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Abstract. The sixth phase of the Coupled Model Intercomparison Project (CMIPO6) is the latest modeling effort
for general circulation models to simulate and project various aspects of climate change. Many of the general
circulation models (GCMs) participating in CMIP6 provide archived output that can be used to calculate effec-
tive climate sensitivity (ECS) and forecast future temperature change based on emissions scenarios from several
Shared Socioeconomic Pathways (SSPs). Here we use our multiple linear regression energy balance model, the
Empirical Model of Global Climate (EM-GC), to simulate and project changes in global mean surface temper-
ature (GMST), calculate ECS, and compare to results from the CMIP6 multi-model ensemble. An important
aspect of our study is a comprehensive analysis of uncertainties due to radiative forcing of climate from tro-
pospheric aerosols (AER RF) in the EM-GC framework. We quantify the attributable anthropogenic warming
rate (AAWR) from the climate record using the EM-GC and use AAWR as a metric to determine how well
CMIP6 GCMs replicate human-driven global warming over the last 40 years. The CMIP6 multi-model ensem-
ble indicates a median value of AAWR over 1975-2014 of 0.221 °C per decade (range of 0.151 to 0.299 °C
per decade; all ranges given here are for 5th and 95th confidence intervals), which is notably faster warming
than our median estimate for AAWR of 0.157 °C per decade (range of 0.120 to 0.195 °C per decade) inferred
from the analysis of the Hadley Centre Climatic Research Unit version 5 data record for GMST. Estimates of
ECS found using the EM-GC assuming that climate feedback does not vary over time (best estimate 2.33 °C;
range of 1.40 to 3.57 °C) are generally consistent with the range of ECS of 1.5 to 4.5 °C given by the IPCC’s
Fifth Assessment Report. The CMIP6 multi-model ensemble exhibits considerably larger values of ECS (median
3.74°C; range of 2.19 to 5.65 °C). Our best estimate of ECS increases to 3.08 °C (range of 2.23 to 5.53°C) if
we allow climate feedback to vary over time. The dominant factor in the uncertainty for our empirical deter-
minations of AAWR and ECS is imprecise knowledge of AER RF for the contemporary atmosphere, though
the uncertainty due to time-dependent climate feedback is also important for estimates of ECS. We calculate the
likelihood of achieving the Paris Agreement target (1.5 °C) and upper limit (2.0 °C) of global warming relative to
pre-industrial for seven of the SSPs using both the EM-GC and the CMIP6 multi-model ensemble. In our model
framework, SSP1-2.6 has a 53 % probability of limiting warming at or below the Paris target by the end of the
century, and SSP4-3.4 has a 64 % probability of achieving the Paris upper limit. These estimates are based on
the assumptions that climate feedback has been and will remain constant over time since the prior temperature
record can be fit so well assuming constant climate feedback. In addition, we quantify the sensitivity of future
warming to the curbing of the current rapid growth of atmospheric methane and show that major near-term limits
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on the future growth of methane are especially important for achievement of the 1.5 °C goal of future warming.
We also quantify warming scenarios assuming climate feedback will rise over time, a feature common among
many CMIP6 GCMs; under this assumption, it becomes more difficult to achieve any specific warming target.
Finally, we assess warming projections in terms of future anthropogenic emissions of atmospheric carbon. In our
model framework, humans can emit only another 150 £ 79 Gt C after 2019 to have a 66 % likelihood of limiting
warming to 1.5 °C and another 400+ 104 Gt C to have the same probability of limiting warming to 2.0 °C. Given
the estimated emission of 11.7 Gt C per year for 2019 due to combustion of fossil fuels and deforestation, our
EM-GC simulations suggest that the 1.5 °C warming target of the Paris Agreement will not be achieved unless
carbon and methane emissions are severely curtailed in the next 10 years.

1 Introduction

The goals of the Paris Agreement, negotiated in Decem-
ber of 2015, are to keep global warming below 2.0 °C rel-
ative to the start of the Industrial Era and pursue efforts to
limit global warming to 1.5°C. General circulation mod-
els (GCMs) project future temperature change using various
evolutions of greenhouse gases and determine the likelihood
of achieving the goals of the agreement. Many GCMs are
participating in the sixth phase of the Coupled Model In-
tercomparison Project (CMIP6) to quantify how the models
represent different aspects of climate change (Eyring et al.,
2016). Accurate projections of future temperature are critical
for achieving the goals of the Paris Agreement. Chapter 11 of
the IPCC’s Fifth Assessment Report shows that some of the
previous generations of these models participating in phase
5 of the Coupled Model Intercomparison Project (CMIP5)
(Taylor et al., 2012) tended to overestimate the increase in
global mean surface temperature (GMST) for the 21st cen-
tury (Kirtman et al., 2013). In this analysis we use a mul-
tiple linear regression energy balance model to quantify the
change in GMST from 1850-2019, project future changes in
GMST, compare to the CMIP6 multi-model ensemble, and
determine the likelihood of achieving the goals of the Paris
Agreement.

Several prior studies have used a multiple linear regression
approach to model the GMST anomaly in order to quantify
the impact of anthropogenic and natural factors on climate
(Foster and Rahmstorf, 2011; Lean and Rind, 2008, 2009;
Zhou and Tung, 2013). Typically, total solar irradiance, vol-
canoes, and the El Nifio-Southern Oscillation (ENSO) are
the natural components represented in the multiple linear
regression. Greenhouse gases and aerosols are the anthro-
pogenic factors. We use multiple linear regression, in con-
nection with a dynamic ocean module that accounts for the
export of heat from the atmosphere to the ocean, to repre-
sent the natural and anthropogenic components of the cli-
mate system. In addition to the typical natural factors listed
above, we include the Atlantic Meridional Overturning Cir-
culation (AMOC), Pacific Decadal Oscillation (PDO), and
Indian Ocean Dipole (IOD) to provide a robust representa-
tion of the natural climate system (Canty et al., 2013; Hope
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et al., 2017). Our anthropogenic components also include
the effect of land-use change (i.e., deforestation) on Earth’s
albedo and the export of heat from the atmosphere to the
ocean as the atmosphere warms.

Our analysis builds on the work of Canty et al. (2013) and
Hope et al. (2017) and includes several key updates. One
is the extension back in time of our analysis to 1850. The
Hadley Centre Climatic Research Unit (Morice et al., 2012,
2021), Berkeley Earth Group (Rohde and Hausfather, 2020),
and Cowtan and Way (2014) provide GMST records start-
ing in 1850, which now allows for simulations of GMST that
cover 170 years. The second update is the use of the Shared
Socioeconomic Pathways (SSPs) (O’Neill et al., 2017) as
our climate scenarios for greenhouse gas and aerosol abun-
dances. The third is the adoption of an upper ocean to our
model, formulated in a manner that matches the equations
of Bony et al. (2006) and Schwartz (2012). A description of
the model, the various input parameters used, and the up-
dates listed above is given in Sect. 2. Section 3 shows results
of CMIP6 and EM-GC comparisons to the historical climate
record, estimations of effective climate sensitivity (ECS) and
comparisons of our model and CMIP6 projections of future
GMST change. A discussion of these results is provided in
Sect. 4, along with concluding remarks.

2 Data and methodology

2.1 Empirical model of global climate

In this analysis we use the empirical model of global climate
(EM-GC), which provides a multiple linear regression en-
ergy balance simulation of GMST. As detailed in the follow-
ing paragraphs, the EM-GC solves for ocean heat uptake ef-
ficiency (k) and six regression coefficients to minimize the
cost function in Eq. (1).

NMONTHS
Cost function = E 5>—(ATogsi — ATwvpLi)* (1)
" g, .
i=1 OBSi

In this equation, ATpps represents a time series of observed
monthly GMST anomalies, ATypr, is the modeled monthly
change in GMST, oogs is the 1o uncertainty associated with
each temperature observation, i is the index for each month,
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and NyvonTas 18 the total number of months used in the anal-
ysis. For this analysis, we trained the model from 1850-2019.
The observed GMST anomalies are blended near-surface air
and sea surface temperature differences relative to the GMST
anomaly over 1850-1900, which is assumed to represent pre-
industrial conditions.

We consider several anthropogenic and natural factors
to be components of ATypr. The radiative forcing (RF)
due to greenhouse gases (GHGs), anthropogenic aerosols
(AER), land-use change (LUC), and the export of heat from
the atmosphere to the world’s oceans are the anthropogenic
components of ATypr. The influence on GMST from to-
tal solar irradiance (TSI), the El Nifio-Southern Oscilla-
tion (ENSO), the Atlantic Meridional Overturning Circula-
tion (AMOC), volcanic eruptions that reach the stratosphere
and enhance stratospheric aerosol optical depth (SAOD), the
Pacific Decadal Oscillation (PDO), and the Indian Ocean
Dipole (IOD) are the natural components of ATypr. Equa-
tion (2) shows how we calculate ATypr, the modeled
monthly change in GMST.

1
ATvpLi = % {GHG ARF,; + AER ARF; + LUC ARF;

—QoceaNi} + Co+ C1 x SAOD; ¢+ C2 x TSI;
4+ C3 x ENSO;_» + C4 x AMOC; 4+ C5 x PDO; + Cq
x 10D;
2

In Eq. (2), GHG ARF;, AER ARF;, and LUC AREF; repre-
sent monthly time series of the increase in the stratospheric
adjusted values of the RF of climate (Solomon, 2007) since
1750. The parameter Ap represents the response of a black
body to a perturbation in the absence of climate feedback
(3.2 Wm™2; Bony et al., 2006). The SAOD, TSI, and ENSO
are lagged by 6, 1, and 2 months, respectively. The lag of
6 months for SAOD is representative of the time needed
for the surface temperature to respond to a change in the
aerosol loading due to a volcanic eruption (Douglass and
Knox, 2005). This lag is the same as used by Lean and Rind
(2008) and Foster and Rahmstorf (2011). The 1-month delay
for TSI yields the maximum value of C,, the solar irradi-
ance regression coefficient. Lean and Rind (2008) and Fos-
ter and Rahmstorf (2011) also use a 1-month lag for TSI in
their analyses. The 2-month delay for the response of GMST
to ENSO is the lag needed to obtain the largest value of
the correlation coefficient of the Multivariate ENSO index
version 2 (MELv2) (Wolter and Timlin, 1993; Zhang et al.,
2019) versus the value of Tgnso calculated by Thompson et
al. (2009). In Thompson et al. (2009), Tgnso is the simu-
lated response of GMST to variability induced by ENSO,
taking into consideration the effective heat capacity of the
atmospheric—ocean mixed layer. Lean and Rind (2008) used
a 4-month lag for ENSO.

The term AMOC; represents the influence of the change
in the strength of the thermohaline circulation on GMST
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(Knight et al., 2005; Medhaug and Furevik, 2011; Stouffer
et al., 2006; Zhang and Delworth, 2007). We use the At-
lantic multidecadal variability, based on the area-weighted
monthly mean sea surface temperature (SST) in the Atlantic
Ocean between the Equator and 60° N (Schlesinger and Ra-
mankutty, 1994), as a proxy for the strength of AMOC. A
strong AMOC is characterized by northward flow of en-
ergy that would otherwise be radiated to space, which occurs
in both the ocean and atmosphere and leads to particularly
warm summers in Europe (Kavvada et al., 2013) as well as
a number of other well-documented influences in other cli-
matic regions (Nigam et al., 2011). The total anthropogenic
RF is used to detrend the AMOC signal. This method pro-
vides a more realistic approach to infer the changes in the
strength of the AMOC and its effect on GMST than other
detrending options (Canty et al., 2013).

The dimensionless parameter y represents the sensitivity
of the global climate to feedbacks that occur due to a change
in the RF of GHGs, AER, and LUC. We relate y to the cli-
mate feedback parameter, Ay, as shown in Eq. (3):

1
)
where Ay =X for all climate feedbacks, i.e., Ay =
AWater vapor T ALapse rate +AClouds + A Surface albedo- The relation
between Ay and y in Eq. (3) is commonly used in the cli-
mate modeling community (Sect. 8.6 of Solomon, 2007).
Our value of Ay is related to the IPCC’s Fifth Assessment
Report (Stocker et al., 2013; hereafter [IPCC 2013) definition
of Aviady = Ap — A.

Our model explicitly accounts for the export of heat from
the atmosphere to the world’s oceans (i.e., ocean heat export
or OHE). The quantity Qocgan in Eq. (2) represents OHE.
In our previous analyses (Canty et al., 2013; Hope et al.,
2017), Qocean Was subtracted outside the climate feedback
multiplicative term (1 + y)/Ap. We have rewritten Eq. (2) to
be comparable to the formulation for this term used by Bony
et al. (2006) and Schwartz (2012). Due to this update, our
model fits the historical climate record with higher values of
climate feedback, especially for strong aerosol cooling (see
Fig. S1 and the Supplement for more information). We calcu-
late Qocgan by simulating the long-term trend in observed
ocean heat content (OHC) as shown in Egs. (4) and (5).

l+y= 3)

QoceaNi = & (ATxTMHUMAN: — ATOCEAN.HUMAN;) (4)
OHE x At
()

IEND ([% {GHGRF;_7; + AERRF;_7,

ISTART

+LUCRF;_7}] — [f026_72Q0CEAN]> d

The « term is the ocean heat uptake efficiency (W m=2°C~1)
and is based on the definition used in Raper et al. (2002),
where « is the ratio between the atmosphere and ocean
temperature difference that best fits observed OHC data
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(Sect. 2.2.8 describes the OHC data records used in our anal-
ysis). The value of k is determined based on the best fit
(described below) between Qocean and the observed OHC
record. The term AToCcEAN, HUMAN represents the tempera-
ture response of the well-mixed top 100 m of the ocean due to
the total anthropogenically driven rise in OHC. This formula-
tion of AToceaN,HUMAN allows the model ocean to warm in
response to an atmospheric warming. We use a 6-year lag (72
months) for Qocgan to account for the time needed for the
energy leaving the atmosphere to heat the upper ocean and
penetrate to depth based on Schwartz (2012). Our analysis
of modeled GMST is insensitive to whether this 6-year lag
or the 10-year lag from Lean and Rind (2009) is used. The
tsTarT and fgnp limits on the integral in Eq. (5) are the start
and end years associated with each OHC record. The start
and end years vary between the five OHC records (see the
Supplement for the different start and end years). The con-
stant fj term in Eq. (5) is a combination of the heat capacity
of ocean water, the fraction of total ocean volume in the sur-
face layer, and the fraction of total Qocgan that warms the
surface layer; it is equal to 8.76 x 107> °C m®> W~!. We rep-
resent the global ocean as being 1km deep for 10 % of the
ocean area (representing the continental shelves) and 4 km
deep for the remaining area, which approximates the average
depth of the actual world’s oceans to within 3 %: 3.7 km com-
pared to 3.682-3.814km from Charette and Smith (2010).
Based on our analysis of decadal ocean warming as a func-
tion of depth extracted from CMIP5 GCMs, we have deter-
mined that 13.7 % of the rise in total OHC occurs in the well-
mixed upper 100m of the ocean, the term represented by
AToceaN,HUMAN in Eq. (4). The bottom panel in Fig. 1 com-
pares our modeled OHC to the observed OHC record based
on the average of five data sets; the value of « resulting in the
best simulation of observed OHC is shown.

We use the reduced chi-squared ( XZ) metric to define the
goodness of fit between the modeled and measured GMST
anomaly for the atmosphere and also between simulated and
observed OHC. Equations (6) and (7) show the calculations
for x?2 for the atmosphere, and Eq. (8) shows the calculation
for x2 for the ocean. Minimization of the difference between
the measured and modeled GMST anomaly results in the
EM-GC being able to replicate the observed rise in temper-
ature over the past 170 years quite well, as shown in Fig. 1.
We have added two additional new features to the model to
ensure accurate representation of the rise in OHC and the
rise in GMST since 1940. The first new feature, Eq. (7), was
added to ensure all simulations matched the past 80 years
of observations well. Without the XI%ECENT constraint, some
solutions with a value of XiTM less than or equal to 2 have
visually poor simulations of the rise in GMST over the past
4 to 5 decades. The second new feature, Eq. (8), was added
because in the original model formulation some selections
of the radiative forcing due to tropospheric aerosols (AER
ARF; in Eq. 2) converged in a way that produced simulations
of OHC that seemed physically improper based on visual in-
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Figure 1. Measured and modeled GMST anomaly (AT) relative to
a pre-industrial (1850-1900) baseline. (a) Observed (black) Had-
CRUTS and modeled (red) AT from 1850-2019. This panel also
displays the values of Ay, and X/ZXTM (see text) for this best-fit simu-
lation. (b) Contributions from total human activity. This panel also
denotes the best-estimate value of the attributable anthropogenic
warming rate from 1975-2014 (black dashed) and the 20 uncer-
tainty in the slope for a model run that uses the best estimate of AER
RF;q11 of —0.9Wm™2. (¢) TSI (purple) and SAOD (light blue).
(d) Influences from ENSO on AT. (e) Contributions from AMOC
to AT and to observed warming from 1975-2014. (f) Influences
from PDO (blue) and IOD (pink) on AT. (g) Measured (black) and
modeled (red) ocean heat content (OHC) as a function of time for
the average of five data sets (see text), the value of XéCE AN for this
run, and the ocean heat uptake efficiency, «, needed to provide the
best fit to the OHC record. The error bars (blue) denote the uncer-
tainty in OHC used in this analysis (see Sect. 2.2.8).
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spection of observed and modeled OHC. As a result of these
two issues, all calculations shown here are subject to three
goodness-of-fit constraints described by Egs. (6) to (8).

2 1
XATM =
NYEARS — NFITTING PARAMETERS — 1
NYEARS )
x Y ———({AToss;) — (ATwpL,)) (6)
ot {(o0Bs;)
2 1
XRECENT — N N 1
YEARS,REC — VFITTING PARAMETERS —
NYEARS, REC
2
x Y ———((AToss;) — (ATwpL;))
= (ooBS;)
@)
1
XOCEAN? =
NYEARS — NFITTING PARAMETERS — 1
NYEARS,0HC

1
W«OHCOBS ;)= (OHCmpL;)?  (8)
J

<D

j=1

Here, <ATops>, <ATwvpL>, and <oops> in Egs. (6)
and (7) represent the annually averaged observed GMST
anomaly, modeled GMST anomaly, and uncertainty
in the GMST anomaly, respectively. The variable
NFEITTING PARAMETERS 18 equal to 9 for typical simula-
tions, the sum of 7 (the number of regression coefficients)
plus 2 (model output parameters y and k). In Eq. (8),
<OHCpps> and <OHCpypL> represent the annual aver-
aged observed and modeled OHC. The opps term in Eq. (8)
is the uncertainty in the OHC record (see Sect. 2.2.8 for
more information). The equation for all three formulations
of x2 is based on annual averages rather than monthly time
series. We calculate x2 with annual values because the
autocorrelation functions of ATpps and ATypr display
similar shapes using annual averages and do not match
utilizing monthly averages (see the Supplement of Canty
et al., 2013, for a further explanation). The Hadley Centre
Climate Research Unit (HadCRUT) version 4 uncertainties
for GMST are used for the oops in Egs. (6) to (8) for all of
the GMST records analyzed here (see Sect. 2.2.1 and the
Supplement for more information). For Egs. (6) to (8), we
define an acceptable fit to the climate record as X2 < 2. The
number of years (NyEaRrs) varies across the three equations.
Equation (6) uses the total number of years in the GMST
record, which for HadCRUTS is 170 years. The number
of years in Eq. (8), Nygars.oHc, depends on the OHC
data set used, as each data set spans a different range. The
average of five OHC data sets, which we use as our primary
OHC series, extends from 1955-2017, a total of 63 years.
The value of X(2)CE An found using Eq. (8) is displayed in
the bottom panel of Fig. 1. All model simulations shown
throughout this paper have XéCE AN = 2, representing a good
fit to the observed rise in OHC over the time of the data
record.
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The calculation of XI%ECENT shown in Eq. (7) is used
to constrain the model to match the observed changes in
GMST over the time frame 1940-2019, a total of 80 years
(NyEars,Rec equals 80). This time frame was chosen to in-
clude a full cycle of AMOC, as the strength of the thermo-
haline circulation tends to vary on a period of 60-80 years
(Chen and Tung, 2018; Kushnir, 1994; Schlesinger and Ra-
mankutty, 1994). As noted above, the XI%ECENT constraint
was added to our model framework because without this con-
straint the model is able to provide numerically good but poor
visual fits to the GMST anomaly under certain conditions
(i.e., the red line in the top panel of Fig. 1 starts to strongly
deviate from the black line beginning in about 2000 under
certain conditions). All model simulations shown below have
XI%ECENT <2, representing a good fit to the observed rise
in GMST over the past 80 years, which results in modeled
GMST that replicates observed GMST for the entire time se-
ries.

Figure 1 shows the observed (HadCRUTS) and mod-
eled GMST anomaly from 1850-2019 and the various an-
thropogenic and natural components that constitute mod-
eled GMST. Figure la shows the value of climate feed-
back, 1.62 W m~2°C~!, that is needed to achieve a best fit to
the climate record for this simulation, resulting in values of
XE\TM = 0.80 and X(Z)CEAN = 0.31. Figure 1b is the total con-
tribution of human activity to variations in GMST, which in-
cludes GHGs, AER, LUC, and the export of heat from the at-
mosphere to the ocean. For the simulation shown, the aerosol
radiative forcing is —0.9 W m~2, the best estimate given by
IPCC 2013 (Myhre et al., 2013). This panel also notes the
best estimate of the time rate of change in GMST attributed to
humans from 1975-2014, or the attributable anthropogenic
warming rate (AAWR; see Sect. 2.3). Figure 1c illustrates the
contribution to the GMST anomaly from TSI and SAOD over
the 170-year period. The influences of ENSO and AMOC are
indicated in Fig. 1d and e, respectively. Furthermore, the con-
tribution of AMOC to the rise in GMST over 1975-2014 (the
same time period used to define AAWR) is also specified in
Fig. le (dotted black line). Figure 1f indicates the small effect
of IOD and PDO on GMST in our model framework. The
last panel, Fig. 1g, shows the time series of observed OHC
based on the average of five data sets for the upper 700 m of
the ocean (black points and blue error bars; see Sect. 2.2.8)
and the modeled value of OHC (red line). For this simula-
tion, a value of k equal to 1.17 Wm™2°C~! fits the OHC
data best. This value of « falls within the range of empiri-
cal estimates for this parameter given by Raper et al. (2002).
The sum of the contributions of human activity, TSI, SAOD,
ENSO, AMOC, PDO, and IOD to the GMST anomaly shown
in Fig. 1b to f plus the value of Cy equals the modeled GMST
anomaly, shown by the red line in Fig. 1a.

Altering the training period of our model has a slight effect
on our results (see Figs. S2, S3, and the Supplement for in-
formation on various training periods). We project relatively
similar results for end-of-century warming for training pe-
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riods that start in 1850 and end in either 2009 or 1999 com-
pared to results shown throughout the paper for a training pe-
riod of 1850 to 2019, indicating the stability of our approach.
As detailed in the Supplement, we do find some differences
from the results shown in the paper upon use of a training
period of 1850 to 1989 due to the reduction in the number of
years considered from the available OHC records.

2.2 Model inputs
2.2.1 Temperature data

We use seven global mean surface temperature anomaly
records. These records include the Hadley Centre Climatic
Research Unit version 4 (HadCRUT4; Morice et al., 2012)
and version 5 (HadCRUTS; Morice et al., 2021) from
18502019, National Centers for Environmental Informa-
tion NOAAGIlobalTemp v5 (NOAAGT; Smith et al., 2008;
Zhang et al., 2019) from 1880-2019, NASA Goddard In-
stitute of Space Studies Surface Temperature Analysis v4
(GISTEMP; Hansen et al., 2010) from 1880-2019, Berke-
ley Earth Group (BEG; Rohde and Hausfather, 2020) from
1850-2019, Cowtan and Way (2014) (CW14) from 1850-
2019, and the Japanese Meteorological Agency (JMA; Ishi-
hara, 2006) from 1891-2019. We use the uncertainty time
series from HadCRUT4 for all GMST records because the
HadCRUT4 uncertainty provides a realistic description of the
variation in GMST among the seven records (see the Supple-
ment, Figs. S4 and S5, and Table S1 for more information).
Our analysis primarily uses the HadCRUTS GMST data set,
but in some sections, results are shown for the other data sets.
All temperature anomalies are with respect to a pre-industrial
baseline (1850-1900). To alter each data record so that the
temperature anomaly is relative to the same pre-industrial
baseline, we adjust all data sets relative to the HadCRUTS
baseline of 1961-1990. We then adjust each data set by the
same amount to the HadCRUTS pre-industrial baseline as de-
scribed in the Supplement.

2.2.2 Shared Socioeconomic Pathways

For this analysis, we use the estimates of the future abun-
dances of greenhouse gases and aerosols provided by the
SSPs. There are 26 scenarios, five baseline pathways, and
21 mitigation scenarios. The baseline pathways follow spe-
cific narratives for factors such as population, education, eco-
nomic growth, and technological developments of sources of
renewable energy (Calvin et al., 2017; Fricko et al., 2017;
Fujimori et al., 2017; Kriegler et al., 2017; van Vuuren et al.,
2017) to represent several possible futures encompassing dif-
ferent challenges for adaptation to and mitigation of climate
change as illustrated in Fig. 1 of O’Neill et al. (2014). The 21
mitigation scenarios follow one of the baseline pathways but
include specific climate policy to reach a designated radiative
forcing at the end of the century.
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As part of CMIP6, the ScenarioMIP experiment (O’Neill
et al., 2016) includes eight SSPs (SSP1-1.9, SSP1-2.6, SSP4-
3.4,SSP2-4.5, SSP4-6.0, SSP3-7.0, SSP5-8.5, and SSP5-3.4-
OS) that GCMs use to project future GMST. The first num-
ber is the reference pathway that the scenario follows (i.e.,
SSP1 follows the first SSP narrative), and the numbers after
the dash are the target radiative forcing at the end of the cen-
tury (i.e., SSP1-2.6 reaches around 2.6 Wm2in 2100). The
ScenarioMIP experiment designates Tier 1 and Tier 2 scenar-
i0s. The Tier 1 scenarios are SSP1-2.6, SSP2-4.5, SSP3-7.0,
and SSP5-8.5, and the Tier 2 scenarios are SSP1-1.9, SSP4-
3.4, SSP4-6.0, and SSP5-3.4-0OS (an overshoot pathway that
follows SSP5-8.5 until around 2040, whereby carbon dioxide
emissions drastically decrease and become negative in 2065).
Our analysis includes seven of the eight ScenarioMIP SSPs:
all but the overshoot pathway. We highlight four in the main
paper: two Tier 1 (SSP1-2.6 and SSP2-4.5) and two Tier 2
(SSP1-1.9 and SSP4-3.4) scenarios. An analysis of the other
three SSPs is included in the Supplement. Figure 2 shows
the atmospheric abundance of the three major anthropogenic
GHGs (carbon dioxide, methane, and nitrous oxide) for each
of the seven SSPs we consider and observations of the global
mean atmospheric abundance for these gases to the end of
2019 (Dlugokencky, 2020; Dlugokencky and Tans, 2020).

2.2.3 Greenhouse gases

The historical values of GHG mixing ratios were provided
by Meinshausen et al. (2017b) from 1850-2014. We used
the equations from Myhre (1998) to calculate the change in
RF due to carbon dioxide (CO,), methane (CHy), nitrous ox-
ide (N O), ozone-depleting substances (ODSs), hydrofluoro-
carbons, perfluorocarbons, and sulfur hexafluoride relative to
RF in the year 1850. We also used the updated pre-industrial
values of CH4 and N;O from IPCC 2013 and the radiative
efficiencies from the WMO (2018). The radiative forcing of
CHy also includes the 15 % enhancement from the increase
in stratospheric water vapor due to rising atmospheric CHy
(Myhre et al., 2007). Values of GHG mixing ratios, other than
ODSs, from 2015-2100 are from the SSP database (Calvin et
al., 2017; Fricko et al., 2017; Fujimori et al., 2017; Kriegler
etal., 2017; Rogelj et al., 2018; van Vuuren et al., 2017) and
are provided on a decadal basis. These mixing ratios were in-
terpolated onto a monthly timescale. We used the estimates
of future ODS abundances provided in Table 6-4 of the 2018
Ozone Assessment Report (Carpenter et al., 2018) because
the SSP database did not provide these estimates. We also in-
clude tropospheric ozone (OEROP) as a GHG because tropo-
spheric ozone rivals N,O as the third most important anthro-
pogenic GHG (Fig. 8.15 of Myhre et al., 2013). The RF due
to OgROP from the Representative Concentration Pathways
(RCPs) provided by the Potsdam Institute for Climate Im-
pact Research (Meinshausen et al., 2011) is used because the
SSP database does not provide estimates. Values of RF due to
03RO from RCP2.6, RCP4.5, RCP6.0, and RCP8.5 are sub-
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Figure 2. Observed and projected greenhouse gas mixing ratios. (a) Carbon dioxide abundances from observations (black) and seven of the
ScenarioMIP SSPs (colors, as indicated). (b) Methane abundances from observations and ScenarioMIP SSPs. (¢) Nitrous oxide abundances

from observations and ScenarioMIP SSPs.

stituted in for SSP1-2.6, SSP2-4.5, SSP4-6.0, and SSP5-8.5,
respectively. We created new time series for the RF due to
OgROP for SSP4-3.4 and SSP3-7.0 using linear combinations
of RF time series from RCP2.6 and RCPS.5, with weights
based on the end-of-century total RF value due to all GHGs
of the respective time series. Finally, the RF time series for
OgROP from RCP2.6 was also used for SSP1-1.9. Figure S6
shows the ozone RF time series used in this analysis, and the
Supplement provides more information about the creation of
the time series for the RF due to OgROP.

2.2.4 Aerosol radiative forcing

The value of the change in total aerosol radiative forcing
(direct and indirect) in 2011 relative to pre-industrial (AER
RF7011) is highly uncertain. Chapter 8 of the IPCC 2013 re-
port gives a best estimate of AER RFjgq; as —0.9Wm2,
a likely range between —0.4 and —1.5Wm™2, and a 5th
to 95th percent confidence interval between —0.1 and
—1.9Wm2 (Myhre et al., 2013). This substantial range in
AER RFjg;; results in a large spread in future projections
of global GMST. Figure 3 shows the effect of varying the
value of AER RF¢; on projections of GMST in our EM-
GC framework for the same SSP4-3.4 GHG scenario. The
middle box in Fig. 3a, b, and c shows the contribution to
GMST of GHGs, LUC, AER, and net human activities. As
the value of AER RF;(;; decreases and aerosols cool more
strongly, the value of climate feedback (model parameter
Ax) rises, and the net contribution of the human impact on
GMST by the end of the century increases. Depending on
which value of AER RF;q; is used, the rise in GMST by
the year 2100 for the SSP4-3.4 pathway could range from
1.5°C (Fig. 3a) to 2.8 °C (Fig. 3c) relative to pre-industrial.
Strong aerosol cooling offsets a substantial fraction of GHG-
induced warming, and a large value of climate feedback
(x =241 Wm—2°C~1) is needed to fit the historical cli-
mate record (Fig. 3c). In this case, future warming is large,
well above the goals of the Paris Agreement, by the end of
the century. Conversely, weak aerosol cooling offsets only a
small fraction of GHG-induced warming, resulting in a small
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value of climate feedback (Ax; = 1.08 Wm~2°C~!) needed
to fit the observed GMST record (Fig. 3a). The use of any of
the values of AER RF3¢;; in Fig. 3 can result in a very good
fit to the climate record (i.e., XiTM <2, XI%ECENT <2, and

2
XOCEAN = 2)-

We use the total aerosol RF time series provided by the
SSP database for each SSP scenario. The database provides
AER RF from 2005-2100, with values for all SSPs nearly
identical until about 2010 (Riahi et al., 2017; Rogelj et al.,
2018). In the EM-GC, we calculate temperature projections
over the entire observational period beginning in 1850. We
create AER RF time series that begin in 1850 and span the
range of uncertainty given by Chapter 8 of IPCC 2013. We
use historical estimates of AER RF from 1850-2014 for the
four RCPs provided by the Potsdam Institute for Climate Re-
search (Meinshausen et al., 2011). The AER RF value in
2014 from the appropriate historical estimate (i.e., RCP4.5
is used for SSP2-4.5) is scaled by a constant factor such
that the historical RCP value at the end of 2014 matches
the SSP time series at the start of 2015. This scaling yields
a continuous time series for the RF of climate due to tro-
pospheric aerosols. This scaled time series has AER RFq1
nearly equal to —1.0 W m~2, which we take as the SSP-based
best estimate of the change in total aerosol radiative forcing
in 2011 relative to pre-industrial. Next, the single continu-
ous time series is scaled, again by a constant multiplicative
factor, to match the [IPCC 2013 best estimate and range of
uncertainty for AER RF,01; (Myhre et al., 2013). This pro-
cedure results in five additional time series of AER RF. Six
time series of AER RF are created for each SSP, having val-
ues of AER RFjg;; equal to —0.1, —0.4, —0.9, —1.0, —1.5,
and —1.9 W m~2. Figure S7 shows these six AER RF time
series for SSP1-2.6 and SSP4-3.4. In the EM-GC framework,
we further scale these six time series to create a total of 400
AER RF time series to fully analyze the range of AER RF»q11
given by Myhre et al. (2013).
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Figure 3. Measured (HadCRUTS) and EM-GC simulated GMST anomaly (AT) relative to a pre-industrial (1850-1900) baseline, as well as
projected AT to the end of the century for SSP4-3.4. The top box in each panel displays observed (black) and simulated (red) AT, as well as
the values of Ay and X/iTM for each model run. The Paris Agreement target (1.5 °C) and upper limit (2.0 °C) are shown (gold circles). The
middle boxes show the contribution of GHGs, aerosols, and land-use change to AT, as well as the net human component. The bottom boxes
compare observed (black) and modeled (red) values of OHC for simulations constrained by the average of five data sets (see text) and also
provides the numerical values of « needed to obtain best fits to the OHC record as well as best-fit values of X(Z)CE AN- The only difference
between (a), (b), and (c) is the time series for RF due to tropospheric aerosols used to constrain the EM-GC; values of AER RF,(; for each
time series are (a) —0.4 Wm ™2, (b) —0.9 Wm™2, and (¢) —1.5Wm™2,

2.2.5 Total solar irradiance and stratospheric aerosol
optical depth

We use the TSI time series provided for the CMIP6 models
from 1850-2014 (Matthes et al., 2017) and append values
from the Solar Radiation and Climate Experiment (SORCE)
(Dudok de Wit et al., 2017) for 2015 to the end of 2019.
The values of TSI; used in Eq. (2) are differences of monthly
mean values minus the long-term average (i.e., TSI anoma-
lies). Consistent with prior studies (e.g., Lean and Rind,
2008; and Foster and Rahmstorf, 2011), variations in solar
irradiance due to the 11-year solar cycle have a small but
noticeable effect on the EM-GC simulation of the GMST
anomaly (Fig. 1c). For projections of future warming, we set
the term TSI; in Eq. (2) equal to zero from the start of 2020
until 2100.

The time series for SAOD is a combination of values com-
puted from extinction coefficients for the CMIP6 GCMs (Ar-
feuille et al., 2014) from 1850-1978 and the Global Space-
based Stratospheric Aerosol Climatology (GloSSAC v2.0)
(Thomason et al., 2018) from 1979-2018. Extinction coef-
ficients at 550nm were integrated from the tropopause to
39.5km and averaged over the globe using a cosine of lat-
itude weighting. The CMIP6 and GloSSAC extinction coef-
ficients span 80° S to 80° N. To extend the SAOD time series
to the end of 2019, we use the level 3 gridded SAOD product
from the Cloud—Aerosol Lidar and Infrared Pathfinder Satel-
lite Observations (CALIPSO) (Vaughan et al., 2004). Time
series of globally averaged SAOD from CALIPSO have a
very similar shape as the GloSSAC time series over the pe-
riod of overlap (2006-2018) with a slight offset because
GloSSAC uses estimates of CALIPSO data for SAOD. To
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append the SAOD after 2018, we took the average difference
between the two time series for the overlapping months and
then adjusted the CALIPSO time series by this offset. This
slight adjustment to the CALIPSO record has no bearing on
our results, since the effect of volcanic activity on GMST has
been small over the past 2 decades (Fig. 1¢). We set the term
SAOD; in Eq. (2) equal to the value in December 2019 from
the start of 2020 until 2100.

2.2.6 El Nino—Southern Oscillation, Pacific Decadal
Oscillation, and Indian Ocean Dipole

We use the MELv2 (Wolter and Timlin, 1993; Zhang et al.,
2019) to characterize the influence of ENSO on GMST. In
order to obtain a time series that spans the entire training pe-
riod of our model, 1850-2019, we append three time series
to create an MELv2 over the full extent of our model training
period. The MEILv2 provides 2-month averages of empiri-
cal orthogonal functions of five different climatic variables
from 1979 to the present (Zhang et al., 2019). To have the
ENSO index extend back to 1850, we compute differences
in SST anomalies over the tropical Pacific basin as defined
by the MELv2 from 1850-1870 using HadSST3 (Kennedy
et al., 2011). Our internal computation of this surrogate for
the MEI is then appended to the MEIext of Wolter and Tim-
lin (2011), which extends from 1871-1978, and the MEIL.v2
of (Zhang et al., 2019) (1979-2019). This full time series
provides a representation of ENSO that covers 1850 to the
present. Consistent with prior regression-based approaches
(Foster and Rahmstorf, 2011; Lean and Rind, 2008), we find
that a significant portion of the monthly and at times annual
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variation in GMST is well explained by ENSO (Fig. 1d). As
for the other natural terms, we assume ENSO; in Eq. (2) is
zero for 2020-2100.

The Pacific Decadal Oscillation is the leading principal
component of North Pacific monthly SST variability pole-
ward of 20° N (Barnett et al., 1999). The PDO index main-
tained by the University of Washington provides monthly
values from 1900-2018. The PDO varies on a multidecadal
timescale and affects climate in the North Pacific and North
America, and it has secondary effects in the tropics (Bar-
nett et al., 1999). In our model framework, the expression
of PDO on GMST is dependent on the model specification
of the AER RF time series, as shown in Fig. S8. At low val-
ues of AER RF»p1, such as —0.1 W m~2, the effect of PDO
on GMST is negligible and the contribution from the AMOC
dominates. At high values of AER RFg1 (—1.5W m_z), the
effect of PDO on GMST is equal to the contribution from the
AMOC. At high values of AER RF,p;1, we obtain results
similar to findings from England et al. (2014) and Trenberth
and Fasullo (2013) that show the PDO exhibits an apprecia-
ble influence on GMST, especially for the 2000-2010 time
period.

The Indian Ocean Dipole is based on the difference in
the anomalous sea surface temperature (SST) between the
western equatorial Indian Ocean (50-70° E and 10° S—10° N)
and the southeastern equatorial Indian Ocean (90-110°E
and 10°S-0°N) as defined in Saji et al. (1999). We use
1° x 1° SSTs from the Centennial in situ Observation-Based
Estimate (COBE) (Ishii et al., 2005) to create an IOD index
from 1850-2019. As noted above and shown in Fig. 1f, the
regression coefficients for PDO and IOD are quite small. We
find little influence of either PDO or IOD in the HadCRUTS5
time series of GMST, but these terms are retained for com-
pleteness. We assume PDO; and IOD; in Eq. (2) are zero after
the start of 2019 and 2020, respectively.

2.2.7 Atlantic Meridional Overturning Circulation

We use the Atlantic multidecadal variability (AMV) index
as the area-weighted monthly mean SST from HadSST4
(Kennedy et al., 2019) between the Equator and 60° N in the
Atlantic Ocean (Schlesinger and Ramankutty, 1994) to char-
acterize the influence of the AMOC on GMST. The AMYV in-
dex is detrended using the RF anomaly due to anthropogenic
activity over the historical time frame of the analysis, as dis-
cussed in Sect. 3.2.3 of Canty et al. (2013), because this de-
trending option removes the influence of long-term global
warming on the AMV index. The detrended AMV index
serves as a proxy for variations in the strength of the AMOC
(Knight et al., 2005; Medhaug and Furevik, 2011; Zhang and
Delworth, 2007), which has particularly noticeable effects on
climate in the Northern Hemisphere (Jackson et al., 2015;
Kavvada et al., 2013; Nigam et al., 2011). For this analy-
sis, the index has been Fourier-filtered to remove frequencies
above 1 /9 per year to retain only the low-frequency, high-
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amplitude component of the thermohaline circulation (Canty
et al., 2013). As noted above and shown in Fig. 1, a con-
siderable portion of the long-term variability in GMST is at-
tributed to variations in the strength of the AMOC, including
about 0.025 °C per decade over the 1975-2014 time period.
There is considerable debate about the validity of the use of
a proxy such as the AMV index as a surrogate for the cli-
matic effects of the AMOC that is centered mainly around
how much of the variability of the index is either internal or
externally forced (Haustein et al., 2019; Knight et al., 2005;
Medhaug and Furevik, 2011; Stouffer et al., 2006). We stress,
as explained in Sect. 2.3, that none of our major scientific
conclusions are altered if we neglect AMV as a regression
variable.

2.2.8 Ocean heat content records

Ocean heat content data records from five recent and inde-
pendent papers are used in this study. We utilize OHC data
from Balmaseda et al. (2013), Carton et al. (2018), Cheng
et al. (2017), Ishii et al. (2017), and Levitus et al. (2012), as
well as the average of the records to model the export of heat
(OHE) from the atmosphere to the ocean. Figure S9 shows
these five OHC records and the multi-measurement average.
While most of these data sets have a common origin, they
differ in how extensive temporal and spatial gaps in the cov-
erage of ocean temperatures have been handled, ranging from
data assimilation (Carton et al., 2018) to an iterative radius-
of-influence mapping method (Cheng et al., 2017). The five
data sets are all set to zero in 1986, which is the midpoint
of the multi-measurement time series, by applying an offset
for visual comparison. Since OHE (units: Wm~2) is based
on the slope of each OHC data set, this offset has no im-
pact on the computation of OHE from OHC that is central
to our study. For the computation of OHE from OHC, we
use a value of the surface area of the world’s oceans equal
t0 3.3 x 10" m? (Domingues et al., 2008). The OHC records
we analyze are for the upper 700 m of the ocean. To calcu-
late the OHE for the whole ocean, we multiply the OHE by
1/0.7 to account for the fact that the upper 700 m of the ocean
holds 70 % of the heat (Sect. 5.2.2.1, Solomon, 2007). When
we subtract the amount of heat going into the ocean in Eq. (2)
(QoCcEAN), we also must account for the difference in surface
area between the global atmosphere and the world’s oceans.
Since the Qocgan term is computed for the surface area of
the ocean but the forcing is applied to the whole atmosphere,
we multiply the Qocgan term by the ratio of the surface area
of the ocean to the surface area of the atmosphere, which is
0.67.

As noted above, the calculation of X(2)CE AN Shown in
Eq. (8) is used to constrain our model representation of the
rise in OHC. Only model runs that provide a good fit to the
observed OHC record are shown below. For these five OHC
data sets, uncertainty estimates are not always provided. Fur-
thermore, some studies that do provide uncertainties give es-
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timates that seem unreasonably small (see Fig. S10 and the
Supplement). Because of the discrepancy in uncertainties be-
tween OHC records, we create a new uncertainty time se-
ries using both the 1o standard deviation of the average of
the five OHC records and the uncertainties from the Cheng
et al. (2017) (hereafter Cheng 2017) OHC record. We cre-
ate this new uncertainty from 1955-2019 through a monthly
time step and use either the 1o standard deviation of the av-
erage of the five OHC records or the uncertainties from the
Cheng 2017 OHC record, whichever is larger, for that month.
We use the Cheng 2017 OHC uncertainties because these es-
timates are the largest of the five data sets. Additionally, the
standard deviation from the mean of the five OHC records is
very low in the 1980s, which is an artifact of our normaliza-
tion treatment not inherent to any of the records. This com-
bined uncertainty estimate is substituted in for each individ-
ual data set and the average, resulting in our use of the same
time-varying uncertainty in OHC for all data sets. Figure S10
and the Supplement provide more detail on the creation of
this time-dependent uncertainty estimate for OHC.

The choice of OHC record has only a small effect on fu-
ture projections of GMST using the EM-GC. Figure 4 illus-
trates the effect of varying the OHC record on future temper-
ature. The bottom boxes in each panel show the observed
and modeled OHC, the value of x needed to best fit the
OHC data record, and the resulting value of X(%CE an- Of the
two OHC records shown, Balmaseda et al. (2013) (Fig. 4a)
yields the lowest value of «, and Ishii et al. (2017) (Fig. 4b)
results in the highest estimate of x. For the same value of
AER RFy; (i.e., —0.9Wm™2) and GHG scenario (SSP4-
3.4), we find a difference of 0.25°C in the modeled rise in
GMST in the year 2100 for these two simulations (red lines
in top boxes). For most of the remaining analysis, we use
the multi-measurement average of the five OHC data records.
In Sect. 3.1 and 3.2 we quantify the effect of the OHC data
record on both the attributable anthropogenic warming rate
and effective climate sensitivity.

2.3 Attributable anthropogenic warming rate

The attributable anthropogenic warming rate, or AAWR, is
the time rate of change in GMST due to humans from 1975-
2014. We use AAWR as a metric in the EM-GC frame-
work to quantify the human influence on global warming
over the past few decades and, most importantly, to also as-
sess how well the CMIP6 GCMs can replicate this quantity.
This analysis is motivated by the study of Foster and Rahm-
storf (2011), who examined the human influence on the time
rate of change in GMST from 1979-2010 using a residual
method. We extend the end year of our analysis to 2014 be-
cause this is the last year of the CMIP6 historical simula-
tion. We pushed the start year back to 1975 so that our anal-
ysis covers a 40-year period, over which the effect of human
activity on GMST rose nearly linearly with respect to time
(Figs. 1b and S10c).
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We calculate AAWR utilizing the EM-GC by computing a
linear fit to the ATHUMAN,ATM term,

1
ATxrvHOMAN: = ——Y- (GHG ARF; + AER ARF;
14
+LUC ARF; — Qocean}, )

for a regression that spans 1850-2019. The ATHuMAN,ATM
term represents the net impact of the change in GMST
due to RF of climate by anthropogenic GHGs, tropospheric
aerosols, and the variation in surface reflectivity due to
land-use change (deforestation), taking into account that for
each model time step, a portion of the human-induced cli-
mate forcing is exported to the world’s oceans. For each
simulation, the slope of the linear least squares fit to the
480 monthly values of ATHuman,atMm is used to determine
AAWR. For the time period 1975-2014, a value for AAWR
of 0.167+0.007 °C per decade is found using a value of AER
RF3011 equal to —0.9W m~2, wherein the uncertainty cor-
responds to the 20 standard error of a linear least squares
fit. The computation of AAWR found by fitting monthly val-
ues of ATHUMAN,ATM is insensitive to modest changes in the
start and end year for the AAWR calculation (see Table S1).
The value of Ay, and therefore AAWR, is also insensitive
to whether or not the AMOC, PDO, or I0OD terms are in-
cluded in the regression framework (Canty et al., 2013; Hope
et al., 2017). We are able to fit the climate record better (i.e.,
smaller values of x2 in Egs. 6, 7, and 8) by including the
AMOC term. However, computed values of AAWR are in-
sensitive to whether the AMOC is used in the regression be-
cause whatever contributions the variation in the strength of
the thermohaline circulation may have had on GMST are not
considered in Eq. (9) (see Fig. S11 for further explanation).
The determination of AAWR from historical CMIP6
near-surface air temperature output involves conducting a
regression of deseasonalized, globally averaged, monthly
AT(ATPES.GLB) from each GCM (Hope et al., 2017),
termed the REG method. The archived CMIP6 historical runs
are constrained by observed variations in SAOD and influ-
enced by other factors such as internal model-generated EN-
SOs. The ATPES:GLB time series for all of the runs from each
CMIP6 GCM are averaged together to obtain one time series
of ATPES.GLB for each GCM. This average ATPES:CLB time
series is used to compute AAWR. The regression approach
is used to compute the influence of SAOD on GMST from
CMIP6 GCMs. The time needed for GMST to respond to a
change in the aerosol loading in the stratosphere due to a vol-
canic eruption in each GCM can exhibit a significant differ-
ence compared to the empirically determined response time
of 6 months discussed in Sect. 2.1. A lag was determined
for each GCM by calculating the value of the monthly delay
between volcanic eruptions and the surface temperature re-
sponse that resulted in the largest regression coefficient for
SAOD. We regress the ATPES.GLB a0qinst SAOD and the
anthropogenic effect on temperature, which is approximated
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as a linear function from 1975-2014. The value of AAWR is
the slope of the anthropogenic effect on temperature. Figure
S12 illustrates the REG method used to determine AAWR
from the CMIP6 GCMs. Table S3 depicts the slight effect
on values of AAWR for the CMIP6 GCMs of changing the
start or end year for the regression. At the time of analysis,
there are 50 CMIP6 GCMs with the necessary archived out-
put to calculate AAWR, with the values of AAWR found us-
ing REG shown in Table S3. Figure S13 and the Supplement
compare values of AAWR found using the REG method ap-
plied to EM-GC output with values of AAWR found using
Eq. (9) as support for the validity of using the REG method
to determine AAWR from CMIP6 output.

We also use a second method to extract the value
of AAWR from the CMIP6 multi-model ensemble. This
method, termed LIN, involves a linear regression of global,
annual average values of GMST from the CMIP6 multi-
model ensemble (Hope et al., 2017). For LIN, we exclude
the years of obvious volcanic influence on the rise in GMST
from the CMIP6 multi-model ensemble historical simula-
tions: i.e., data for 1982 and 1983 (following the eruption
of El Chichén) and 1991 and 1992 (following the eruption of
Mount Pinatubo) are excluded. Archived global, annual av-
erage values of GMST covering 1975-2014, excluding these
4 years, are fit using linear regression, with the AAWR set
equal to the slope of the fit. Values of AAWR for 1975—
2014 found using LIN are also shown in Table S4 for each
GCM. Analysis of AAWR for these 50 GCMs of LIN ver-
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sus REG (see Fig. S14) results in a correlation coefficient
(r%) of 0.995 and a mean ratio of 1.009 & 0.015, with LIN-
based AAWR exceeding REG-based AAWR by about 1 %.
The close agreement of AAWR found using both methods
provides strong evidence for the accurate determination of
AAWR from the CMIP6 GCMs. We use the REG method in
this analysis because it provides a more rigorous technique
to remove the influence of SAOD on GMST from the CMIP6
multi-model ensemble compared to the LIN method.

The CMIP6 multi-model ensemble provides simulations
of near-surface air temperature (TAS), which we use to calcu-
late AAWR. The EM-GC uses blended near-surface air tem-
perature to determine values of AAWR. Cowtan et al. (2015)
provide a method to create blended near-surface air temper-
ature output from the GCMs. The CMIP6 multi-model en-
semble contains archived fields of TAS and the temperature
at the interface of the atmosphere and the upper boundary of
the ocean (TOS) (Griffies et al., 2016), whereas only a subset
of GCM groups provide the archived land fraction needed
to calculate blended near-surface air temperature using the
Cowtan et al. (2015) method. Cowtan et al. (2015) compared
the modeled and measured trend in global temperature over
1975-2014 and found a 4.0 % difference in the trend upon the
use of blended temperature from CMIP5 GCMs rather than
global modeled TAS. Their analysis focused on a compari-
son of modeled and measured temperature, not just the an-
thropogenic component. We have used the method of Cow-
tan et al. (2015) to create blended CMIP6 temperature out-
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put for the CMIP6 GCMs that provide TAS, TOS, and the
land fraction. Upon our use of blended CMIP6 temperature
output for these GCMs and calculation of AAWR for 1975-
2014, we find that AAWR based on blended CMIP6 tempera-
ture is 3.5 % lower than AAWR found when using only TAS.
Tokarska et al. (2020b) estimate an effect of 0.013 °C per
decade in the trend of CMIP6 temperature output upon the
use of blended CMIP6 temperature instead of TAS, while
Cowtan et al. (2015) report a difference of 0.030°C per
decade between the trend in observations and modeled out-
put. Since the difference between values of AAWR found us-
ing blended CMIP6 temperature output and TAS is so small
and does not affect any of our conclusions, we use TAS out-
put from the CMIP6 multi-model archive because this choice
allows many more GCMs to be examined.

2.4 Effective climate sensitivity

The equilibrium climate sensitivity represents the warming
that would occur after the climate equilibrated with atmo-
spheric CO; at the 2 x pre-industrial level (Kiehl, 2007; Otto
et al., 2013; Schwartz, 2012). In our model framework, we
infer the climate sensitivity based on an estimate of climate
feedback from the historical record, resulting in the effective
climate sensitivity (ECS) (Tokarska et al., 2020a). Effective
climate sensitivity is defined by IPCC 2013 as “an estimate
of the global mean surface temperature response to doubled
carbon dioxide concentration evaluated from model output
or observations for evolving non-equilibrium conditions”. To
calculate ECS from the EM-GC, we use

I1+y
Ap

ECS = x5.35Wm™2 x In(2), (10)
which represents the rise in GMST for a doubling of CO;, as-
suming no other perturbations and equilibrium in other com-
ponents of the climate system (i.e., Qocgan = 0) (Mascioli
et al., 2012). The expression for the radiative forcing of CO,
is from Myhre (1998). The quantity y in Eq. (10), which
represents the sensitivity of the GMST to feedbacks within
the climate system, is the only variable component of ECS.
We only use values of y that result in good fits (x> < 2 for
Eq. 6 to 8) between modeled and observed GMST and mod-
eled and observed OHC. We refer to the quantity in Eq. (10)
as effective climate sensitivity, rather than equilibrium cli-
mate sensitivity, because for most of our analysis we assume
a constant value of climate feedback inferred from prior ob-
servations.

For the estimate of climate sensitivity from the CMIP6
multi-model ensemble, we use the method described by Gre-
gory et al. (2004) (see the Supplement and Fig. S15 for more
information). The Gregory et al. (2004) method also esti-
mates effective climate sensitivity from the CMIP6 GCMs
(Gregory et al., 2004; Sherwood et al., 2020; Zelinka et al.,
2020) because it assumes that the feedbacks inferred from
the first 150 years of the abrupt 4x CO, CMIP6 GCM sim-
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ulations persist until equilibrium. At the time of this analy-
sis, 28 models released the necessary output to the CMIP6
archive (see Table S5 for the list of models and individual
values of ECS). Several recent analyses suggest the Gregory
method underestimates the true value of equilibrium climate
sensitivity from the CMIP6 multi-model output (Rugenstein
et al., 2020; Sherwood et al., 2020; Zelinka et al., 2020).
However, effective climate sensitivity is strongly correlated
with the amount of warming simulated by GCMs for high
carbon emission scenarios and is more relevant for warm-
ing over the timescale of interest (rest of this century) due to
the long time needed to achieve equilibrium (Sherwood et al.,
2020). We use the Gregory method to calculate ECS from the
CMIP6 GCMs because this procedure is preferred by Eyring
et al. (2016) for use within the CMIP6 community.

The estimates of climate sensitivity from Eq. (10) and
those found using the Gregory et al. (2004) method are
termed “‘effective” because they assume that climate feed-
back inferred from either the historical climate record or the
abrupt 4x CO, experiment persists until equilibrium. How-
ever, these estimates of ECS differ in that the perturbation to
the RF of climate over the historical record is considerably
smaller than the RF of climate that underlies the 4 x CO; ex-
periment of the Gregory et al. (2004) method. We quantify
the impact of time-variable climate feedback on climate sen-
sitivity in Sect. 3.3.6.

2.5 Aerosol weighting method

Probabilistic forecasts of the future rise in GMST for var-
ious SSPs are an important part of our analysis. Probabil-
ities of AAWR and ECS are computed by considering the
uncertainty in AER RF,q1;. We also provide probabilistic es-
timates of AAWR and ECS. All of these quantities are com-
puted by incorporating the uncertainty in the radiative forc-
ing of climate due to tropospheric aerosols within results of
our EM-GC simulations. We use an asymmetric Gaussian to
assign weights to the value of GMST, AAWR, or ECS found
for various time series of radiative forcing by aerosols as-
sociated with particular values of AER RFjg;;. Figure 5a
shows the asymmetric Gaussian function we use to maxi-
mize the values of AAWR or ECS at the best estimate of
AER RFy11 of —0.9W m~2, accomplished by giving these
values the highest weighting. The IPCC 2013 “likely” range
limits of AER RF»(; of —0.4 and —1.5 Wm~2 (Myhre et
al., 2013) are assigned to the 1o values of the Gaussian, and
the AAWR or ECS estimates occurring at the “likely” range
AER RFj¢1; limits are given the same weighting. The —0.1
and —1.9Wm~2 limits of the AER RFy; range are as-
signed as the 2o values of the asymmetric Gaussian based on
the TPCC 2013 description of these two values as being 5 %
and 95 % uncertainty limits (Myhre et al., 2013). The Gaus-
sian we use is asymmetric due to the fact that the distribution
of the likely range and the 5th and 95th percentiles of the val-
ues of AER RFjg1; are not distributed symmetrically from
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Figure 5. Aerosol weighting method. (a) The weights assigned to
an asymmetric Gaussian distribution of AER RF;(1 based on val-
ues provided by Chapter 8 of IPCC 2013. The five black circles
indicate the assigned weights for the AER RF;(11 best estimate of
—0.9W m~2, likely range of —0.4 and —1.5W m~2, and the 5th
and 95th confidence intervals of —0.1 and —1.9 Wm™2. (b) Val-
ues of AAWR in degrees Celsius per decade as a function of the
climate feedback parameter, Ay, and the value of AER RF5(1; as-
sociated with various time series for the RF of climate due to tropo-
spheric aerosols. The colors denote the values of AAWR calculated
from 1975-2014 using the EM-GC trained with the HadCRUTS AT
record. (¢) ECS (°C) as a function of A5, and the value of AER
RF»011. The colors denote values of ECS found using the EM-GC.
For panels (b) and (c¢), model results are shown only for combina-
tions of Ay and RF due to tropospheric aerosols for which good fits
to the climate record could be achieved.

the best estimate of —0.9 W m™2. For example, the likely
ranges of AER RF;q| are given as —0.4 and —1.5 Wm2;
the —0.4 W m~2 value is 0.5 W m~2 from the best estimate,
whereas —1.5Wm~2 is 0.6 W m~2 from the best estimate.
We fit a Gaussian to the likely range and the 5th and 95th
percentiles that have a slightly different shape on either side
of the best estimate, as shown in Fig. Sa.

Figure 5b shows the value of AAWR (°C per decade) as
a function of the climate feedback parameter, Ay, and AER
RF;011. We are able to find more good fits to the observed
GMST for small values of AER RF;gq; than at larger val-
ues of AER RF;qg;;. Therefore, we bin values of AAWR
(Fig. 5b), ECS (Fig. 5c), or future GMST (described in
Sect. 3.3) by AER RF;1; and find the probability distribu-
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tion for values of AAWR, ECS, or future GMST within each
bin. The resulting probability distributions are assigned the
weights associated with each value of AER RF,g1; in the
bins to arrive at the probabilistic estimates of AAWR or ECS
shown in Sect. 3. If we did not use this procedure and instead
simply averaged all of the values for AAWR and ECS shown
in Fig. 5, undue emphasis would be given to model results
that occur at small AER RF¢;; (see Fig. S16 for unweighted
ECS values). This aerosol weighting method allows the ex-
pert assessment of the likely range of RF due to tropospheric
aerosols given in Chapter 8 of IPCC 2013 (Myhre et al.,
2013) to be quantitatively incorporated into our computations
of AAWR, ECS, and GMST.

3 Results

3.1 AAWR, comparison to CMIP6 multi-model ensemble

An important measure of any climate model is the ability
to accurately simulate the human influence on the global
mean surface temperature (GMST) anomaly. We use the at-
tributable anthropogenic warming rate (AAWR) found by
our highly constrained Empirical Model of Global Climate
(EM-GC) to quantify how well the CMIP6 multi-model en-
semble (see Table S7 for a list of CMIP6 GCMs analyzed in
this study) is able to simulate the human influence on global
warming over the past several decades.

Figure 6 compares values of AAWR from 1975-2014
computed using our EM-GC with AAWR found utilizing
archived output from the CMIP6 multi-model ensemble.
Seven GMST data sets and five OHC records can be used to
estimate AAWR with the EM-GC. For each choice, AAWR
exhibits sensitivity to the variation of the time series of ra-
diative forcing due to tropospheric aerosols. Each box-and-
whisker plot found using our EM-GC shows, for a particu-
lar choice of GMST and OHC data record, the 25th, 50th,
and 75th percentiles of AAWR (box) and the 5th and 95th
percentiles (whiskers) found using the aerosol weighting
method described in Sect. 2.5. The star symbol indicates the
minimum and maximum values of AAWR for each value
of GMST data set and OHC record. The choice of OHC
record and GMST data set has a slight effect on AAWR, as
shown by the colored EM-GC symbols in Fig. 6. The aver-
ages of the five 25th, 50th, and 75th percentiles of AAWR
found using the HadCRUTS data set for GMST are 0.138,
0.157, and 0.176 °C per decade, respectively. The 5th and
95th percentile values of AAWR from HadCRUTS are 0.120
and 0.195 °C per decade.

The box-and-whisker symbol labeled CMIP6 in Fig. 6
shows the 5th, 25th, 50th, 75th, and 95th percentiles of
AAWR calculated from 50 GCMs, also from 1975-2014, as
described in Sect. 2.3. The stars denote the minimum and
maximum values of AAWR from the GCMs. Two CMIP6
models exhibit values of AAWR similar to the median values
we infer from the HadCRUT4, CW 14, NOAAGT, BEG, GIS-
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Figure 6. AAWR from the EM-GC and CMIP6 multi-model ensemble for 1975-2014. Seven temperature data sets and five ocean heat
content records are used to compare values of AAWR computed from the EM-GC. The box represents the 25th, 50th, and 75th percentiles,
the whiskers denote the 5th and 95th percentiles, and the stars show the minimum and maximum values of AAWR from the EM-GC based on
the aerosol weighting method described in Sect. 2.5. The red box labeled “CMIP6” shows the 25th, 50th, and 75th percentiles, the whiskers
represent the 5th and 95th percentiles, and the stars denote the minimum and maximum values of AAWR from the 50-member CMIP6

multi-model ensemble.

TEMP, and HadCRUTS5 data records using the EM-GC. In
particular, INM-CM5-0 (Volodin and Gritsun, 2018) yields
0.147°C per decade and MIROCG6 (Tatebe et al., 2019)
results in 0.157°C per decade (Table S4 provides values
of AAWR for all individual CMIP6 GCMs). The median
value of AAWR from the CMIP6 multi-model ensemble is
0.221 °C per decade, about 40 % larger than the 50th per-
centile value of AAWR found using the HadCRUTS data
set for GMST. The 5th, 25th, 75th, and 95th percentiles of
AAWR from the CMIP6 multi-model ensemble are 0.151,
0.192, 0.245, and 0.299 °C per decade, respectively. Some
CMIP6 GCMs exhibit values of AAWR that are 0.14 °C per
decade larger than our largest empirical estimates for 1975—
2014; the maximum value of AAWR from the GCMs is
0.354 °C per decade. The maximum value of AAWR based
on the historical climate record using the EM-GC is 0.213 °C
per decade (HadCRUTS5 data set using the Ishii et al., 2017,
OHC record and a time series for RF due to tropospheric
aerosols consistent with AER RF,¢11 equal to —1.5W m’z).
All of the EM-GC-based values of AAWR in Fig. 6 are below
the 50th percentile of AAWR from the CMIP6 multi-model
ensemble of 0.221 °C per decade, supporting the notion that
CMIP6 GCMs tend to exhibit a faster rate of anthropogenic
warming over the past 4 decades than the actual atmosphere.

Our determination that the rate of global warming from the
CMIP6 multi-model ensemble over the time period 1975-
2014 significantly exceeds the rise in GMST attributed to hu-
man activity is aligned with a similar finding highlighted in
Fig. 11.25b from Chapter 11 of the IPCC 2013 report that
CMIP5 models tend to warm too quickly compared to the
actual climate system over the time period 1975-2014 (Kirt-
man et al., 2013). The values of AAWR from the CMIP6
multi-model ensemble from our analysis present a similar
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finding as Tokarska et al. (2020b) and CONSTRAIN (2020)
that some of the CMIP6 models overestimate recent warm-
ing trends. Tokarska et al. (2020b) examine the trend in the
human component of GMST from 1981-2014. We arrive at a
similar conclusion as these studies that CMIP6 GCMs over-
estimate the rate of global warming for the 1982-2014 time
period of AAWR as shown in Tables S2 and S3. Our results,
the finding by the [PCC 2013 report, Tokarska et al. (2020b),
and CONSTRAIN (2020) appear to be quite different than
the conclusion of Hausfather et al. (2020) that past climate
models have matched recent temperature observations quite
well. The Hausfather et al. (2020) study does not examine
CMIP5 GCMs, let alone CMIP6 GCMs, and the last two
rows of their Table 1 indicate that the skill of climate models
forecasting the change in GMST over time decreased con-
siderably between the Third Assessment Report (TAR) and
the Fourth Assessment Report (AR4). The change in temper-
ature over time for the TAR and AR4 only spans 17 and 10
years, respectively (Hausfather et al., 2020). In Fig. 6, we ex-
amine the ability of the GCMs to simulate the rise in GMST
attributed to humans over a 40-year time period, which pro-
vides a better measure of how well the models simulate the
observations than the shorter time period. The temperature
change over time for the TAR and AR4 examined by Haus-
father et al. (2020) ends in 2017, which was right after a
very strong ENSO, so their analysis may be influenced by
the 2015 to 2016 ENSO event. In contrast, our analysis of
AAWR is not influenced by natural variability such as ENSO
because we examine the human component of global warm-
ing after explicitly accounting for and removing the influ-
ence of ENSO on GMST. Consequently, our determination
of AAWR from observations (Table S2) and GCMs (Table
S3) depends only to a small extent on the specification of the
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start year (for values ranging from 1970 to 1984) and end
year (2004 to 2018). Our analysis shows that upon quantifi-
cation of the human driver of global warming within both
the data record and climate models, the CMIP6 GCMs warm
faster than observed GMST over the past 4 decades regard-
less of precise specification of the start and end year.

3.2 ECS

Climate sensitivity is a metric often used to compare the sen-
sitivity of warming among GCMs and with warming inferred
from the historical climate record. Figure 7 shows values of
effective climate sensitivity (ECS) inferred from the climate
record using our EM-GC, seven GMST data sets, and five
OHC records. As for AAWR, the largest variation in ECS
is driven by uncertainty in AER RF»q11. The colored circles
represent the ECS values found using the [IPCC 2013 best es-
timate of AER RF501; of —0.9 W m~2 (Myhre et al., 2013).
The ECS values found utilizing the EM-GC are displayed
using a box-and-whisker symbol. The middle line represents
the median values of ECS, and the box is bounded by the 25th
and 75th percentiles. The whiskers connect to the 5th and
95th percentiles, and the stars denote the minimum and maxi-
mum values. We use the aerosol weighting method described
in Sect. 2.5 to calculate the percentiles for ECS; values of
ECS found without aerosol weighting are shown in Fig. S16.
Varying the choice of GMST data record has a slight effect
on the value of ECS, whereas the choice of OHC record has a
larger effect, as indicated by the various heights of the boxes
and whiskers and the maximum values of ECS. In the EM-
GC framework, the ocean heat export term (QocEAN) rep-
resents disequilibrium in the climate system. We compute
values of Qocgan from various records of OHC. If the cur-
rent value of Qocgan is as large as suggested by the Cheng
2017 and Ishii et al. (2017) OHC records, then Earth’s cli-
mate will exhibit a larger rise in GMST to reach equilibrium
than if the value of Qocgan inferred from the OHC record
of Balmaseda et al. (2013) is correct. The averages of the
25th, 50th, and 75th percentiles of ECS found using the Had-
CRUTS data set for GMST are 1.74, 2.12, and 2.67 °C, re-
spectively. The average best estimate of ECS using the Had-
CRUTS data set and an AER RF;g; value of —0.9 W m~2is
2.33°C.

The box-and-whisker symbol labeled CMIP6 in Fig. 7
shows the 25th, 50th, 75th, and 5th and 95th percentiles of
ECS calculated from the output of 28 CMIP6 models, as de-
scribed in Sect. 2.4. Minimum and maximum values are rep-
resented by stars. The values of ECS from the CMIP6 multi-
model ensemble are larger than the majority of values in-
ferred from the climate record using the EM-GC. The height
of the box for the CMIP6 multi-model ensemble estimate of
ECS is larger than the height of the boxes for ECS inferred
from the climate record using the EM-GC, indicating that the
GCMs exhibit a wide range of ECS values. The 25th and 75th
percentiles of ECS from the CMIP6 multi-model ensemble
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are 2.84 and 4.93 °C, respectively. The 5th percentile of ECS
from the CMIP6 multi-model ensemble is 2.19 °C, and the
95th percentile is 5.65 °C (see Table S4 for ECS values for
specific models). In contrast, the average Sth and 95th per-
centiles from the EM-GC are 1.40 and 3.57 °C, respectively.
The median value of ECS from the CMIP6 multi-model en-
semble is 3.74 °C, which is 1.6 times the best estimate of
2.33 °C found using the HadCRUTS temperature record. All
estimates of ECS described above are found assuming con-
stant climate feedback over time. If climate feedback changes
over time, then our estimates of ECS will increase as dis-
cussed in Sect. 3.3.6.

Figure 8 summarizes values of ECS found utilizing the
analysis of the century-and-a-half-long climate record us-
ing our EM-GC, our examination of a 28-member CMIP6
GCM ensemble, and 13 other recent studies. The studies
are divided into three categories: those that estimated ECS
based on observations (historical analysis), others that used
GCM output but constrained the output in some way (Con-
strained GCM output), and studies that examined raw GCM
output (GCM output). We obtain a best estimate for ECS of
2.33 °C using the HadCRUTS? data record and a value of AER
RF2011 = —0.9W m~2 with a range of ECS of 1.40-3.57°C
(5th and 95th percentile confidence interval). The use of Had-
CRUTS rather than HadCRUT4 induces a significant rise in
our best estimate of ECS, which is 1.99 °C (range of 1.12-
3.63 °C) upon use of HadCRUT4. Both of these estimates of
ECS largely fall within the range provided by IPCC 2013 of
1.5 to 4.5°C for ECS and is supported by four other deriva-
tions of ECS from the empirical climate record: 2.0 °C (range
of 1.2-3.9 °C) given by Otto et al. (2013), 1.87 °C (range of
1.1-4.05°C) given by Lewis and Griinwald (2018), 2.0°C
(range of 1.3-3.1°C) given by Tokarska et al. (2020a), and
2.0°C (range of 1.2-3.1°C) given by Skeie et al. (2018) (all
range values are for the 5th and 95th percentile confidence
interval). All of these studies preceded the release of Had-
CRUTS. Our estimate of ECS covers a similar range of val-
ues as given by Cox et al. (2018), Dessler et al. (2018), and
Nijsse et al. (2020), as illustrated in Fig. 8. Our determination
of ECS from the CMIP6 GCMs resembles that from Prois-
tosescu and Huybers (2017) and Zelinka et al. (2020), as in-
dicated in the “GCM output” category in Fig. 8.

Recent studies have shown that the CMIP6 multi-model
ensemble exhibits higher values of ECS than the CMIP5
models because of larger, positive cloud feedbacks within
the latest models (Gettelman et al., 2019; Meehl et al., 2020;
Sherwood et al., 2020; Zelinka et al., 2020). The IPCC 2013
report gives a likely range of 1.5 °C to 4.5 °C for climate sen-
sitivity (Stocker et al., 2013), and some of the CMIP6 GCMs
analyzed in this study have values of ECS more than 1°C
above this range. However, some in the climate community
seem to currently doubt whether the very large values of ECS
are representative of the real world (CONSTRAIN, 2020;
Forster et al., 2020; Lewis and Curry, 2018; Tokarska et al.,
2020b). Gettelman et al. (2019) found that the newest ver-
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sion of the Community Earth System Model (CESM2) has other GCM:s is not supported by the paleoclimate record and
a higher value of ECS than CESM1 (5.3 °C versus 4.0°C) are biased too warm. An analysis by Nijsse et al. (2020) cou-
and urge the climate community to work together to deter- pled the CMIP6 multi-model ensemble to a two-box energy
mine the plausibility of such high values of ECS. Zhu et balance model and the climate record and obtained a me-
al. (2020) found that the high values of ECS in CESM2 and dian value of ECS of 2.6 °C and range of 1.52-4.03 °C (5th
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and 95th percentiles). Similarly, Sherwood et al. (2020) con-
clude that cooling during the Last Glacial Maximum pro-
vides strong evidence against ECS being greater than 4.5 °C
and conclude that ECS lies within the range of 2.3 to 4.7°C
at the 5th to 95th percentile confidence intervals.

We obtain a wide range of ECS values from our EM-GC
simulations of the climate record due to consideration of the
uncertainty in the radiative forcing of climate from tropo-
spheric aerosols (Figs. 5c and 7). However, under one cir-
cumstance, we find values of ECS using the EM-GC that
are similar to the maximum value of ECS from the CMIP6
multi-model ensemble. Our large estimate of ECS occurs if
we assume that anthropogenic aerosols have exhibited strong
cooling and offset a large amount of greenhouse gas warming
such that the observed GMST record can only be well simu-
lated under the condition of large climate feedback (i.e., val-
ues of Ay, in Eq. 3 greater than or equal to 2.45Wm~2°C~1).
If aerosols have truly strongly cooled the climate, offsetting
the vast majority of the rise in RF due to greenhouse gases as
suggested by Shen et al. (2020), the actual value of ECS may
lie close to 5°C or larger. Under the scenario that aerosols
have not cooled this strongly (Bond et al., 2013), then it is
feasible that ECS lies well below 5 °C. The highest values
of ECS found using our analysis (red portion of Fig. 5¢)
are assigned low weights due to the assessment by Myhre
et al. (2013) that the large AER RF,011 associated with these
ECS values is unlikely.

Five empirical determinations of ECS (our study plus
Lewis and Griinwald, 2018; Otto et al., 2013; Skeie et
al., 2018; and Tokarska et al., 2020a) and the CMIP5- or
CMIP6-constrained estimates of Cox et al. (2018), Dessler et
al. (2018), and Nijsse et al. (2020) are in slight contrast with
the 2.3—4.7 °C range for ECS (5th and 95th confidence inter-
val) published recently by Sherwood et al. (2020) (Fig. 8). As
noted above, Sherwood et al. (2020) use paleoclimate data to
rule out the high range of ECS. They rely on a determina-
tion that the feedback due to clouds is moderately to strongly
positive to rule out the low range of ECS found by our anal-
ysis and the studies noted above. We caution that knowledge
of the cloud feedback from observations is generally limited
to databases such as the International Satellite Cloud Cli-
matology Project (ISCCP) (Schiffer and Rossow, 1983) and
Pathfinder Atmospheres Extended (PATMOS-x) (Foster and
Heidinger, 2013). While these databases are monumental in
terms of complexity and scope, they cover only a fairly short
(i.e., about 36 years) part of the century-and-a-half climate
record (Klein et al., 2017; Sherwood et al., 2020). Most as-
sessments of total cloud feedback rely on some combination
of observations such as ISCCP, PATMOS-x, or other satel-
lite records together with the results of regression analysis,
GCM projections, and large eddy simulations that are able to
resolve some of the convective processes involved in cloud
formation (Klein et al., 2017; Sherwood et al., 2020). The
most important component of the global cloud feedback is
tropical low clouds, which Sherwood et al. (2020) consider
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to exert a positive feedback on climate based largely on the
results of Klein et al. (2017). The determination by Klein
et al. (2017) of a likely positive feedback for tropical low-
altitude clouds is based on the mean and standard deviation
of the central value of this feedback determined by five stud-
ies, even though four of these studies exhibit uncertainties
that encompass zero feedback and the fifth nearly reaches
zero (their Fig. 3). This fact, combined with the recent study
by Weaver et al. (2020), who report no long-term statisti-
cally significant trend in global cloud reflectivity at 340 nm
averaged between 45° S and 45° N based on analysis of data
collected by a variety of NOAA and NASA satellite instru-
ments, causes us to suggest that the true value of ECS may lie
below the 2.3 °C lower limit given by Sherwood et al. (2020).

In our model framework, the largest uncertainty in ECS is
driven by imprecise knowledge of the radiative forcing of cli-
mate by tropospheric aerosols. As shown in Fig. 5c, a wide
range of ECS values can be inferred from the century-and-
a-half-long climate record. We stress that each value of ECS
shown in Fig. 5c is based on a simulation for which XEATM’
XI%ECENT’ and X(Z)CE an are all less than or equal to 2. Bet-
ter knowledge of AER RF for the contemporary atmosphere
would lead to a reduction in the uncertainty of ECS. Numer-
ous studies of the climate record, including our century-and-
a-half simulations, infer the possibility of lower values of
ECS than given by a recent analysis of studies that involve
examination of data from compendiums such as ISCCP and
PATMOS-x (Sherwood et al., 2020). However, the analysis
by Sherwood et al. (2020) did not examine the consistency
of the inferred value of ECS with the ability of models to ac-
curately simulate the GMST anomaly between 1850 and the
present or over the past 40 years.

We conclude this section by commenting on the rela-
tionship between ECS and AAWR in our model frame-
work. Eight of the CMIP6 GCMs (GFDL-ESM4, GISS-E2-
1-G, INM-CM5-0, INM-CM4-8, MIROC6, MIROC-ES2L,
NorESM2-LM, and NorESM2-MM) exhibit values of ECS
and AAWR consistent with the minimum and maximum es-
timates based on our EM-GC constrained by the HadCRUTS
GMST record (Table S5 and Fig. S17). An analysis of the re-
lationship between AAWR and ECS from the CMIP6 GCMs
illustrates that 78 % of the variance in ECS among the 28
CMIP6 GCMs that provide both quantities is explained by
AAWR (see Fig. S17). This result indicates that CMIP6
GCMs that accurately simulate the rise in observed AT over
the past few decades exhibit values of ECS that are in line
with our empirically based estimate.

3.3 Future projections
3.3.1 CMIP6

The CMIP6 multi-model archive provides future projections
of the GMST anomaly relative to pre-industrial (AT) using
the ScenarioMIP Shared Socioeconomic Pathways (SSPs).

Earth Syst. Dynam., 12, 545-579, 2021




562 L. A. McBride et al.: Comparison of CMIP6 warming to an empirical model of global climate

Figure 9 shows the CMIP6 multi-model ensemble projec-
tions of AT for the four SSPs (SSP1-1.9, SSP1-2.6, SSP4-
3.4, and SSP2-4.5) highlighted in our analysis. Each SSP sce-
nario has varying numbers of gridded, monthly mean TAS
projections submitted to the CMIP6 archive by GCMs. The
global monthly AT time series for all of the runs for each
CMIP6 GCM were averaged together to obtain one time se-
ries of AT. The varying amount of GCM output available
for each SSP scenario is due to the fact that (a) SSP1-2.6 and
SSP2-4.5 are Tier 1 scenarios (O’Neill et al., 2016) and are
designated as priority over the other SSPs (as described in
Sect. 2.2.2), and (b) not all GCMs have provided results to
the CMIP6 archive at the time of the analysis. More CMIP6
multi-model output will likely become available as modeling
groups who have not submitted output to the CMIP6 archive
finalize their results. However, we do not expect that addi-
tional GCM simulations will affect our conclusions unless
the GCM output is significantly different than that currently
available.

The red trapezoid in Fig. 9 labeled as the IPCC 2013 likely
range is the same trapezoid as that displayed in Fig. 11.25b
from Chapter 11 of the IPCC 2013 report (Kirtman et al.,
2013). The recent observations of AT from HadCRUTS lie
towards the top of the likely range of warming designated
by this trapezoid. Many of the projections of the rise in AT
from the CMIP6 multi-model ensemble lie above the [PCC
2013 likely range of warming. The Paris Agreement target
of 1.5°C and upper limit of 2.0 °C are shown as yellow cir-
cles, which are included to allow for comparison of the future
projections of AT from the CMIP6 multi-model ensemble
with the goals of the agreement. The thick blue line in each
plot is the CMIP6 multi-model mean of AT, and the dashed
blue lines are the minimum and maximum AT projections
from the CMIP6 multi-model ensemble. For SSP1-1.9, the
multi-model mean projection of AT in 2100 from the CMIP6
GCMs lies just above the Paris Agreement target at 1.6 °C,
whereas for SSP1-2.6 the CMIP6 multi-model mean reaches
the Paris Agreement upper limit of 2.0 °C at the end of this
century. For both SSP4-3.4 and SSP2-4.5, the end-of-century
CMIP6 multi-model mean lies above the Paris Agreement
upper limit at 3.0 and 3.1 °C, respectively.

Figure 9 illustrates that there are two groups of CMIP6
multi-model projections of AT, with a few GCMs having
future values of AT that are considerably higher than oth-
ers. This divergence for GCM projections of AT 1is espe-
cially evident in Fig. 9a, c, and d. The two CMIP6 GCMs
that have the highest values of AT across the four SSPs are
CanESMS5 (Swart et al., 2019) and UKESMI1 (Sellar et al.,
2020). The CanESMS5 and UKESM1 GCMs have the highest
values of AAWR (0.354 and 0.299 °C per decade, respec-
tively), large values of ECS (5.70 and 5.40 °C, respectively),
and exceed observed AT reported by HadCRUTS for the past
few decades.
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3.32 EM-GC

The EM-GC is also used to project future changes in AT
using the SSPs. Figure 10 shows the GMST anomaly in
2100 from pre-industrial (AT5109) as a function of the cli-
mate feedback parameter and AER RF;q1; for the four SSPs
highlighted throughout. Only model runs from the EM-GC
that achieved a good fit to the climate record (XiTM <2,
XI%ECENT <2, XCZ)CEAN <2) are shown. The EM-GC runs
that satisfy these three x2 constraints but fall outside the
IPCC 2013 range for AER RF01; (Myhre et al., 2013)
are shaded grey (left-hand side of each panel). We do not
consider the EM-GC projections that lie outside the IPCC
2013 range for AER RFj1; in our projections of AT, yet
these results are shown to illustrate that the EM-GC can fit
the climate record with estimates of the RF due to tropo-
spheric aerosols that lie below (i.e., less cooling) the 5th
confidence interval of —0.1 Wm™2 for AER RFag;; given
by IPCC 2013. We cannot establish any good fits of the
HadCRUTS GMST record for AER RF;91; with a cooling
stronger than about —1.55 W m~2. The ranges of AT>100 wWe
compute using the EM-GC for SSP1-1.9, SSP1-2.6, SSP4-
3.4, and SSP2-4.5 are 0.75-2.06, 0.96-2.58, 1.18-3.01, and
1.45-3.47 °C, respectively. Results for SSP4-6.0, SSP3-7.0,
and SSP5-8.5 are shown in Fig. S18: AT, ranges are 1.70-
4.02, 2.26-4.93, and 2.62-6.02 °C for these three scenarios.

The large range of AT>1o0 found for any given SSP sce-
nario is caused by the fact that the climate record can be
fit nearly equally well by a considerably large combination
of the climate feedback parameter (our Ax) and scenarios
for radiative forcing due to tropospheric aerosols. The more
aerosols have cooled, offsetting the relatively well-known
warming due to GHGs, the larger Ay must be to fit the cli-
mate record. Since the RF of aerosols is set to diminish in
the future due largely to public health concerns (Lelieveld et
al., 2015; Shindell et al., 2016; Smith and Bond, 2014), the
part of our model ensemble requiring relatively large values
of Ay to achieve a good fit to the climate record will result
in higher values of AT510o than other members of our model
ensemble with small values of Ay, Most GCMs sample only
a small portion of the possible combinations of Ay, and AER
RF,011 shown in Figs. 10 and S18.

3.3.3 Comparing CMIP6 and EM-GC

Time series of future projections of AT from the EM-GC
can be illustrated as probabilistic forecasts. Figure 11 shows
the change in future AT for SSP1-1.9, SSP1-2.6, SSP4-3.4,
and SSP2-4.5 colored by the probability of reaching at least
that rise in AT by the end of the century. The EM-GC prob-
abilities are computed from ensemble members for model
runs constrained by the HadCRUTS data records for GMST
and the average of five OHC data records (Fig. S9) based
on the aerosol weighting method, as described in Sect. 2.5.
The trapezoid from Chapter 11 of IPCC 2013 (Kirtman et

https://doi.org/10.5194/esd-12-545-2021



L. A. McBride et al.: Comparison of CMIP6 warming to an empirical model of global climate 563

SSP1-1.9

SSP1-2.6

9 5 : I
@ 4E CMIP6 (10 models) 3 CMIP6 (34 models) 3
N 1l o]
8 3F ] F N E
£ 2 e o—] o
- F o= £
o VNN AN M
ok / TNy ]
IPCC 2013 Likely R . ¥ _:
5 0 e @) (b)
1 1 L i 1 L L L ] L L 1 1 L 1 d
50T T T T T T T T T T T T T T T T T T T T T T T
8 SSP4-3.4 SSP2-4.5 LM
@ 4F CMIPE (6 models) o CMIP6 (32 models) /J,\." -
| N~
2 F Lo
© 3:_ E|
E ]
€ ]
E 2; * \,\’\ l‘\rl‘/l\\"»l\’b‘\‘—_’;
o E
2 0 | IF;‘CC 2I013 lUkerIchgle ‘ (C)_; | I I v I | \TCC 2l013 Il_ikelleangle I (Id)_
1950 2000 2050 2100 1950 2000 2050 2100
Year Year

Figure 9. Historical simulations and future projections of GMST from the CMIP6 multi-model ensemble for several SSP scenarios. (a) GCM
simulations from the historical experiment and future model projections from SSP1-1.9. Observations (black) are from HadCRUTS to the
end of 2019. The IPCC 2013 likely range of warming (red) is from Fig. 11.25b in Chapter 11 of the IPCC 2013 report. The CMIP6 multi-
model mean (thick, blue) and minimum and maximum (dashed, blue) lines are shown. Global monthly AT was created by averaging the
TAS output over the globe with a cosine latitude weighting. The Paris Agreement target of 1.5 °C and upper limit (yellow) of 2.0 °C are
included to demonstrate how the GCM projections compare. (b) Future GMST projections from SSP1-2.6. (¢) Future GMST projections

from SSP4-3.4. (d) Future GMST projections from SSP2-4.5.
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with the HadCRUTS AT record. (a) Future GMST change for SSP1-1.9. The region outside the AER RF;(1 range provided by IPCC 2013
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for comparison. (b) GMST anomaly for SSP1-2.6. (¢) Future temperature change for SSP4-3.4. (d) GMST anomaly for SSP2-4.5.

al., 2013) is shown in Fig. 11 in black to highlight that the
EM-GC projections of the future rise in AT lie within the
IPCC 2013 likely range of warming. The Paris Agreement
target and upper limit are included to compare the EM-GC
projections of future AT to the Paris Agreement goals. The
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white shaded region is the EM-GC’s median estimate of fu-
ture AT for each SSP scenario. The median estimate for
ATy for simulations using SSP1-1.9 and SSP1-2.6 falls
below the Paris Agreement target at 1.1 and 1.4 °C, respec-
tively. The median estimate of AT>1po from the EM-GC for
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SSP4-3.4 is between the Paris Agreement target and upper
limit at 1.8 °C. For SSP2-4.5 the median estimate of AT>100
is 2.1°C, which is just above the Paris Agreement upper
limit. The CMIP6 minimum, multi-model mean, and maxi-
mum projections of AT based on the ensembles in Fig. 9 are
also shown in Fig. 11. The CMIP6 minimum projection of
the rise in AT falls near the EM-GC median estimate of AT
for each SSP scenario. The CMIP6 multi-model mean value
of the future change in AT falls below the EM-GC maximum
value of AT, while the CMIP6 maximum value is far above
the maximum projections of the future rise in AT using the
EM-GC. Results for SSP4-6.0, SSP3-7.0, and SSP5-8.5 are
provided in Fig. S19.

Figure 12 compares probability distribution functions
(PDFs) for the projection of AT>100 utilizing the EM-GC
with the HadCRUTS GMST record and the average of the
five OHC data sets and the CMIP6 multi-model ensemble.
For the CMIP6 multi-model results, we compute the proba-
bilities of achieving the Paris Agreement target of 1.5 °C and
upper limit of 2.0 °C (at the end of the century) by calculat-
ing how many of the GCMs participating in each scenario
have projections of AT199 below the target or upper limit.
The probabilities for the projections of AT51¢¢ using the EM-
GC are computed using the aerosol weighting method, as
described in Sect. 2.5. The height of each histogram repre-
sents the probability that a particular range of AT51q0, de-
fined by the width of each line segment, will occur. The left-
hand y axis displays the probability of AT>;oo using the EM-
GC, while the right-hand y axis represents the probability of
AT»100 using the CMIP6 multi-model simulations. The val-
ues on the CMIP6 multi-model ensemble y axis are double
the values on the EM-GC y axis for visual comparison. The
solid black line denotes the Paris Agreement target, and the
dotted black line signifies the upper limit in each panel. The
PDFs for SSP4-6.0, SSP3-7.0, and SSP5-8.5 are shown in
Fig. S20.

Numerical values of probabilities for staying at or below
the Paris Agreement target for SSP1-2.6 or upper limit for
SSP4-3.4 are given for the seven GMST records using the
EM-GC and CMIP6 multi-model ensemble in Table 1. Pro-
jections of AT»j00 based on the EM-GC provide more op-
timism for achieving the Paris Agreement goals than the
CMIP6 multi-model ensemble regardless of which GMST
data record is used. For simulations constrained using the
HadCRUTS5 record, the SSP1-2.6 scenario provides a 53 %
(Table 1) likelihood of AT»1gp staying at or below 1.5 °C, and
SSP4-3.4 results in a 64 % likelihood of limiting warming to
2.0°C by the end of the century. The probability of achiev-
ing the Paris Agreement target or upper limit increases upon
using HadCRUT4 rather than HadCRUTS in the EM-GC
framework. The probability of achieving the 1.5 °C target for
SSP1-2.6 and 2.0 °C upper limit for SSP4-3.4 using the Had-
CRUT4 GMST record is 64 % and 74 %, respectively (Table
1). This decline in attainment of the goals of the Paris Agree-
ment upon use of HadCRUTS reflects more rapid warming of
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this data record compared to HadCRUT4 (Fig. S4e versus c).
The rapid warming in HadCRUTS is driven by more accurate
buoy records for SST and a statistical gap-filling procedure
to attain global coverage (Morice et al., 2021). The impact
on the likelihood of achieving the Paris Agreement goals for
the other SSP scenarios upon using the HadCRUT4 or Had-
CRUTS data records is detailed in Table S6.

An analysis by Tokarska et al. (2020b) supports our find-
ing of a higher likelihood of attaining the goals of the Paris
Agreement than suggested by the CMIP6 multi-model en-
semble. Tokarska et al. (2020b) filter the CMIP6 multi-model
output on the level of agreement with observations to show
that the SSP1-2.6 scenario has a likely range of warming of
1.33-1.99 °C above pre-industrial by the end of the century.
Previous studies have suggested that a 2.6 Wm™2 scenario
is in line with the 2.0 °C goal (Kriegler et al., 2014, 2015;
O’Neill et al., 2016; Riahi et al., 2015). Our analysis suggests
that the 2.6 W m~2 scenario provides a 86 %—98 % probabil-
ity of limiting warming to 2.0°C and a 53 %-78 % proba-
bility of achieving the more stringent 1.5 °C target, depend-
ing on the GMST record (Table 1). If GHGs were to fol-
low SSP4-3.4, we find a 19 %-58 % probability of limiting
warming to 1.5°C and a 64 %—87 % probability of limiting
warming to 2.0 °C. Significant climate mitigation efforts will
be required to keep the growth of CO,, CHy, and N> O below
the trajectories shown for SSP1-2.6 and SSP4-3.4 (Fig. 2).

3.3.4 Carbon budgets

The transient climate response to cumulative emissions
(TCRE) relates the rise in AT to the cumulative amount of
carbon released into the atmosphere by human activities. We
illustrate TCRE from the EM-GC as probabilistic forecasts,
as shown in Fig. S21, to analyze future projections of AT.
We use the probabilistic forecasts in Fig. S21 to determine
the carbon budgets in Table 2. Table 2 contains estimated
carbon budgets in the form of the total CO, emissions (Gt C)
since 1870 that result in a 95 %, 66 %, and 50 % probability
of the future rise in AT staying below the Paris Agreement
target of 1.5°C and upper limit of 2.0 °C as well as the fu-
ture CO; emissions since 2019. The largest variation in our
carbon budget estimates is driven by the uncertainty in AER
RF, which is incorporated into the probability of achieving
the Paris Agreement target and upper limit (see Fig. S21 and
the Supplement). We include a 10 % uncertainty, determined
from examination of CMIP5 coupled atmospheric—carbon
cycle models from Friedlingstein et al. (2014) and Murphy et
al. (2014) (see the Supplement for more information), within
each probability of attaining the Paris goals to represent how
atmospheric CO; will respond to the prescribed carbon emis-
sions.

To obtain a 66 % likelihood of limiting the rise in fu-
ture AT below 1.5°C, only 790 & 79 GtC can be released.
For a 66 % likelihood of the rise in AT staying below the
2.0°C upper limit, 1040 £ 104 Gt C can be emitted. To place

https://doi.org/10.5194/esd-12-545-2021



L. A. McBride et al.: Comparison of CMIP6 warming to an empirical model of global climate 565

o
s
2 SSP1-1.9 SSP1-2.6 =
S CMIP6 Mean — CMIP6 Mean — =
2 CMIP6 Min, Max CMIP6 Min, Max 3
- 2
E o
c |
£ B
—
< .

5 .
S SSP4-3.4 SSP2-4.5 =
o 4 CMIP6 Mean — CMIP6 Mean — 0.2 3
é 3 [E— CMIP6 Min, Max CMIP6 Min, Max '0.4 “;
0
=9 o a
c -0.6 8
o 1 - B |
= 7 L A® == =
~ AR AP T ~ AP UV )ty -~ 0.8 2
© o I IPCC 2013 Likely Range iy IPCC 2013 Likely Range
< N I ST R B R 1.0
5 1950 2000 2050 2100 1950 2000 2050 2100

Year Year

Figure 11. Probabilistic forecasts of the future rise in AT from the EM-GC trained using the HadCRUTS AT record for several SSPs.
(a) Future projections of AT for SSP1-1.9. Observations (orange) are from HadCRUTS. The IPCC 2013 likely range of warming (black) is
from Fig. 11.25b of Chapter 11 of IPCC 2013. The Paris Agreement target and upper limit (yellow) are shown for comparison to EM-GC
projections. The CMIP6 minimum, multi-model mean, and maximum values of AT are shown to compare to EM-GC projections. Colors
denote the probability of reaching at least that temperature by the end of the century. (b) Future projections of AT for SSP1-2.6. (¢) Future
projections of AT for SSP4-3.4. (d) Future projections of AT for SSP2-4.5.

0.20[ T T T T LI L I L B I LB B T T T LI L I B B [+ 3
L Paris Target i Paris Upper Limit SSP1-1.9 _| L Paris Target i Paris Upper Limit SSP1-2.6 _|
> 0.15— — — —0.3 -
= [ EM-GC 1C i £
5 - ] [ ewm-cc ] 3
g r mlin 1 3
[ r ar N o
T 0.0 — = —o0.2 &
8 1E | 1 o
C CMIP6 d1E j ] =
3 - 1C - [] cmes . z
0.05— — : —0.1
() | 1 [(b) Hj ; | .
0.00 11 1 | 1 I BRI R T e | 1 |_| 11 11 11 10.0
0.20 T T T T LI L I I LB LA L I L L L B 0.4
|- Paris Target : Paris Upper Limit SSP4-3.4 _| | Paris Target : Paris Upper Limit SSP2-4.5 _|
> 015— — — —0.3 -
£ i ] £
2 F 1F 1 3
e 1F 4., %
& o40— EM-GC — —o.2 &
8 T 1F 1 o
= - J I EM-GC CMIP6 - s
w — — - (]
0.05— — — —0.1
(<) 1 [Kd) |'| ‘_I“ H I _
0.00 1 14| 1 L1 L1 IR RS N 1 1 1 10.0
0 1 2 3 4 50 1 2 3 4 5
o o
2100 (°€) 2100 (°C)

Figure 12. Probability density functions (PDFs) for AT,1¢g found using the EM-GC trained with the HadCRUTS5 temperature record (dark
blue) and CMIP6 multi-model results (red). (a) PDF for EM-GC results and CMIP6 multi-model results for SSP1-1.9. The left-hand y axis
is for EM-GC probabilities, and the right-hand y axis is for the CMIP6 multi-model ensemble probabilities. (b) PDF for SSP1-2.6. (¢) PDF
for SSP4-3.4. (d) PDF for SSP2-4.5.

https://doi.org/10.5194/esd-12-545-2021 Earth Syst. Dynam., 12, 545-579, 2021




566 L. A. McBride et al.: Comparison of CMIP6 warming to an empirical model of global climate

Table 1. Probability of achieving the Paris Agreement target (SSP1-
2.6) or upper limit (SSP4-3.4) for seven GMST records using
the EM-GC and the CMIP6 multi-model ensemble. The probabil-
ities using the EM-GC are computed using the aerosol weighting
method. The probabilities using the CMIP6 models are computed
by calculating how many of the models for that scenario are below
the temperature limits compared to the total number of models.

Probability of staying at | Probability of staying at
or below 1.5°C or below 2.0°C

SSP1-2.6 ~ SSP4-34 | SSP1-2.6  SSP4-34
CMIP6 18 % 0% 47 % 17 %
HadCRUT5 53% 19 % 86 % 64 %
GISTEMP 55% 20 % 88 % 69 %
CW14 60 % 29 % 89 % 71 %
NOAAGT 61 % 27 % 90 % 74 %
BEG 62 % 26 % 98 % 76 %
HadCRUT4 64 % 35% 90 % 74 %
IMA 78 % 58 % 95 % 87 %

these numbers in their proper perspective, about 640 GtC
was released from 1870 through the end of 2019 due to land-
use change, fossil fuel emissions, gas flaring, and cement
production according to the Global Carbon Budget project
(Friedlingstein et al., 2019). In our model framework, after
2019 society can therefore only emit 150+ 79 Gt C to have a
66 % chance of limiting warming to 1.5 °C. This future emis-
sions estimate rises to 400 + 104 Gt C to have a 66 % chance
of limiting warming to 2.0 °C.

An analysis by van Vuuren et al. (2020) assesses re-
maining carbon budgets based on cumulative emissions af-
ter 2010. Their analysis indicates that only 228 Gt C can be
released after 2010 to have a 66 % probability of achieving
the Paris Agreement target of limiting the rise in AT be-
low 1.5°C in 2100. They base this estimate on an analy-
sis of climate sensitivity and carbon cycle components, in-
cluding an adjustment to TCRE for the tendency of CMIP5
GCMs to warm too quickly that was suggested by Millar et
al. (2017). We find a 66 % probability of limiting warming to
1.5°C upon the release of 250 =79 Gt C between 2010 and
2100. Our results are similar to the findings in van Vuuren et
al. (2020). Between 2010 and 2019, about 100 Gt C was re-
leased to the atmosphere (Friedlingstein et al., 2019), so the
remaining budget after 2019 for limiting warming to 1.5 °C is
about 128 Gt C according to van Vuuren et al. (2020). The re-
maining budget from our analysis is 150£79 Gt C. Our anal-
ysis and that by van Vuuren et al. (2020) suggest that at the
pace of emissions in 2019 of 11.7 Gt Cyr~! (Friedlingstein
et al., 2019), society will cross this threshold in the next 10
years.

Earth Syst. Dynam., 12, 545-579, 2021

Table 2. Total cumulative and future carbon emissions that will
lead to crossing the Paris temperature thresholds based on the
EM-GC trained using the HadCRUTS5 AT record. Estimates of
ECOEMISSIONS that would cause global warming to stay below
indicated thresholds for 95 %, 66 %, and 50 % probabilities are
rounded to the nearest 10 Gt C. The values in the top half of the
table are the estimates of total cumulative carbon emissions that
will lead to crossing the Paris Agreement thresholds with the 10 %
uncertainty for how atmospheric CO; responds to prescribed car-
bon emissions (see text) included. The values in the bottom half of
the table are the estimates of future cumulative carbon emissions
after 2019 that will lead to crossing the Paris Agreement thresholds
with the same 10 % uncertainty. The range of years given repre-
sents when the Paris Agreement thresholds will be passed based on
the rate of emissions from SSP5-8.5 or continuing the 2019 rate of
emissions of 11.7 GtC yr_1 (Friedlingstein et al., 2019).

Total ZCOSMISSIONS gince 1870 from the EM-GC

95 % 66 % 50 %
1.5°C  730+73GtC 790 +79GtC 830+ 83GtC
2.0°C 920+92GtC 1040£104GtC  1110£111GtC
Future ECO]2EMISSIONS (assuming 640 GtC
released between 1870-2019)
95 % 66 % 50 %
90+73GtC 150+79GtC 190 +83GtC
1.5°C  (20212-2031%)  (2025-2035) (2027-2038)
(2021°-2033b)  (2026-2039) (2029-2043)
280+92GtC 400+ 104 GtC 470+ 111 GtC
2.0°C  (20332-2043%)  (2039-2049) (2047-2052)

(2036°-2051P)  (2045-2063) (2050-2069)

2 The year the 1.5 °C target or 2.0 °C upper limit will be exceeded assuming the rate of
emission inferred from SSP5-8.5 and the 1o uncertainty. Applies to the 66 % and 50 %
probabilities.

b The year the 1.5 °C target or 2.0 °C upper limit will be exceeded assuming the 2019
rate of emission of 11.7 Gt C yr_' ; the 1o uncertainty applies to the 66 % and 50 %
probabilities.

3.3.5 Blended methane

Atmospheric abundances of methane will likely continue to
increase as society expands natural gas production and agri-
culture, making it important to analyze the impact of various
methane scenarios on the rise in GMST. It is unlikely that
future atmospheric methane abundances will progress as in-
dicated by SSP1-2.6 (see Fig. 2), a low radiative forcing sce-
nario. Current observations shown in Fig. 2 illustrate that the
methane mixing ratio is following SSP2-4.5 and has missed
the initial decline needed to follow the SSP1-2.6 pathway. To
analyze the effect varying future methane abundance path-
ways will have on GMST, we have generated linear interpo-
lations of the SSP1-2.6 and SSP3-7.0 methane abundances
and created four alternate scenarios (see Fig. S22), which we
call blended methane scenarios. We can substitute one of the
blended methane scenarios into the EM-GC instead of using
the projection of methane specified by the SSP database to
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Figure 13. Probability of staying at or below the Paris Agreement
target and upper limit for SSP1-2.6 and SSP4-3.4 as a function of
varying methane scenarios using the EM-GC trained with the Had-
CRUTS AT record. The atmospheric methane scenarios are calcu-
lated using linear combinations of methane abundances from SSP1-
2.6 and SSP3-7.0 to span the range of future methane abundances.

quantify the sensitivity of future warming to various evolu-
tions of methane in terms of the rise in GMST.

Figure 13 shows the probability of staying at or below
the Paris Agreement target (gold) or upper limit (purple)
for SSP1-2.6 (solid) and SSP4-3.4 (dotted) as a function of
the methane mixing ratio in 2100. The lowest atmospheric
methane mixing ratio value in 2100 of 1.15 ppm is from the
SSP1-2.6 methane pathway, and the highest mixing ratio in
2100 of 3.20 ppm is from the SSP3-7.0 methane pathway.
The four in between are the blended methane scenarios. As
the atmospheric methane abundance increases, the likelihood
of achieving the goals in the Paris Agreement decreases. For
SSP1-2.6, the probability of limiting the rise in GMST be-
low the 1.5 °C target begins at 53 % for HadCRUTS using the
SSP1-2.6 designated methane pathway and decreases as the
blended scenarios are considered. The probability of achiev-
ing the Paris Agreement target declines to 30 % if methane
reaches 2.4 ppm in 2100 and to 16 % if methane increases
to 3.2 ppm in 2100. Even though SSP1-2.6 can have a 53 %
probability of limiting warming to 1.5 °C, achieving this goal
can likely only be attained through strict limits on emissions
of both carbon dioxide and methane.

In Sect. 3.3.3, we showed that if all GHGs follow the
SSP4-3.4 scenario there would be a 64 % probability of lim-
iting warming to 2.0 °C. If the methane pathway instead fol-
lows SSP1-2.6, which has an end-of-century mixing ratio of
only 1.15ppm, then the probability of achieving the Paris
Agreement goal rises to 77 %. If the methane pathway fol-
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lows SSP3-7.0 and the end-of-century mixing ratio increases
to 3.2 ppm, then the probability of achieving the Paris Agree-
ment goal declines to 50 %.

Reducing the future anthropogenic emissions of methane
might be more challenging than controlling future emissions
of carbon dioxide because methane has such a wide vari-
ety of sources related to energy, agriculture, and ruminants
(Kirschke et al., 2013). Given the current widespread use of
methane as a source of energy in the United States and parts
of Europe (Saunois et al., 2020), combined with the contin-
ued growth in the global number of ruminants (Wolf et al.,
2017), it seems unrealistic for atmospheric methane to fol-
low the peak and sharp decline starting in 2025 of the SSP1-
2.6 pathway (Fig. 3b). Our analysis suggests that failure to
limit methane to the SSP1-2.6 trajectory will have a larger
impact on the achievement of the 1.5 °C Paris goal compared
to the 2.0 °C upper limit. Figure 13 is designed to provide
some perspective on the importance of limiting the growth
of methane in the atmosphere.

3.3.6 Climate feedback

In our analysis above, we have assumed that the value of Ay,
(and thus A; see Eq. 3 and corresponding text in Sect. 2.1)
is constant over time. Time-constant Ay, is the simplest as-
sumption one can make. The climate record can be fit very
well based on this conjecture, as shown in Fig. 1a. However,
many GCMs suggest that climate feedback may vary over
time (Dong et al., 2020; Marvel et al., 2018; Rugenstein et
al., 2020). An analysis by Goodwin (2018) finds there is a de-
lay in the response of climate feedback to a change in radia-
tive forcing on the order of a few days to several decades. In
our EM-GC framework, we are able to conduct calculations
allowing the value of Ay to vary over time, with a delay be-
tween the change in radiative forcing and the response of Ay,
and to project future temperature with such an assumption.
Up until this point, our simulations have used time-invariant
Ay to be consistent with how our model results were pre-
sented in prior publications (Canty et al., 2013; Hope et
al., 2017) and several other empirically based approaches
(Chylek et al., 2014; Lean and Rind, 2008, 2009; Zhou and
Tung, 2013). Recall from Sect. 2.1 that Ay, = Ap — A. To as-
sess the effect of time-varying climate feedback on our pro-
jections of global warming, we examine the sensitivity in
terms of 1! because this quantity scales proportionally with
AT, and our use of the inverse A allows for direct compari-
son to the results of Dong et al. (2020), Marvel et al. (2018),
and Rugenstein et al. (2020).

Figure 14 shows the change in observed and modeled
GMST for an EM-GC simulation training with the Had-
CRUTS GMST record and using an AER RF time series
with a value of AER RFp;; =—0.9 W m~2 under four as-
sumptions for A1, all for SSP2-4.5 (solid lines). First, the
value of A~! is constant over time (Fig. 14a, e). Second, the
value of A~! rises by 50 % between 1850-2100 (Fig. 14b,
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Figure 14. Change in GMST from 1850-2019 for observations from HadCRUTS (black) and 1850-2100 modeled (red) using SSP2-4.5 and

a value of AER RFp11 = —-0.9Wm™

2 as well as the residual between the model and observations incorporating a 32.5-year delay between

A~ landa change in RF. The solid line denotes a simulation for the original SSP2-4.5 scenario, and the dashed line indicates the SSP2-4.5’
simulation (see text). (a) Rise in GMST assuming a constant value of 2L (b) Rise in GMST allowing 2! to increase by 50 %. (¢) Rise in
GMST allowing 2o vary, while the value of XI%ECENT is kept below 2. (d) Rise in GMST allowing 2o vary, while the value of X/ZXTM
is kept below 2. (e) Residual between the modeled and observed rise in GMST from 1850-2019 for constant AL (f) Same as (e) but for
increasing A by 50 %. (g) Same as (f) but for varying A~1, while the value of XI%ECENT is kept below 2. (h) Same as (g) but for varying

2~1, while the value of XiTM is kept below 2.

f: further discussion of Fig. 14b and f will occur at the end
of this section). The third assumption allows A~! to vary
over time, while XRECENT is always less than or equal to 2
(Fig. 14c, g). Fourth, »~! varies over time, while x2 v 1S al-
ways less than or equal to 2 (Fig. 14d, h). We also assume
that the new time series for A~! maintains an average value
over the observational record identical to the constant value
of 0.64°C W~ m2. We use a lag of 32.5 years to represent
the mean value of the slowest response of the climate system
to an RF perturbation reported by Goodwin (2018), which is
associated with clouds and spatial adjustments of SST (32.5
years is the average of 20 and 45 years, the minimum and
maximum values of the slowest response given in his Table
1). Figure S23 is identical to Fig. 14, except for the use of
no delay between the RF perturbations and the response of
climate feedback. The use of response delays shorter than
32.5 years will result in projections between those shown in
Figs. S23 and 14.

In Figs. 14 and S23 we also analyze an RF scenario termed
SSP2-4.5" that serves as a doubled CO; scenario (dotted

Earth Syst. Dynam., 12, 545-579, 2021

lines). For SSP2-4.5’, the RFs due to all GHGs other than
CO; and tropospheric aerosols from the start of 2020 on-
wards are held constant at end-of-2019 values. The only
component of RF allowed to vary after the start of 2020 is
CO;. The RF of climate due to all GHGs and tropospheric
aerosols for SSP2-4.5’ is identical to that in SSP2-4.5 from
the start of the simulation until the end of 2019. Since the
mixing ratio of CO; at the end of century is 566 ppm, the
warming found at the end of the century for SSP2-4.5 serves
as the transient response of AT to rising CO in our model
framework. The fact that projections of AT found allow-
ing only for future increases in CO, (dotted lines) agree so
closely with those found assuming changes in RF due to all
GHGs and tropospheric aerosols (solid lines) means that un-
der the AER RFyg;; = —0.9 W m~—2 scaling assumption, the
future change in RF due to all agents other than CO, nearly
cancels. Projections found using the original SSP2-4.5 sce-
nario may serve as a useful surrogate for a double CO, sim-
ulation. Figures S24 and S25 are the same as Fig. 14, except
for the use of AER RF,¢;; values of —0.4 and —1.5 W m™2,
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respectively. There are slight departures between the SSP2-
4.5 and SSP2-4.5’ projections of AT for these alternate
aerosol scaling assumptions. Nonetheless, these projections
are quite similar because the future decline in RF due to the
assumption of declining CHy within SSP2-4.5 nearly bal-
ances the future increase in RF due to N>O and all of the
minor GHGs.

We fit the climate record over the past 170 years ( X%\TM)
and past 80 years ( XI%ECENT) extremely well for constant A~
(Fig. 14a, e). If we allow the value of 271 to scale with
anthropogenic forcing by as much as possible such that the
maximum value of x}%ECENT is always less than or equal to 2,
we obtain the result shown in Fig. 14c and f. This simulation
results in an increase in A~! by nearly a factor of 2 in 2100
and a value of AT»19p of 3.4°C, about 1.0°C higher than
when a constant value of A1 is used. If we allow the value of
A~! to scale with anthropogenic forcing as much as possible
such that the maximum value of xiTM is less than or equal
to 2, we arrive at the result shown in Fig. 14d and h. This sim-
ulation yields a rise in ™! over 2.5 centuries by a factor of
2.9 and a value of AT>1go of 4.2 °C that is nearly double the
estimate of AT» oo for the time-invariant A ~! (Fig. 14a). The
modeled change in AT starts to deviate from observations
around the year 1960 and persistently disagrees with the data
out to present time (Fig. 14h). This simulation results in a
XI%ECENT value of 3.89, which indicates poor agreement with
observations.

Several other studies have investigated the amount of
change in A~!. Marvel et al. (2018) suggest that the increase
in the median value of ECS from the CMIP5 GCMs be-
tween the historical and abrupt 4 x CO; simulations may be
driven by an increase in A~ of 28 % to 72 %. Rugenstein
et al. (2020) estimate a median increase of 17 % for val-
ues of ECS from CMIP5 GCMs when examining millennial-
length simulations compared to the 150-year Gregory et
al. (2004) method, which is consistent with about an 11 %
rise in A~! (Fig. 2b of Rugenstein et al., 2020). An analysis
by Dong et al. (2020) estimates a median increase in A of
+0.4Wm2K~!, which corresponds to a 50 % increase in
A~ (Fig. 1c, d of Dong et al., 2020). Consequently, a dou-
bling (Fig. 14c) or almost tripling of A~ (Fig. 14d) over 2.5
centuries is larger than the increase indicated by Marvel et
al. (2018) and Dong et al. (2020) as well as the millennia-
order timescale in Sect. 12.5.3 of IPCC 2013 and Rugenstein
et al. (2020). An increase in A~! of 50 % or lower (Fig. 14b)
is in line with the estimate of the change in ECS due to
time-variant A~! indicated by Dong et al. (2020), Marvel et
al. (2018), and Rugenstein et al. (2020).

Allowing A~ to increase over time introduces important
additional uncertainty to our estimate of ECS. We denote val-
ues of ECS found using time-variant 2~ as ECS; . Our
best estimate of ECS,,;) is 3.08 °C (range of 2.23 to 5.53 °C),
which is derived from model results shown in Fig. 14b
(AER RF2011 = —O.9Wm_2), Fig. S24b (AER RF2011 =
—0.4Wm~2), and Fig. S25¢ (AER RFyp; = —1.5Wm™?).
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For this new estimate of ECS; ), we allow A~! to increase
by 50 % or rise as much as possible and still achieve a value
of XI%ECENT less than or equal to 2. Simulations with strong
aerosol cooling (AER RF01; =—1.5 Wm~2) cannot have
1~ ! rise by 50 % and maintain a good fit to the climate record
over the past 80 years (Fig. S25b, f). Our best estimate of
ECSy() of 3.08 °C (range of 2.23 to 5.53 °C) for a 32.5-year
delay is similar to the value of ECS reported by Goodwin
(2018) for a 100-year response time (2.9 °C; range of 2.3 to
3.6°C).

The assumption of constant feedback within the EM-GC
framework used in the rest of the paper is reasonable be-
cause there is no strong evidence from the climate record for
a noticeable increase in A~! on the multidecadal timescale
associated with the simulations in Fig. 14. Assuming climate
feedback is constant over time results in the best fits to the
climate record for both of our x 2 constraints. If the true value
of A~ actually rises over time as suggested by the CMIP6
(Dong et al., 2020) and CMIP5 GCMs (Marvel et al., 2018;
Rugenstein et al., 2020), our projections of global warming
would be a few tenths of a degree warmer than our current
best estimates assuming constant A~ !, as shown in Fig. 14b.
If A~! is allowed to increase by 50 %, our best estimate of
ECS would rise from 2.33 to 3.08 °C, which is a 32 % in-
crease. Time-variant A~! introduces additional uncertainty
into our estimates of ECS; however, the largest uncertainty
is still due to imprecise knowledge of the RF due to tropo-
spheric aerosols.

4 Conclusions

In this paper we use a multiple linear regression energy bal-
ance model (EM-GC) to analyze and project changes in the
future rise in global mean surface temperature (GMST), cal-
culate the attributable anthropogenic warming rate (AAWR,
the component of the rise in GMST caused by human ac-
tivities) over the past 4 decades, and compute the effective
climate sensitivity (ECS, the rise in GMST that would oc-
cur with atmospheric CO, at the 2x pre-industrial level as-
suming constant climate feedback). Projections of the rise in
GMST (AT) are conducted for seven of the Shared Socioe-
conomic Pathway (SSP) projections of GHGs (O’ Neill et al.,
2017). We compare computations of AAWR, ECS, and pro-
jections of AT to values for each quantity computed from
archived output provided by GCMs as part of CMIP6 (Eyring
et al., 2016). A critical component of our study is a compre-
hensive analysis of uncertainties in AAWR, ECS, and projec-
tions of AT in our EM-GC framework due to the rather large
uncertainty in radiative forcing of climate from tropospheric
aerosols (AER RF).

The median value of AAWR from 1975-2014 computed
using our EM-GC constrained by the century-and-a-half-
long record for GMST provided by HadCRUTS is 0.157 °C
per decade, and the 5th and 95th percentiles are 0.120
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and 0.195 °C per decade, respectively. The median value of
AAWR from the CMIP6 multi-model ensemble is 0.221 °C
per decade, and the 5th and 95th percentiles are 0.151 and
0.299 °C per decade, respectively. We show that the com-
ponent of GMST attributed to human activity within the
CMIP6 multi-model ensemble warms considerably faster
than observations over the past 4 decades, a result that is
consistent with recent analyses of output from the CMIP6
multi-model ensemble (CONSTRAIN, 2020; Tokarska et al.,
2020b) and output from CMIP5 GCMs assessed in ARS (i.e.,
Fig. 11.25b of Kirtman et al., 2013). This finding differs from
the conclusion of Hausfather et al. (2020), who showed fairly
good agreement between projections of global warming from
GCMs and observed AT. As detailed in Sect. 3.1, this paper
examined GCMs that preceded CMIPS5 and examined AT for
a time period that ends in 2017, a time when global temper-
ature was influenced by a strong ENSO event that ended in
2016. The majority of the uncertainty in our EM-GC based
estimate of AAWR is due to imprecise knowledge of the true
value of AER RF.

In our model framework, the best estimate of ECS is
2.33°C, and the 5th and 95th percentiles are 1.40 and
3.57°C, respectively. The median value of ECS from the
CMIP6 multi-model ensemble is 3.74 °C, which is around
1.6 times the best-estimate value of ECS inferred from the
observed climate record. The 5th and 95th percentiles of ECS
from the CMIP6 multi-model ensemble are 2.19 and 5.65 °C,
respectively. We obtain a wide range of ECS values using
the EM-GC because of the uncertainty in AER RF. With an
AER RF;911 equal to —1.6 W m~2, the EM-GC calculates a
value of ECS similar to the maximum value of ECS from
the CMIP6 multi-model mean. We cannot rule out the very
high value of ECS, but we assign a low probability based on
the IPCC 2013 low likelihood for the needed value of AER
RF7011. Our empirically based determination of ECS is in
good overall agreement with the recent empirical determina-
tions of Lewis and Griinwald (2018) (1.87 °C, range of 1.1-
4.05°C) and Skeie et al. (2018) (2.0 °C, range of 1.2-3.1°C)
and the slightly older empirically determination reported by
Otto et al. (2013) (2.0 °C, range of 1.2-3.9 °C) (all range val-
ues are for the 5th and 95th percentile confidence interval).
A recent review of climate feedback and climate sensitivity
published by Sherwood et al. (2020) reported that ECS lies
within the range of 2.3 to 4.7 °C at the 5th to 95th percentile
confidence intervals; their lower bound for ECS is quite a bit
higher than the lower bound found in our analysis and those
by Cox et al. (2018), Dessler et al. (2018), Lewis and Griin-
wald (2018), Nijsse et al. (2020), Otto et al. (2013), Skeie et
al. (2018), and Tokarska et al. (2020a, b). Our best estimate
of ECS increases to 3.08 °C (range of 2.23 to 5.53°C) if we
allow climate feedback to rise over time, with the largest un-
certainty in ECS still driven by imprecise knowledge of the
RF due to tropospheric aerosols.

We also examined the probability of limiting the future rise
in GMST below the Paris Agreement target of 1.5 °C and up-

Earth Syst. Dynam., 12, 545-579, 2021

per limit of 2.0 °C. Our probabilistic forecasts of projections
of AT include a comprehensive treatment of the uncertainty
in AER REF, a capability outside the scope of the GCM inter-
comparisons conducted for CMIP6. Our analysis indicates
that if GHGs were to follow the SSP1-2.6 pathway, there
would be a 53 % likelihood that the rise in AT would remain
below the Paris Agreement target of 1.5 °C (relative to pre-
industrial) by the end of the century based on HadCRUTS.
We find that the SSP4-3.4 scenario provides a 64 % likeli-
hood of limiting global warming to below the Paris Agree-
ment upper limit of 2.0 °C by the end of the century. These
probabilities declined upon our use of HadCRUTS5 compared
to the GMST record of HadCRUTH4 to 64 % and 74 % for the
SSP1-2.6 and SSP4-3.4 scenarios, respectively. In contrast,
the CMIP6 multi-model mean only suggests a 18 % probabil-
ity of achieving the Paris Agreement target for SSP1-2.6 and
a 17 % probability of attaining the Paris Agreement goal for
SSP4-3.4. The lower probabilities suggested by the CMIP6
multi-model ensemble is not surprising given the tendency
of most CMIP6 GCMs to warm faster than observations over
the past 4 decades. Our projections of AT using a physi-
cally based model tied to observations of ocean heat content,
quantification of natural and anthropogenic drivers of vari-
ations in GMST, and consideration of uncertainty in AER
RF are shown to be remarkably similar to the expert assess-
ment of the future rise in GMST that was sketched out in
Fig. 11.25b of ARS (Kirtman et al., 2013) and the empiri-
cally based filtering of CMIP6 model output recently pub-
lished by Tokarska et al. (2020b). Finally and most impor-
tantly, our estimates are based on the assumption that cli-
mate feedback has been and will continue to remain constant
over time, since the prior temperature record can be fit so
well under this assumption. As described in Sect. 3.3.6, if
climate feedback rises over time, larger warming will be re-
alized than that found under this assumption of temporally
invariant feedback.

We also quantify the sensitivity of the probability of
achieving the Paris Agreement target (1.5°C) or upper
limit (2.0 °C) to future atmospheric abundances of methane.
The end-of-century mixing ratio of methane in the SSP1-
2.6 scenario is 1.15ppm, considerably less than the con-
temporary abundance of 1.88 ppm. The likelihood of at-
taining the 1.5°C target for SSP1-2.6 decreases as future
methane emissions increase; it declines to 30 % if methane
reaches 2.4 ppm in 2100 and to 16 % if methane increases
to 3.2 ppm at the end of the century. Our analysis described
in Sect. 3.3.5 demonstrates that major near-term limits on
the future growth of methane are especially important for
achievement of the 1.5 °C limit to future warming that con-
stitutes the goal of the Paris Agreement.

Finally, we have also quantified in the EM-GC framework
the remaining budgets of carbon (i.e., CO2) emissions that
can occur while attaining either the goal or upper limit of the
Paris Agreement. We find that after 2019, society can only
emit another 150£79 Gt C to have a 66 % likelihood of limit-
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ing warming to 1.5 °C. This future emissions estimate rises to
400 £ 104 Gt C to have a 66 % probability of limiting warm-
ing to 2.0 °C. Given that the anthropogenic emissions of car-
bon due to combustion of fossil fuels, cement production, gas
flaring, and land-use change were about 11.7 Gt C per year in
2019 (Friedlingstein et al., 2019), our study indicates that the
target (1.5 °C warming) of the Paris Agreement will not be
achieved unless carbon emissions are severely curtailed in
the next 10 years.

We conclude by noting that the CMIP6 multi-model en-
semble provides many useful parameters, such as sea level
rise, sea ice decline, and precipitation changes, that pro-
vide a great societal understanding of the impact of climate
change. We do not mean to undermine the importance of the
CMIP6 GCMs with this analysis. Rather, we hope that stud-
ies such as this, along with other recent evaluations of CMIP6
multi-model output like Nijsse et al. (2020) and Tokarska et
al. (2020b), will lead to improved use of the CMIP6 multi-
model ensemble for policy decisions. Our EM-GC was built
to specifically simulate and project changes in GMST; we
do not examine numerous other components of the climate
system that affect society. We emphasize that our projections
show that unless society can implement steep reductions in
the emissions of carbon and methane in the next 10 years, the
1.5 °C global warming goal of the Paris Agreement will not
be achieved.
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Appendix A: Acronyms

AAWR
AR4

AER

AER RFy11
AMOC
AMV
BEG
CALIPSO
CMIP5
CMIP6
COBE
CWl14
ECS
ECSy)
EM-GC
ENSO
GCM
GHG
GISTEMP
v4 GloSSAC
GMST
HadCRUT
IPCC
ISCCP
10D

LIN

LUC

MEI
NOAAGT
ODS

OHC

OHE
PATMOS-X
PDO

RCP

REG

RF

SAOD
SORCE
SSP

SST

TAR

TAS
TCRE
TOS

TSI
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Attributable anthropogenic warming rate

Fourth Assessment Report

Anthropogenic aerosol

Radiative forcing due to anthropogenic aerosols in 2011
Atlantic Meridional Overturning Circulation

Atlantic multidecadal variability

Berkeley Earth Group

Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations
Coupled Model Intercomparison Project Phase 5
Coupled Model Intercomparison Project Phase 6
Centennial in situ Observation-Based Estimate

Cowtan and Way (2014) temperature record

Effective climate sensitivity

Effective climate sensitivity, time-dependent feedback
Empirical Model of Global Climate

El Niflo—Southern Oscillation

General circulation model

Greenhouse gas

Goddard Institute for Space Studies Surface Temperature Analysis
Global Space-based Stratospheric Aerosol Climatology
Global mean surface temperature

Hadley Centre Climatic Research Unit
Intergovernmental Panel on Climate Change
International Satellite Cloud Climatology Project
Indian Ocean Dipole

Linear method

Land-use change

Multivariate ENSO index

National Center for Environmental Information NOAAGlobalTemp v5
Ozone-depleting substance

Ocean heat content

Ocean heat export

Pathfinder Atmospheres Extended

Pacific Decadal Oscillation

Representative Concentration Pathway

Regression method

Radiative forcing

Stratospheric aerosol optical depth

Solar Radiation and Climate Experiment

Shared Socioeconomic Pathway

Sea surface temperature

Third Assessment Report

Near-surface air temperature

Transient climate response to cumulative emissions
Temperature at the interface of the atmosphere and the upper boundary of the ocean
Total solar irradiance
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Data availability. All data used as inputs into the EM-GC
are available from resources on the web. We have provided
the links to the resources below. The data are also avail-
able along with the EM-GC output used in this analysis at
https://doi.org/10.5281/zenodo.4300780 (McBride et al., 2021) on
Zenodo.org.

— IOD: the COBE SST data are provided by the NOAA
ESRL physical sciences division from their web-
site at  https://psl.noaa.gov/data/gridded/data.cobe.html
(NOAA/OAR/ESRL PSL, 2020)

— Tropospheric ozone RF: http://www.pik-potsdam.de/~mmalte/
rcps/ (Meinshausen et al., 2017a)

- MELv2 and MEILext: https://psl.noaa.gov/enso/
mei/data/meiv2.data  (NOAA/PSL, 2020) and https:
/Ipsl.noaa.gov/enso/mei.ext/ (Wolter and Timlin, 2020)

— PDO: http://research.jisao.washington.edu/pdo/PDO.latest.txt
(Mantua, 2020)

— SAOD: https://asdc.larc.nasa.gov/project/GloSSAC (Thoma-
son, 2020)

— TSI: http://lasp.colorado.edu/home/sorce/data/tsi-data/ (Labo-
ratory for Atmospheric and Space Physics, 2020)

— OHC records:

— Balmaseda: https://www.cgd.ucar.edu/cas/catalog/ocean/
oras4.html (Fasullo and Balmaseda, 2020)

— Carton: https://www2.atmos.umd.edu/~ocean/soda3_
readme.htm (Carton, 2019)

— Cheng: http://159.226.119.60/cheng/ (Cheng, 2020a)

— Ishii: http://159.226.119.60/cheng/images_files/New_
observational_OHC_0_2000m_record.txt (Cheng, 2020b)

— Levitus: https://www.ncei.noaa.gov/access/
global-ocean-heat-content/ (NOAA/NCEIL, 2020)

— SSP database: all information for the SSPs obtained from the
SSP database is at https://tntcat.iiasa.ac.at/SspDb/dsd?Action=
htmlpage&page=about (IIASA, 2020)

— CMIP6 input data: https://docs.google.com/document/d/
1pU9lLiJvPJwRvIgVaSDdJ400Jeorv_2ekEtted34K9cA/edit#
heading=h.jdoykiw7tpen (Durack and Taylor, 2020)

— CMIP6 model output archive: https://esgf-node.llnl.gov/
search/cmip6/ (World Climate Research Programme, 2020)

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/esd-12-545-2021-supplement.
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