi.org/10.1175/2009JCLI3089.1, 2009.
Tokarska, K. B., Hegerl, G. C., Schurer, A. P., Forster, P. M., and Marvel,
K.: Observational constraints on the effective climate sensitivity from the
historical period, Environ. Res. Lett., 15, 1–12, https://doi.org/10.1088/1748-9326/ab738f,
2020a.
Tokarska, K. B., Stolpe, M. B., Sippel, S., Fischer, E. M., Smith, C. J.,
Lehner, F., and Knutti, R.: Past warming trend constrains future warming in
CMIP6 models, Sci. Adv., 6, 1–13, https://doi.org/10.1126/sciadv.aaz9549, 2020b.
Trenberth, K. E. and Fasullo, J. T.: An apparent hiatus in global warming?,
Earth's Future, 1, 19–32, https://doi.org/10.1002/2013EF000165, 2013.
Vaughan, M. A., Young, S. A., Winker, D. M., Powell, K. A., Omar, A. H.,
Liu, Z., Hu, Y., and Hostetler, C. A.: Fully automated analysis of
space-based lidar data: an overview of the CALIPSO retrieval algorithms and
data products, Proc SPIE, 1–15, 5575, https://doi.org/10.1117/12.572024, 2004.
Volodin, E. and Gritsun, A.: Simulation of observed climate changes in 1850–2014 with climate model INM-CM5, Earth Syst. Dynam., 9, 1235–1242, https://doi.org/10.5194/esd-9-1235-2018, 2018.
van Vuuren, D. P., Stehfest, E., Gernaat, D. E. H. J., Doelman, J. C., van
den Berg, M., Harmsen, M., de Boer, H. S., Bouwman, L. F., Daioglou, V.,
Edelenbosch, O. Y., Girod, B., Kram, T., Lassaletta, L., Lucas, P. L., van
Meijl, H., Müller, C., van Ruijven, B. J., van der Sluis, S., and Tabeau,
A.: Energy, land-use and greenhouse gas emissions trajectories under a green
growth paradigm, Glob. Environ. Chang., 42, 237–250,
https://doi.org/10.1016/j.gloenvcha.2016.05.008, 2017.
van Vuuren, D. P., van der Wijst, K.-I., Marsman, S., van den Berg, M., Hof,
A. F., and Jones, C. D.: The costs of achieving climate targets and the
sources of uncertainty, Nat. Clim. Chang., 10, 329–334, https://doi.org/10.1038/s41558-020-0732-1, 2020.
Weaver, C. J., Wu, D. L., Bhartia, P. K., Labow, G. J., and Haffner, D. P.: A
long-term cloud albedo data record since 1980 from UV satellite sensors,
Remote Sens., 12, 1–18, https://doi.org/10.3390/rs12121982, 2020.
WMO (World Meteorological Organization), Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project – Report No. 58, 588 pp., Geneva, Switzerland, 2018.
Wolf, J., Asrar, G. R., and West, T. O.: Revised methane emissions factors
and spatially distributed annual carbon fluxes for global livestock, Carbon
Balance Manag., 12, 1–24, https://doi.org/10.1186/s13021-017-0084-y, 2017.
Wolter, K. and Timlin, M. S.: Monitoring ENSO in COADS with a seasonally
adjusted principal component index, Proc 17th Clim. Diagnostics Work.,
52–57, available at:
https://psl.noaa.gov/enso/mei.old/ last access: 11 March 2020, 1993.
Wolter, K. and Timlin, M. S.: El Niño/Southern Oscillation behaviour
since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext),
Int. J. Climatol., 31, 1074–1087, https://doi.org/10.1002/joc.2336, 2011.
Wolter, K. and Timlin, M. S.: Extended Multivariate ENSO Index (MEI.ext), available at: https://psl.noaa.gov/enso/mei.ext/, 11 March 2020.
World Climate Research Programme: CMIP6, available at: https://esgf-node.llnl.gov/search/cmip6/, 24 March 2020.
Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M.,
Ceppi, P., Klein, S. A., and Taylor, K. E.: Causes of Higher Climate
Sensitivity in CMIP6 Models, Geophys. Res. Lett., 47, 1–12, https://doi.org/10.1029/2019GL085782, 2020.
Zhang, H.-M., Lawrimore, J., Huang, B., Menne, M. J., Yin, X., Sanchez-Lugo,
A., Gleason, B. E., Vose, R., Arndt, D., Rennie, J. J., and Williams, C. N.:
Updated Temperature Data Give a Sharper View of Climate Trends, Eos, Washington DC, USA, 100, 1–9, https://doi.org/10.1029/2019EO128229, 2019.
Zhang, R. and Delworth, T. L.: Impact of the Atlantic Multidecadal
Oscillation on North Pacific climate variability, Geophys. Res. Lett.,
34, 2–7, https://doi.org/10.1029/2007GL031601, 2007.
Zhou, J. and Tung, K. K.: Deducing multidecadal anthropogenic global warming
trends using multiple regression analysis, J. Atmos. Sci., 70, 3–8,
https://doi.org/10.1175/JAS-D-12-0208.1, 2013.
Zhu, J., Poulsen, C. J., and Otto-Bliesner, B. L.: High climate sensitivity
in CMIP6 model not supported by paleoclimate, Nat. Clim. Chang., 10,
378–379, https://doi.org/10.1038/s41558-020-0764-6, 2020.
Short summary
We use a reduced-complexity climate model trained by observations to show that at the current rate of human release of CO2, total cumulative emissions will pass the 66 % likelihood of limiting warming to 1.5° or 2°C in about 10 and 35 years, respectively. We also show that complex climate models often used to guide policy tend to warm faster than observed over the past few decades. To achieve the Paris Climate Agreement, CO2 and CH4 emissions must be severely curtailed in the next decade.
We use a reduced-complexity climate model trained by observations to show that at the current...
Altmetrics
Final-revised paper
Preprint