Articles | Volume 12, issue 1
Earth Syst. Dynam., 12, 211–231, 2021
https://doi.org/10.5194/esd-12-211-2021
Earth Syst. Dynam., 12, 211–231, 2021
https://doi.org/10.5194/esd-12-211-2021

Research article 23 Feb 2021

Research article | 23 Feb 2021

How modelling paradigms affect simulated future land use change

Calum Brown et al.

Related authors

Societal breakdown as an emergent property of large-scale behavioural models of land use change
Calum Brown, Bumsuk Seo, and Mark Rounsevell
Earth Syst. Dynam., 10, 809–845, https://doi.org/10.5194/esd-10-809-2019,https://doi.org/10.5194/esd-10-809-2019, 2019
Short summary

Related subject area

Dynamics of the Earth system: models
Identifying meteorological drivers of extreme impacts: an application to simulated crop yields
Johannes Vogel, Pauline Rivoire, Cristina Deidda, Leila Rahimi, Christoph A. Sauter, Elisabeth Tschumi, Karin van der Wiel, Tianyi Zhang, and Jakob Zscheischler
Earth Syst. Dynam., 12, 151–172, https://doi.org/10.5194/esd-12-151-2021,https://doi.org/10.5194/esd-12-151-2021, 2021
Short summary
Simulating compound weather extremes responsible for critical crop failure with stochastic weather generators
Peter Pfleiderer, Aglaé Jézéquel, Juliette Legrand, Natacha Legrix, Iason Markantonis, Edoardo Vignotto, and Pascal Yiou
Earth Syst. Dynam., 12, 103–120, https://doi.org/10.5194/esd-12-103-2021,https://doi.org/10.5194/esd-12-103-2021, 2021
Short summary
Characterisation of Atlantic meridional overturning hysteresis using Langevin dynamics
Jelle van den Berk, Sybren Drijfhout, and Wilco Hazeleger
Earth Syst. Dynam., 12, 69–81, https://doi.org/10.5194/esd-12-69-2021,https://doi.org/10.5194/esd-12-69-2021, 2021
Short summary
Evaluating the dependence structure of compound precipitation and wind speed extremes
Jakob Zscheischler, Philippe Naveau, Olivia Martius, Sebastian Engelke, and Christoph C. Raible
Earth Syst. Dynam., 12, 1–16, https://doi.org/10.5194/esd-12-1-2021,https://doi.org/10.5194/esd-12-1-2021, 2021
Short summary
Future sea level contribution from Antarctica inferred from CMIP5 model forcing and its dependence on precipitation ansatz
Christian B. Rodehacke, Madlene Pfeiffer, Tido Semmler, Özgür Gurses, and Thomas Kleiner
Earth Syst. Dynam., 11, 1153–1194, https://doi.org/10.5194/esd-11-1153-2020,https://doi.org/10.5194/esd-11-1153-2020, 2020
Short summary

Cited articles

Appel, F. and Balmann, A.: Human behaviour versus optimising agents and the resilience of farms – Insights from agent-based participatory experiments with FarmAgriPoliS, Ecol. Complex., 40, 100731, https://doi.org/10.1016/j.ecocom.2018.08.005, 2019. 
Arneth, A., Brown, C., and Rounsevell, M. D. A.: Global models of human decision-making for land-based mitigation and adaptation assessment, Nat. Clim. Change, 4, 550–557, https://doi.org/10.1038/nclimate2250, 2014. 
Audsley, E., Trnka, M., Sabaté, S., Maspons, J., Sanchez, A., Sandars, D., Balek, J., and Pearn, K.: Interactively modelling land profitability to estimate European agricultural and forest land use under future scenarios of climate, socio-economics and adaptation, Climatic Change, 128, 215–227, https://doi.org/10.1007/s10584-014-1164-6, 2015. 
Baldos, C. and Hertel, T. W.: Looking back to move forward on model validation: insights from a global model of agricultural land use Related content Climate adaptation as mitigation: the case of agricultural investments, Environ. Res. Lett., 8, 034024, https://doi.org/10.1088/1748-9326/8/3/034024, 2013. 
Download
Short summary
The variety of human and natural processes in the land system can be modelled in many different ways. However, little is known about how and why basic model assumptions affect model results. We compared two models that represent land use in completely distinct ways and found several results that differed greatly. We identify the main assumptions that caused these differences and therefore key issues that need to be addressed for more robust model development.
Altmetrics
Final-revised paper
Preprint