Articles | Volume 10, issue 1
Earth Syst. Dynam., 10, 59–72, 2019
https://doi.org/10.5194/esd-10-59-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue: The 8th EGU Leonardo Conference: From evaporation to precipitation:...
Research article 01 Feb 2019
Research article | 01 Feb 2019
Climatological moisture sources for the Western North American Monsoon through a Lagrangian approach: their influence on precipitation intensity
Paulina Ordoñez et al.
Related authors
David Gallego, Ricardo García-Herrera, Francisco de Paula Gómez-Delgado, Paulina Ordoñez-Perez, and Pedro Ribera
Earth Syst. Dynam., 10, 319–331, https://doi.org/10.5194/esd-10-319-2019, https://doi.org/10.5194/esd-10-319-2019, 2019
Short summary
Short summary
By analysing old wind direction observations taken aboard sailing ships, it has been possible to build an index quantifying the moisture transport from the equatorial Pacific into large areas of Central America and northern South America starting in the late 19th century. This transport is deeply related to a low-level jet known as the Choco jet. Our results suggest that the seasonal distribution of the precipitation associated with this transport could have changed over the time.
Rogert Sorí, Marta Vázquez, Milica Stojanovic, Raquel Nieto, Margarida L. R. Liberato, and Luis Gimeno
Nat. Hazards Earth Syst. Sci., 20, 1805–1832, https://doi.org/10.5194/nhess-20-1805-2020, https://doi.org/10.5194/nhess-20-1805-2020, 2020
António P. Ferreira, Raquel Nieto, and Luis Gimeno
Earth Syst. Sci. Data, 11, 603–627, https://doi.org/10.5194/essd-11-603-2019, https://doi.org/10.5194/essd-11-603-2019, 2019
Short summary
Short summary
The completeness of global radiosonde humidity observations taken over time is studied based on IGRA data. The study illustrates how the number of long-term time series depends on the required frequency, continuity, and vertical sampling of data, in addition to record length. Furthermore, a dataset with metadata related to IGRA is described. It is hoped that such metadata will help climate and environmental scientists to find the most complete in situ observations meeting their research needs.
David Gallego, Ricardo García-Herrera, Francisco de Paula Gómez-Delgado, Paulina Ordoñez-Perez, and Pedro Ribera
Earth Syst. Dynam., 10, 319–331, https://doi.org/10.5194/esd-10-319-2019, https://doi.org/10.5194/esd-10-319-2019, 2019
Short summary
Short summary
By analysing old wind direction observations taken aboard sailing ships, it has been possible to build an index quantifying the moisture transport from the equatorial Pacific into large areas of Central America and northern South America starting in the late 19th century. This transport is deeply related to a low-level jet known as the Choco jet. Our results suggest that the seasonal distribution of the precipitation associated with this transport could have changed over the time.
Luis Gimeno-Sotelo, Raquel Nieto, Marta Vázquez, and Luis Gimeno
Earth Syst. Dynam., 10, 121–133, https://doi.org/10.5194/esd-10-121-2019, https://doi.org/10.5194/esd-10-121-2019, 2019
Short summary
Short summary
Ice melting at the scale of inter-annual fluctuations against the trend is favoured by an increase in moisture transport in summer, autumn, and winter and a decrease in spring. On a daily basis extreme humidity transport increases the formation of ice in winter and decreases it in spring, summer, and autumn; in these three seasons it thus contributes to Arctic sea ice melting. These patterns differ sharply from that linked to decline, especially in summer when the opposite trend applies.
Iago Algarra, Jorge Eiras-Barca, Gonzalo Miguez-Macho, Raquel Nieto, and Luis Gimeno
Earth Syst. Dynam., 10, 107–119, https://doi.org/10.5194/esd-10-107-2019, https://doi.org/10.5194/esd-10-107-2019, 2019
Short summary
Short summary
We analyse moisture transport triggered by the Great Plains low-level jet (GPLLJ), a maximum in wind speed fields located within the first kilometre of the US Great Plain's troposphere, through the innovative Eulerian Weather Research and Forecasting Model tracer tool. Much moisture associated with this low-level jet has been found in northern regions located in a vast extension of the continent, highlighting the key role played by the GPLLJ in North America's advective transport of moisture.
Sergio M. Vicente-Serrano, Raquel Nieto, Luis Gimeno, Cesar Azorin-Molina, Anita Drumond, Ahmed El Kenawy, Fernando Dominguez-Castro, Miquel Tomas-Burguera, and Marina Peña-Gallardo
Earth Syst. Dynam., 9, 915–937, https://doi.org/10.5194/esd-9-915-2018, https://doi.org/10.5194/esd-9-915-2018, 2018
Short summary
Short summary
We analyzed changes in surface relative humidity (RH) at the global scale from 1979 to 2014 and compared the variability and trends in RH with those in land evapotranspiration and ocean evaporation in moisture source areas across a range of selected regions worldwide. Our results stress that the different hypotheses that may explain the decrease in RH under a global warming scenario could act together to explain recent RH trends.
Luis Gimeno-Sotelo, Raquel Nieto, Marta Vázquez, and Luis Gimeno
Earth Syst. Dynam., 9, 611–625, https://doi.org/10.5194/esd-9-611-2018, https://doi.org/10.5194/esd-9-611-2018, 2018
Short summary
Short summary
We have identified changes in the pattern of moisture transport for precipitation over the Arctic region, the Arctic Ocean, and its 13 main subdomains concurrent with the major sea ice decline that occurred in 2003. The pattern consists of a general decrease in moisture transport in summer and enhanced moisture transport in autumn and early winter, with different contributions depending on the moisture source and ocean subregion.
Rogert Sorí, Raquel Nieto, Anita Drumond, Sergio M. Vicente-Serrano, and Luis Gimeno
Hydrol. Earth Syst. Sci., 21, 6379–6399, https://doi.org/10.5194/hess-21-6379-2017, https://doi.org/10.5194/hess-21-6379-2017, 2017
Rogert Sorí, Raquel Nieto, Sergio M. Vicente-Serrano, Anita Drumond, and Luis Gimeno
Earth Syst. Dynam., 8, 653–675, https://doi.org/10.5194/esd-8-653-2017, https://doi.org/10.5194/esd-8-653-2017, 2017
Ana María Durán-Quesada, Luis Gimeno, and Jorge Amador
Earth Syst. Dynam., 8, 147–161, https://doi.org/10.5194/esd-8-147-2017, https://doi.org/10.5194/esd-8-147-2017, 2017
Short summary
Short summary
This work aims to leverage the understanding of precipitation distribution with a long-term analysis of moisture transport from oceanic and continental sources and its relevance for regional precipitation features, variability and trends. Combining reanalysis, model output, in situ observations and satellite products we provide a robust survey that is useful for, for example, modelling, water resource management, flood and drought monitoring, rain-linked disease spread and ecosystem studies.
Anita Drumond, Erica Taboada, Raquel Nieto, Luis Gimeno, Sergio M. Vicente-Serrano, and Juan Ignacio López-Moreno
Earth Syst. Dynam., 7, 549–558, https://doi.org/10.5194/esd-7-549-2016, https://doi.org/10.5194/esd-7-549-2016, 2016
Short summary
Short summary
A Lagrangian approach was used to identify the moisture sources for fourteen ice-core sites located worldwide for the present climate. The approach computed budgets of evaporation minus precipitation by calculating changes in the specific humidity along 10-day backward trajectories. The results indicate that the oceanic regions around the subtropical high-pressure centers provide most of moisture, and their contribution varies throughout the year following the annual cycles of the centers.
Alexandre M. Ramos, Raquel Nieto, Ricardo Tomé, Luis Gimeno, Ricardo M. Trigo, Margarida L. R. Liberato, and David A. Lavers
Earth Syst. Dynam., 7, 371–384, https://doi.org/10.5194/esd-7-371-2016, https://doi.org/10.5194/esd-7-371-2016, 2016
Short summary
Short summary
An atmospheric river (AR) detection algorithm is used for the North Atlantic Ocean basin, allowing the identification of the major ARs that affected western European coasts between 1979 and 2014. A Lagrangian analysis was then applied in order to identify the main sources of moisture of the ARs that reach western European coasts. Results confirm not only the advection of moisture linked to ARs from subtropical ocean areas but also the existence of a tropical one.
L. Gimeno, M. Vázquez, R. Nieto, and R. M. Trigo
Earth Syst. Dynam., 6, 583–589, https://doi.org/10.5194/esd-6-583-2015, https://doi.org/10.5194/esd-6-583-2015, 2015
Short summary
Short summary
There appears to be a connection between two climate change indicators: an increase in evaporation over source regions and Arctic ice melting.
A. Drumond, J. Marengo, T. Ambrizzi, R. Nieto, L. Moreira, and L. Gimeno
Hydrol. Earth Syst. Sci., 18, 2577–2598, https://doi.org/10.5194/hess-18-2577-2014, https://doi.org/10.5194/hess-18-2577-2014, 2014
Related subject area
Dynamics of the Earth system: models
Climate change in the High Mountain Asia in CMIP6
The sensitivity of the El Niño–Southern Oscillation to volcanic aerosol spatial distribution in the MPI Grand Ensemble
Coupled regional Earth system modeling in the Baltic Sea region
Weakened impact of the Atlantic Niño on the future equatorial Atlantic and Guinean Coast rainfall
Climate change projections of terrestrial primary productivity over the Hindu Kush Himalayan forests
Bookkeeping estimates of the net land-use change flux – a sensitivity study with the CMIP6 land-use dataset
Climate-controlled root zone parameters show potential to improve water flux simulations by land surface models
Space–time dependence of compound hot–dry events in the United States: assessment using a multi-site multi-variable weather generator
First assessment of the earth heat inventory within CMIP5 historical simulations
The thermal response of small and shallow lakes to climate change: new insights from 3D hindcast modelling
Labrador Sea subsurface density as a precursor of multidecadal variability in the North Atlantic: a multi-model study
How modelling paradigms affect simulated future land use change
Identifying meteorological drivers of extreme impacts: an application to simulated crop yields
Simulating compound weather extremes responsible for critical crop failure with stochastic weather generators
Characterisation of Atlantic meridional overturning hysteresis using Langevin dynamics
Evaluating the dependence structure of compound precipitation and wind speed extremes
Future sea level contribution from Antarctica inferred from CMIP5 model forcing and its dependence on precipitation ansatz
The extremely warm summer of 2018 in Sweden – set in a historical context
Effect of changing ocean circulation on deep ocean temperature in the last millennium
How large does a large ensemble need to be?
Reconstructing coupled time series in climate systems using three kinds of machine-learning methods
An investigation of weighting schemes suitable for incorporating large ensembles into multi-model ensembles
The Fractional Energy Balance Equation for Climate projections through 2100
What could we learn about climate sensitivity from variability in the surface temperature record?
Using a nested single-model large ensemble to assess the internal variability of the North Atlantic Oscillation and its climatic implications for central Europe
Agricultural management effects on mean and extreme temperature trends
Climate change in a conceptual atmosphere–phytoplankton model
Variability of surface climate in simulations of past and future
Statistical estimation of global surface temperature response to forcing under the assumption of temporal scaling
Emulating Earth system model temperatures with MESMER: from global mean temperature trajectories to grid-point-level realizations on land
A global semi-empirical glacial isostatic adjustment (GIA) model based on Gravity Recovery and Climate Experiment (GRACE) data
Improvement in the decadal prediction skill of the North Atlantic extratropical winter circulation through increased model resolution
Societal breakdown as an emergent property of large-scale behavioural models of land use change
Improving weather and climate predictions by training of supermodels
Evaluating climate emulation: fundamental impulse testing of simple climate models
Maximum power of saline and fresh water mixing in estuaries
Tipping the ENSO into a permanent El Niño can trigger state transitions in global terrestrial ecosystems
Contributions of climate change and groundwater extraction to soil moisture trends
Downslope windstorms in the Isthmus of Tehuantepec during Tehuantepecer events: a numerical study with WRF high-resolution simulations
A radiative-convective model based on constrained maximum entropy production
ESD Ideas: Propagation of high-frequency forcing to ice age dynamics
Development and prospects of the regional MiKlip decadal prediction system over Europe: predictive skill, added value of regionalization, and ensemble size dependency
The effect of univariate bias adjustment on multivariate hazard estimates
Light absorption by marine cyanobacteria affects tropical climate mean state and variability
Sensitivity study of the regional climate model RegCM4 to different convective schemes over West Africa
Simulation of observed climate changes in 1850–2014 with climate model INM-CM5
A theoretical approach to assess soil moisture–climate coupling across CMIP5 and GLACE-CMIP5 experiments
Improving the representation of anthropogenic CO2 emissions in climate models: impact of a new parameterization for the Community Earth System Model (CESM)
A theory of Pleistocene glacial rhythmicity
Using network theory and machine learning to predict El Niño
Mickaël Lalande, Martin Ménégoz, Gerhard Krinner, Kathrin Naegeli, and Stefan Wunderle
Earth Syst. Dynam., 12, 1061–1098, https://doi.org/10.5194/esd-12-1061-2021, https://doi.org/10.5194/esd-12-1061-2021, 2021
Short summary
Short summary
Climate change over High Mountain Asia is investigated with CMIP6 climate models. A general cold bias is found in this area, often related to a snow cover overestimation in the models. Ensemble experiments generally encompass the past observed trends, suggesting that even biased models can reproduce the trends. Depending on the future scenario, a warming from 1.9 to 6.5 °C, associated with a snow cover decrease and precipitation increase, is expected at the end of the 21st century.
Benjamin Ward, Francesco S. R. Pausata, and Nicola Maher
Earth Syst. Dynam., 12, 975–996, https://doi.org/10.5194/esd-12-975-2021, https://doi.org/10.5194/esd-12-975-2021, 2021
Short summary
Short summary
Using the largest ensemble of a climate model currently available, the Max Planck Institute Grand Ensemble (MPI-GE), we investigated the impact of the spatial distribution of volcanic aerosols on the El Niño–Southern Oscillation (ENSO) response. By selecting three eruptions with different aerosol distributions, we found that the shift of the Intertropical Convergence Zone (ITCZ) is the main driver of the ENSO response, while other mechanisms commonly invoked seem less important in our model.
Matthias Gröger, Christian Dieterich, Jari Haapala, Ha Thi Minh Ho-Hagemann, Stefan Hagemann, Jaromir Jakacki, Wilhelm May, H. E. Markus Meier, Paul A. Miller, Anna Rutgersson, and Lichuan Wu
Earth Syst. Dynam., 12, 939–973, https://doi.org/10.5194/esd-12-939-2021, https://doi.org/10.5194/esd-12-939-2021, 2021
Short summary
Short summary
Regional climate studies are typically pursued by single Earth system component models (e.g., ocean models and atmosphere models). These models are driven by prescribed data which hamper the simulation of feedbacks between Earth system components. To overcome this, models were developed that interactively couple model components and allow an adequate simulation of Earth system interactions important for climate. This article reviews recent developments of such models for the Baltic Sea region.
Koffi Worou, Hugues Goosse, Thierry Fichefet, and Fred Kucharski
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2021-46, https://doi.org/10.5194/esd-2021-46, 2021
Revised manuscript accepted for ESD
Short summary
Short summary
Over the Guinea Coast, the increased rainfall associated with warm phases of the Atlantic Niño is reasonably well simulated by 24 climate models out of 31, for the present-day conditions. In a warmer climate, general circulation models project a gradual decrease with time of the rainfall magnitude associated with the Atlantic Niño for the 2015–2039, 2040–2069 and 2070–2099 periods. There is a higher confidence in these changes over the equatorial Atlantic than over the Guinea Coast.
Halima Usman, Thomas A. M. Pugh, Anders Ahlström, and Sofia Baig
Earth Syst. Dynam., 12, 857–870, https://doi.org/10.5194/esd-12-857-2021, https://doi.org/10.5194/esd-12-857-2021, 2021
Short summary
Short summary
The study assesses the impacts of climate change on forest productivity in the Hindu Kush Himalayan region. LPJ-GUESS was simulated from 1851 to 2100. In first approach, the model was compared with observational estimates. The comparison showed a moderate agreement. In the second approach, the model was assessed for the temporal and spatial trends of net biome productivity and its components along with carbon pool. Increases in both variables were predicted in 2100.
Kerstin Hartung, Ana Bastos, Louise Chini, Raphael Ganzenmüller, Felix Havermann, George C. Hurtt, Tammas Loughran, Julia E. M. S. Nabel, Tobias Nützel, Wolfgang A. Obermeier, and Julia Pongratz
Earth Syst. Dynam., 12, 763–782, https://doi.org/10.5194/esd-12-763-2021, https://doi.org/10.5194/esd-12-763-2021, 2021
Short summary
Short summary
In this study, we model the relative importance of several contributors to the land-use and land-cover change (LULCC) flux based on a LULCC dataset including uncertainty estimates. The uncertainty of LULCC is as relevant as applying wood harvest and gross transitions for the cumulative LULCC flux over the industrial period. However, LULCC uncertainty matters less than the other two factors for the LULCC flux in 2014; historical LULCC uncertainty is negligible for estimates of future scenarios.
Fransje van Oorschot, Ruud J. van der Ent, Markus Hrachowitz, and Andrea Alessandri
Earth Syst. Dynam., 12, 725–743, https://doi.org/10.5194/esd-12-725-2021, https://doi.org/10.5194/esd-12-725-2021, 2021
Short summary
Short summary
The roots of vegetation largely control the Earth's water cycle by transporting water from the subsurface to the atmosphere but are not adequately represented in land surface models, causing uncertainties in modeled water fluxes. We replaced the root parameters in an existing model with more realistic ones that account for a climate control on root development and found improved timing of modeled river discharge. Further extension of our approach could improve modeled water fluxes globally.
Manuela I. Brunner, Eric Gilleland, and Andrew W. Wood
Earth Syst. Dynam., 12, 621–634, https://doi.org/10.5194/esd-12-621-2021, https://doi.org/10.5194/esd-12-621-2021, 2021
Short summary
Short summary
Compound hot and dry events can lead to severe impacts whose severity may depend on their timescale and spatial extent. Here, we show that the spatial extent and timescale of compound hot–dry events are strongly related, spatial compound event extents are largest at
sub-seasonal timescales, and short events are driven more by high temperatures, while longer events are more driven by low precipitation. Future climate impact studies should therefore be performed at different timescales.
Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, and Joel Finnis
Earth Syst. Dynam., 12, 581–600, https://doi.org/10.5194/esd-12-581-2021, https://doi.org/10.5194/esd-12-581-2021, 2021
Short summary
Short summary
The current radiative imbalance at the top of the atmosphere is increasing the heat stored in the oceans, atmosphere, continental subsurface and cryosphere, with consequences for societies and ecosystems (e.g. sea level rise). We performed the first assessment of the ability of global climate models to represent such heat storage in the climate subsystems. Models are able to reproduce the observed atmosphere heat content, with biases in the simulation of heat content in the rest of components.
Francesco Piccioni, Céline Casenave, Bruno Jacques Lemaire, Patrick Le Moigne, Philippe Dubois, and Brigitte Vinçon-Leite
Earth Syst. Dynam., 12, 439–456, https://doi.org/10.5194/esd-12-439-2021, https://doi.org/10.5194/esd-12-439-2021, 2021
Short summary
Short summary
Small lakes are ecosystems highly impacted by climate change. Here, the thermal regime of a small, shallow lake over the past six decades was reconstructed via 3D modelling. Significant changes were found: strong water warming in spring and summer (0.7 °C/decade) as well as increased stratification and thermal energy for cyanobacteria growth, especially in spring. The strong spatial patterns detected for stratification might create local conditions particularly favourable to cyanobacteria bloom.
Pablo Ortega, Jon I. Robson, Matthew Menary, Rowan T. Sutton, Adam Blaker, Agathe Germe, Jöel J.-M. Hirschi, Bablu Sinha, Leon Hermanson, and Stephen Yeager
Earth Syst. Dynam., 12, 419–438, https://doi.org/10.5194/esd-12-419-2021, https://doi.org/10.5194/esd-12-419-2021, 2021
Short summary
Short summary
Deep Labrador Sea densities are receiving increasing attention because of their link to many of the processes that govern decadal climate oscillations in the North Atlantic and their potential use as a precursor of those changes. This article explores those links and how they are represented in global climate models, documenting the main differences across models. Models are finally compared with observational products to identify the ones that reproduce the links more realistically.
Calum Brown, Ian Holman, and Mark Rounsevell
Earth Syst. Dynam., 12, 211–231, https://doi.org/10.5194/esd-12-211-2021, https://doi.org/10.5194/esd-12-211-2021, 2021
Short summary
Short summary
The variety of human and natural processes in the land system can be modelled in many different ways. However, little is known about how and why basic model assumptions affect model results. We compared two models that represent land use in completely distinct ways and found several results that differed greatly. We identify the main assumptions that caused these differences and therefore key issues that need to be addressed for more robust model development.
Johannes Vogel, Pauline Rivoire, Cristina Deidda, Leila Rahimi, Christoph A. Sauter, Elisabeth Tschumi, Karin van der Wiel, Tianyi Zhang, and Jakob Zscheischler
Earth Syst. Dynam., 12, 151–172, https://doi.org/10.5194/esd-12-151-2021, https://doi.org/10.5194/esd-12-151-2021, 2021
Short summary
Short summary
We present a statistical approach for automatically identifying multiple drivers of extreme impacts based on LASSO regression. We apply the approach to simulated crop failure in the Northern Hemisphere and identify which meteorological variables including climate extreme indices and which seasons are relevant to predict crop failure. The presented approach can help unravel compounding drivers in high-impact events and could be applied to other impacts such as wildfires or flooding.
Peter Pfleiderer, Aglaé Jézéquel, Juliette Legrand, Natacha Legrix, Iason Markantonis, Edoardo Vignotto, and Pascal Yiou
Earth Syst. Dynam., 12, 103–120, https://doi.org/10.5194/esd-12-103-2021, https://doi.org/10.5194/esd-12-103-2021, 2021
Short summary
Short summary
In 2016, northern France experienced an unprecedented wheat crop loss. This crop loss was likely due to an extremely warm December 2015 and abnormally high precipitation during the following spring season. Using stochastic weather generators we investigate how severe the metrological conditions leading to the crop loss could be in current climate conditions. We find that December temperatures were close to the plausible maximum but that considerably wetter springs would be possible.
Jelle van den Berk, Sybren Drijfhout, and Wilco Hazeleger
Earth Syst. Dynam., 12, 69–81, https://doi.org/10.5194/esd-12-69-2021, https://doi.org/10.5194/esd-12-69-2021, 2021
Short summary
Short summary
A collapse of the Atlantic Meridional Overturning Circulation can be described by six parameters and Langevin dynamics. These parameters can be determined from collapses seen in climate models of intermediate complexity. With this parameterisation, it might be possible to estimate how much fresh water is needed to observe a collapse in more complicated models and reality.
Jakob Zscheischler, Philippe Naveau, Olivia Martius, Sebastian Engelke, and Christoph C. Raible
Earth Syst. Dynam., 12, 1–16, https://doi.org/10.5194/esd-12-1-2021, https://doi.org/10.5194/esd-12-1-2021, 2021
Short summary
Short summary
Compound extremes such as heavy precipitation and extreme winds can lead to large damage. To date it is unclear how well climate models represent such compound extremes. Here we present a new measure to assess differences in the dependence structure of bivariate extremes. This measure is applied to assess differences in the dependence of compound precipitation and wind extremes between three model simulations and one reanalysis dataset in a domain in central Europe.
Christian B. Rodehacke, Madlene Pfeiffer, Tido Semmler, Özgür Gurses, and Thomas Kleiner
Earth Syst. Dynam., 11, 1153–1194, https://doi.org/10.5194/esd-11-1153-2020, https://doi.org/10.5194/esd-11-1153-2020, 2020
Short summary
Short summary
In the warmer future, Antarctica's ice sheet will lose more ice due to enhanced iceberg calving and a warming ocean that melts more floating ice from below. However, the hydrological cycle is also stronger in a warmer world. Hence, more snowfall will precipitate on Antarctica and may balance the amplified ice loss. We have used future climate scenarios from various global climate models to perform numerous ice sheet simulations to show that precipitation may counteract mass loss.
Renate Anna Irma Wilcke, Erik Kjellström, Changgui Lin, Daniela Matei, Anders Moberg, and Evangelos Tyrlis
Earth Syst. Dynam., 11, 1107–1121, https://doi.org/10.5194/esd-11-1107-2020, https://doi.org/10.5194/esd-11-1107-2020, 2020
Short summary
Short summary
Two long-lasting high-pressure systems in summer 2018 led to heat waves over Scandinavia and an extended summer period with devastating impacts on both agriculture and human life. Using five climate model ensembles, the unique 263-year Stockholm temperature time series and a composite 150-year time series for the whole of Sweden, we found that anthropogenic climate change has strongly increased the probability of a warm summer, such as the one observed in 2018, occurring in Sweden.
Jeemijn Scheen and Thomas F. Stocker
Earth Syst. Dynam., 11, 925–951, https://doi.org/10.5194/esd-11-925-2020, https://doi.org/10.5194/esd-11-925-2020, 2020
Short summary
Short summary
Variability of sea surface temperatures (SST) in 1200–2000 CE is quite well-known, but the history of deep ocean temperatures is not. Forcing an ocean model with these SSTs, we simulate temperatures in the ocean interior. The circulation changes alter the amplitude and timing of deep ocean temperature fluctuations below 2 km depth, e.g. delaying the atmospheric signal by ~ 200 years in the deep Atlantic. Thus ocean circulation changes are shown to be as important as SST changes at these depths.
Sebastian Milinski, Nicola Maher, and Dirk Olonscheck
Earth Syst. Dynam., 11, 885–901, https://doi.org/10.5194/esd-11-885-2020, https://doi.org/10.5194/esd-11-885-2020, 2020
Short summary
Short summary
Initial-condition large ensembles with ensemble sizes ranging from 30 to 100 members have become a commonly used tool to quantify the forced response and internal variability in various components of the climate system, but there is no established method to determine the required ensemble size for a given problem. We propose a new framework that can be used to estimate the required ensemble size from a model's control run or an existing large ensemble.
Yu Huang, Lichao Yang, and Zuntao Fu
Earth Syst. Dynam., 11, 835–853, https://doi.org/10.5194/esd-11-835-2020, https://doi.org/10.5194/esd-11-835-2020, 2020
Short summary
Short summary
We investigate the applicability of machine learning (ML) on time series reconstruction and find that the dynamical coupling relation and nonlinear causality are crucial for the application of ML. Our results could provide insights into causality and ML approaches for paleoclimate reconstruction, parameterization schemes, and prediction in climate studies.
Anna Louise Merrifield, Lukas Brunner, Ruth Lorenz, Iselin Medhaug, and Reto Knutti
Earth Syst. Dynam., 11, 807–834, https://doi.org/10.5194/esd-11-807-2020, https://doi.org/10.5194/esd-11-807-2020, 2020
Short summary
Short summary
Justifiable uncertainty estimates of future change in northern European winter and Mediterranean summer temperature can be obtained by weighting a multi-model ensemble comprised of projections from different climate models and multiple projections from the same climate model. Weights reduce the influence of model biases and handle dependence by identifying a projection's model of origin from historical characteristics; contributions from the same model are scaled by the number of members.
Roman Procyk, Shaun Lovejoy, and Raphael Hébert
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2020-48, https://doi.org/10.5194/esd-2020-48, 2020
Revised manuscript accepted for ESD
Short summary
Short summary
This paper presents a new class of energy balance model that accounts for the long memory within the Earth's energy storage. The model is calibrated on instrumental temperature records and the historical energy budget of the Earth using an error model predicted by the model itself. Our equilibrium climate sensitivity and future temperature projection estimates are consistent with those estimated by complex climate models.
James D. Annan, Julia C. Hargreaves, Thorsten Mauritsen, and Bjorn Stevens
Earth Syst. Dynam., 11, 709–719, https://doi.org/10.5194/esd-11-709-2020, https://doi.org/10.5194/esd-11-709-2020, 2020
Short summary
Short summary
In this paper we explore the potential of variability for constraining the equilibrium response of the climate system to external forcing. We show that the constraint is inherently skewed, with a long tail to high sensitivity, and that while the variability may contain some useful information, it is unlikely to generate a tight constraint.
Andrea Böhnisch, Ralf Ludwig, and Martin Leduc
Earth Syst. Dynam., 11, 617–640, https://doi.org/10.5194/esd-11-617-2020, https://doi.org/10.5194/esd-11-617-2020, 2020
Short summary
Short summary
North Atlantic air pressure variations influencing European climate variables are simulated in coarse-resolution global climate models (GCMs). As single-model runs do not sufficiently describe variations of their patterns, several model runs with slightly diverging initial conditions are analyzed. The study shows that GCM and regional climate model (RCM) patterns vary in a similar range over the same domain, while RCMs add consistent fine-scale information due to their higher spatial resolution.
Aine M. Gormley-Gallagher, Sebastian Sterl, Annette L. Hirsch, Sonia I. Seneviratne, Edouard L. Davin, and Wim Thiery
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2020-35, https://doi.org/10.5194/esd-2020-35, 2020
Revised manuscript accepted for ESD
György Károlyi, Rudolf Dániel Prokaj, István Scheuring, and Tamás Tél
Earth Syst. Dynam., 11, 603–615, https://doi.org/10.5194/esd-11-603-2020, https://doi.org/10.5194/esd-11-603-2020, 2020
Short summary
Short summary
We construct a conceptual model to understand the interplay between the atmosphere and the ocean biosphere in a climate change framework, including couplings between extraction of carbon dioxide by phytoplankton and climate change, temperature and carrying capacity of phytoplankton, and wind energy and phytoplankton production. We find that sufficiently strong mixing can result in decaying global phytoplankton content.
Kira Rehfeld, Raphaël Hébert, Juan M. Lora, Marcus Lofverstrom, and Chris M. Brierley
Earth Syst. Dynam., 11, 447–468, https://doi.org/10.5194/esd-11-447-2020, https://doi.org/10.5194/esd-11-447-2020, 2020
Short summary
Short summary
Under continued anthropogenic greenhouse gas emissions, it is likely that global mean surface temperature will continue to increase. Little is known about changes in climate variability. We analyze surface climate variability and compare it to mean change in colder- and warmer-than-present climate model simulations. In most locations, but not on subtropical land, simulated temperature variability up to decadal timescales decreases with mean temperature, and precipitation variability increases.
Eirik Myrvoll-Nilsen, Sigrunn Holbek Sørbye, Hege-Beate Fredriksen, Håvard Rue, and Martin Rypdal
Earth Syst. Dynam., 11, 329–345, https://doi.org/10.5194/esd-11-329-2020, https://doi.org/10.5194/esd-11-329-2020, 2020
Short summary
Short summary
This paper presents efficient Bayesian methods for linear response models of global mean surface temperature that take into account long-range dependence. We apply the methods to the instrumental temperature record and historical model runs in the CMIP5 ensemble to provide estimates of the transient climate response and temperature projections under the Representative Concentration Pathways.
Lea Beusch, Lukas Gudmundsson, and Sonia I. Seneviratne
Earth Syst. Dynam., 11, 139–159, https://doi.org/10.5194/esd-11-139-2020, https://doi.org/10.5194/esd-11-139-2020, 2020
Short summary
Short summary
Earth system models (ESMs) are invaluable to study the climate system but expensive to run. Here, we present a statistical tool which emulates ESMs at a negligible computational cost by creating stochastic realizations of yearly land temperature field time series. Thereby, 40 ESMs are considered, and for each ESM, a single simulation is required to train the tool. The resulting ESM-specific realizations closely resemble ESM simulations not employed during training at point to regional scales.
Yu Sun and Riccardo E. M. Riva
Earth Syst. Dynam., 11, 129–137, https://doi.org/10.5194/esd-11-129-2020, https://doi.org/10.5194/esd-11-129-2020, 2020
Short summary
Short summary
The solid Earth is still deforming because of the effect of past ice sheets through glacial isostatic adjustment (GIA). Satellite gravity observations by the Gravity Recovery and Climate Experiment (GRACE) mission are sensitive to those signals but are superimposed on the redistribution effect of water masses by the hydrological cycle. We propose a method separating the two signals, providing new constraints for forward GIA models and estimating the global water cycle's patterns and magnitude.
Mareike Schuster, Jens Grieger, Andy Richling, Thomas Schartner, Sebastian Illing, Christopher Kadow, Wolfgang A. Müller, Holger Pohlmann, Stephan Pfahl, and Uwe Ulbrich
Earth Syst. Dynam., 10, 901–917, https://doi.org/10.5194/esd-10-901-2019, https://doi.org/10.5194/esd-10-901-2019, 2019
Short summary
Short summary
Decadal climate predictions are valuable to society as they allow us to estimate climate conditions several years in advance. We analyze the latest version of the German MiKlip prediction system (https://www.fona-miklip.de) and assess the effect of the model resolution on the skill of the system. The increase in the resolution of the system reduces the bias and significantly improves the forecast skill for North Atlantic extratropical winter dynamics for lead times of two to five winters.
Calum Brown, Bumsuk Seo, and Mark Rounsevell
Earth Syst. Dynam., 10, 809–845, https://doi.org/10.5194/esd-10-809-2019, https://doi.org/10.5194/esd-10-809-2019, 2019
Short summary
Short summary
Concerns are growing that human activity will lead to social and environmental breakdown, but it is hard to anticipate when and where such breakdowns might occur. We developed a new model of land management decisions in Europe to explore possible future changes and found that decision-making that takes into account social and environmental conditions can produce unexpected outcomes that include societal breakdown in challenging conditions.
Francine Schevenhoven, Frank Selten, Alberto Carrassi, and Noel Keenlyside
Earth Syst. Dynam., 10, 789–807, https://doi.org/10.5194/esd-10-789-2019, https://doi.org/10.5194/esd-10-789-2019, 2019
Short summary
Short summary
Weather and climate predictions potentially improve by dynamically combining different models into a
supermodel. A crucial step is to train the supermodel on the basis of observations. Here, we apply two different training methods to the global atmosphere–ocean–land model SPEEDO. We demonstrate that both training methods yield climate and weather predictions of superior quality compared to the individual models. Supermodel predictions can also outperform the commonly used multi-model mean.
Adria K. Schwarber, Steven J. Smith, Corinne A. Hartin, Benjamin Aaron Vega-Westhoff, and Ryan Sriver
Earth Syst. Dynam., 10, 729–739, https://doi.org/10.5194/esd-10-729-2019, https://doi.org/10.5194/esd-10-729-2019, 2019
Short summary
Short summary
Simple climate models (SCMs) underlie many important scientific and decision-making endeavors. This illustrates the need for their use to be rooted in a clear understanding of their fundamental responses. In this study, we provide a comprehensive assessment of model performance by evaluating the fundamental responses of several SCMs. We find biases in some responses, which have implications for decision science. We conclude by recommending a standard set of validation tests for any SCM.
Zhilin Zhang and Hubert Savenije
Earth Syst. Dynam., 10, 667–684, https://doi.org/10.5194/esd-10-667-2019, https://doi.org/10.5194/esd-10-667-2019, 2019
Short summary
Short summary
Natural systems evolve towards a state of maximum power, including estuarine circulation. The energy of lighter fresh water drives circulation, while it dissipates by friction. This rotational flow causes the spread of salinity, which is represented by the dispersion coefficient. In this paper, the maximum power concept provides a new equation for this coefficient. Together with the steady-state equation, this results in a new analytical model for density-driven salinity intrusion.
Mateo Duque-Villegas, Juan Fernando Salazar, and Angela Maria Rendón
Earth Syst. Dynam., 10, 631–650, https://doi.org/10.5194/esd-10-631-2019, https://doi.org/10.5194/esd-10-631-2019, 2019
Short summary
Short summary
Earth's climate can be studied as a system with different components that can be strongly altered by human influence. One possibility is that the El Niño phenomenon becomes more frequent. We investigated the potential impacts of the most frequent El Niño: a permanent one. The most noticeable impacts include variations in global water availability and vegetation productivity, potential dieback of the Amazon rainforest, greening of western North America, and further aridification of Australia.
Longhuan Wang, Zhenghui Xie, Binghao Jia, Jinbo Xie, Yan Wang, Bin Liu, Ruichao Li, and Si Chen
Earth Syst. Dynam., 10, 599–615, https://doi.org/10.5194/esd-10-599-2019, https://doi.org/10.5194/esd-10-599-2019, 2019
Short summary
Short summary
We quantify the contributions of climate change and groundwater extraction to the trends in soil moisture through two groups of simulations. In summary, climate change dominates the soil moisture trends, while GW extraction accelerates or decelerates soil moisture trends under climate change. This work will improve our understanding of how human activities affect soil water content and will help to determine the mechanisms underlying the global water cycle.
Miguel A. Prósper, Ian Sosa Tinoco, Carlos Otero-Casal, and Gonzalo Miguez-Macho
Earth Syst. Dynam., 10, 485–499, https://doi.org/10.5194/esd-10-485-2019, https://doi.org/10.5194/esd-10-485-2019, 2019
Short summary
Short summary
We study the fine-scale structure of Tehuano winds in the Isthmus of Tehuantepec, focusing on the flow beyond the well-known strong gap wind jet. We use high-resolution WRF model simulations to show that different downslope windstorm conditions and hydraulic jumps with rotor circulations develop in the mountains east of Chivela Pass depending on crest height and thermodynamic conditions of the air mass. The intense turbulent flows can have a large impact on the existent wind farms in the region.
Vincent Labarre, Didier Paillard, and Bérengère Dubrulle
Earth Syst. Dynam., 10, 365–378, https://doi.org/10.5194/esd-10-365-2019, https://doi.org/10.5194/esd-10-365-2019, 2019
Short summary
Short summary
We tried to represent atmospheric convection induced by radiative forcing with a simple climate model based on maximum entropy production. Contrary to previous models, we give a minimal description of energy transport in the atmosphere. It allows us to give better results in terms of temperature and vertical energy flux profiles.
Mikhail Y. Verbitsky, Michel Crucifix, and Dmitry M. Volobuev
Earth Syst. Dynam., 10, 257–260, https://doi.org/10.5194/esd-10-257-2019, https://doi.org/10.5194/esd-10-257-2019, 2019
Short summary
Short summary
We demonstrate here that nonlinear character of ice sheet dynamics, which was derived naturally from the conservation laws, is an effective means for propagating high-frequency forcing upscale.
Mark Reyers, Hendrik Feldmann, Sebastian Mieruch, Joaquim G. Pinto, Marianne Uhlig, Bodo Ahrens, Barbara Früh, Kameswarrao Modali, Natalie Laube, Julia Moemken, Wolfgang Müller, Gerd Schädler, and Christoph Kottmeier
Earth Syst. Dynam., 10, 171–187, https://doi.org/10.5194/esd-10-171-2019, https://doi.org/10.5194/esd-10-171-2019, 2019
Short summary
Short summary
In this study, the regional MiKlip decadal prediction system is evaluated. This system has been established to deliver highly resolved forecasts for the timescale of 1 to 10 years for Europe. Evidence of the general potential for regional decadal predictability for the variables temperature, precipitation, and wind speed is provided, but the performance of the prediction system depends on region, variable, and system generation.
Jakob Zscheischler, Erich M. Fischer, and Stefan Lange
Earth Syst. Dynam., 10, 31–43, https://doi.org/10.5194/esd-10-31-2019, https://doi.org/10.5194/esd-10-31-2019, 2019
Short summary
Short summary
Many climate models have biases in different variables throughout the world. Adjusting these biases is necessary for estimating climate impacts. Here we demonstrate that widely used univariate bias adjustment methods do not work well for multivariate impacts. We illustrate this problem using fire risk and heat stress as impact indicators. Using an approach that adjusts not only biases in the individual climate variables but also biases in the correlation between them can resolve these problems.
Hanna Paulsen, Tatiana Ilyina, Johann H. Jungclaus, Katharina D. Six, and Irene Stemmler
Earth Syst. Dynam., 9, 1283–1300, https://doi.org/10.5194/esd-9-1283-2018, https://doi.org/10.5194/esd-9-1283-2018, 2018
Short summary
Short summary
We use an Earth system model to study the effects of light absorption by marine cyanobacteria on climate. We find that cyanobacteria have a considerable cooling effect on tropical SST with implications for ocean and atmosphere circulation patterns as well as for climate variability. The results indicate the importance of considering phytoplankton light absorption in climate models, and specifically highlight the role of cyanobacteria due to their regulative effect on tropical SST and climate.
Brahima Koné, Arona Diedhiou, N'datchoh Evelyne Touré, Mouhamadou Bamba Sylla, Filippo Giorgi, Sandrine Anquetin, Adama Bamba, Adama Diawara, and Arsene Toka Kobea
Earth Syst. Dynam., 9, 1261–1278, https://doi.org/10.5194/esd-9-1261-2018, https://doi.org/10.5194/esd-9-1261-2018, 2018
Short summary
Short summary
Simulations of regional climate are very sensitive to physical parameterization schemes, particularly over the tropics where convection plays a major role in monsoon dynamics. The latest version of RegCM4 was used to assess the performance and sensitivity of the simulated West African climate system to different convection schemes. The configuration of RegCM4 with CLM4.5 as a land surface model and the Emanuel convective scheme is recommended for the study of the West African climate.
Evgeny Volodin and Andrey Gritsun
Earth Syst. Dynam., 9, 1235–1242, https://doi.org/10.5194/esd-9-1235-2018, https://doi.org/10.5194/esd-9-1235-2018, 2018
Short summary
Short summary
Climate changes of 1850–2014 are modeled with the climate model INM-CM5. Periods of fast warming in 1920–1940 and 1980–2000 as well as its slowdown in 1950–1975 and 2000–2014 are correctly reproduced by the model. The notable improvement with respect to the previous model version is the correct reproduction of slowdowns in global warming that we attribute to a new aerosol block in the model and a more accurate description of the solar constant in the new (CMIP6) IPCC protocol.
Clemens Schwingshackl, Martin Hirschi, and Sonia I. Seneviratne
Earth Syst. Dynam., 9, 1217–1234, https://doi.org/10.5194/esd-9-1217-2018, https://doi.org/10.5194/esd-9-1217-2018, 2018
Short summary
Short summary
Changing amounts of water in the soil can have a strong impact on atmospheric temperatures. We present a theoretical approach that can be used to quantify the effect that soil moisture has on temperature and validate it using climate model simulations in which soil moisture is prescribed. This theoretical approach also allows us to study the soil moisture effect on temperature in standard climate models, even if they do not provide dedicated soil moisture simulations.
Andrés Navarro, Raúl Moreno, and Francisco J. Tapiador
Earth Syst. Dynam., 9, 1045–1062, https://doi.org/10.5194/esd-9-1045-2018, https://doi.org/10.5194/esd-9-1045-2018, 2018
Short summary
Short summary
Earth system models provide simplified accounts of human–Earth interactions. Most current models treat CO2 emissions as a homogeneously distributed forcing. However, this paper presents a new parameterization, POPEM (POpulation Parameterization for Earth Models), that computes anthropogenic CO2 emissions at a grid point scale. A major advantage of this approach is the increased capacity to understand the potential effects of localized pollutant emissions on long-term global climate statistics.
Mikhail Y. Verbitsky, Michel Crucifix, and Dmitry M. Volobuev
Earth Syst. Dynam., 9, 1025–1043, https://doi.org/10.5194/esd-9-1025-2018, https://doi.org/10.5194/esd-9-1025-2018, 2018
Short summary
Short summary
Using a dynamical climate model purely reduced from the conservation laws of ice-moving media, we show that ice-sheet physics coupled with a linear climate temperature feedback conceal enough dynamics to satisfactorily explain the system response over the full Pleistocene. There is no need, a priori, to call for a nonlinear response of, for example, the carbon cycle.
Peter D. Nooteboom, Qing Yi Feng, Cristóbal López, Emilio Hernández-García, and Henk A. Dijkstra
Earth Syst. Dynam., 9, 969–983, https://doi.org/10.5194/esd-9-969-2018, https://doi.org/10.5194/esd-9-969-2018, 2018
Short summary
Short summary
The prediction of the El Niño phenomenon, an increased sea surface temperature in the eastern Pacific, fascinates people for a long time. El Niño is associated with natural disasters, such as droughts and floods. Current methods can make a reliable prediction of this phenomenon up to 6 months ahead. However, this article presents a method which combines network theory and machine learning which predicts El Niño up to 1 year ahead.
Cited articles
Adams, D. K. and Comrie, A. C.: The North American Monsoon, B. Am. Meteorol.
Soc., 78, 2197–2213, https://doi.org/10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2,
1997.
Barlow, M., Nigam, S., and Berbery, E. H.: Evolution of the North American
Monsoon System, J. Climate, 11, 2238–2257,
https://doi.org/10.1175/1520-0442(1998)011<2238:EOTNAM>2.0.CO;2, 1998.
Berbery, E. H.: Mesoscale moisture analysis of the North American monsoon, J.
Climate, 14, 121–137, 2001.
Bieda III, S. W., Castro, C. L., Mullen, S. L., Comrie, A. C., and Pytlak,
E.: The Relationship of Transient Upper-Level Troughs to Variability of the
North American Monsoon Systems, J. Climate, 22, 4213–4227, 2009.
Bohn, T. J. and Vivoni, E. R.: Process-based characterization of
evapotranspiration sources over the North American monsoon region, Water
Resour. Res., 52, 358–384, https://doi.org/10.1002/2015WR017934, 2016.
Bosilovich, M. G., Sud, Y., Schubert, S., and Walke, G.: Numerical
simulationof the large-scale North American monsoon water sources, J.
Geophys. Res., 108, 8614, https://doi.org/10.1029/2002JD003095, 2003.
Bryson, R. and Lowry, W. P.: Synoptic climatology of the Arizona summer
precipitation singularity, B. Am. Meteorol. Soc., 36, 329–339, 1955.
Castro, C. L., Chang, H. I., and Dominguez, F.: Can a regional climate model
improve the ability to forecast the North American monsoon?, J. Climate,
25, 8212–8237, https://doi.org/10.1175/JCLI-D-11-00441.1, 2012.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J. Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler,
M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J.,
Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and
Vitart, F.: The ERA-Interim reanalysis: Configuration and performance of the
data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011.
Dominguez, F., Kumar, P., Liang, X. Z., and Ting, M.: Impact of atmospheric
moisture storage on precipitation recycling, J. Climate, 19, 1513–1530,
https://doi.org/10.1175/JCLI3691.1, 2006.
Dominguez, F., Kumar, P., and Vivoni, E. R.: Precipitation recycling
variability and ecoclimatological stability – A study using NARR data.
Part II: North American monsoon region, J. Climate, 21, 5187–5203, 2008.
Dominguez, F., Miguez-Macho, G., and Huancui, H.: WRF with Water Vapor
Tracers: A Study of Moisture Sources for the North American Monsoon, J.
Hydrometeorol., 17, 1915–1927, https://doi.org/10.1175/JHM-D-15-0221.1, 2016.
Douglas, A. V. and Englehart, P. J.: A climatological perspective of
transient synoptic features during NAME 2004, J. Climate, 20, 1947–1954,
https://doi.org/10.1175/JCLI4095.1, 2007.
Douglas, M. W.: The summertime low-level jet over the Gulf of California,
Mon. Weather Rev., 123, 2334–2347, 1995.
Douglas, M. W., Maddox, R. A., Howard, K., Rand eyes, S.: The Mexican
monsoon, J. Climate, 6, 1665–1677,
https://doi.org/10.1175/1520-0442(1993)006<1665:TMM>2.0.CO;2, 1993.
Drumond, A., Nieto, R., and Gimeno, L.: Sources of moisture for China and
their variations during drier and wetter conditions in 2000–2004: a
Lagrangian approach, Clim. Res., 50, 215–225, https://doi.org/10.3354/cr01043, 2011.
Duran-Quesada, A. M., Gimeno, L., Amador, J. A., and Nieto, R.: Moisture
sources for Central America: Identification of moisture sources using a
Lagrangian analysis technique, J. Geophys. Res.-Atmos., 115, D05103,
https://doi.org/10.1029/2009JD012455, 2010.
Erfani, E. and Mitchell, D.: A partial mechanistic understanding of the North
American monsoon, J. Geophys. Res., 119, 13096–13115,
https://doi.org/10.1002/2014JD022038, 2014.
Finch, Z. O. and Johnson, R. H.: Observational Analysis of an Upper-Level
Inverted Trough during the 2004 North American Monsoon Experiment, Mon.
Weather Rev., 138, 3540–3555, 2010.
Foster, C., Stohl, A., and Seibert, P.: Parameterization of Convective
Transport in a Lagrangian Particle Dispersion Model and Its Evaluation, J.
Appl. Meteorol. Clim., 46, 403–422, 2007.
Fuller, R. D. and Stensrud, D. J.: The relationship between tropical easterly
waves and surges over the Gulf of California during the North American
monsoon, Mon. Weather Rev., 128, 2983–2989, 2000.
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S.,
Husak, G., Rowland, J., Harrison, L., Hoell, A., and Michaelsen, J.: The
climate hazards infrared precipitation with stations – a new environmental
record for monitoring extremes, Scientific Data, 2, 150066,
https://doi.org/10.1038/sdata.2015.66, 2015.
Green, C. R. and Sellers, W. D.: Arizona Climate, University of Arizona
Press, Tucson, AZ, USA, 503 pp., 1964.
Hales Jr., J. E.: Surges of Maritime Tropical Air Northward Over Gulf of
California, Mon. Weather Rev., 100, 298–306,
https://doi.org/10.1175/1520-0493(1972)100<0298:SOMTAN>2.3.CO;2, 1972.
Higgins, R. W., Yao, Y., and Wang, X. L.: Influence of the North American
monsoon system on the U.S. Summer Precipitation Regime, J. Climate, 10,
2600–2622, https://doi.org/10.1175/1520-0442(1997)010<2600:IOTNAM>2.0.CO;2, 1997.
Higgins, R. W., Chen, Y., and Douglas, A. V.: Interannual variability of the
North American warm season precipitation regime, J. Climate, 12, 653–680,
https://doi.org/10.1175/1520-0442(1999)012<0653:IVOTNA>2.0.CO;2, 1999.
Higgins, R. W., Shi, W., and Hain, C.: Relationships between Gulf of
California Moisture Surges and Precipitation in the Southwestern United
States, J. Climate, 17, 2983–2997,
https://doi.org/10.1175/1520-0442(2004)017<2983:RBGOCM>2.0.CO;2, 2004.
Higgins, W. and Gochis, D.: Synthesis of results from the North American
Monsoon Experiment (NAME) process study, J. Climate, 20, 1601–1607,
https://doi.org/10.1175/JCLI4081.1, 2007.
Hoell, A., Funk, C., Barlow, M., and Shukla, S.: Recent and Possible Future
Variations in the North American Monsoon, in: The Monsoons and Climate
Change. Observations and Modeling, Springer Climate,
https://doi.org/10.1007/978-3-319-21650-8, 2016.
Hoyos, I., Dominguez, F., Canon-Barriga, J., Martinez, J. A., Nieto, R.,
Gimeno, P., and Dirmeyer, P. A.: Moisture origin and transport processes in
Colombia, northern South America, Clim. Dynam., 50, 971–990,
https://doi.org/10.1007/s00382-017-3653-6, 2018.
Hsu, P.-C.: Global Monsoon in a Changing Climate, in: The Monsoons and
Climate Change. Observations and Modeling, Springer Climate,
https://doi.org/10.1007/978-3-319-21650-8, 2016.
Hu, H., and Dominguez, F.: Evaluation of oceanic and terrestrial sources of
moisture for the North American monsoon using numerical models and
precipitation stable isotopes, J. Hydrometeor., 16, 19–35,
https://doi.org/10.1175/JHM-D-14-0073.1, 2015.
Huo-Po, C. and Jian-Qi, S.: How Large Precipitation Changes over Global
Monsoon Regions by CMIP5 Models?, Atmospheric and Oceanic Science Letters, 6,
306–311, 2013.
Jana, S., Rajagopalan, B., Alexander, M. A., and Ray, A. J.: Understanding
the dominant sources and tracks of moisture for summer rainfall in the
southwest United States, J. Geophys. Res.-Atmos, 123, 4850–4870,
https://doi.org/10.1029/2017JD027652, 2018.
Jurwitz, L. R.: Arizona's two-season rainfall pattern, Weatherwise, 6,
96–99, 1953.
Lahmers, T., Castro, C. L., Adams, D. K., Serra, Y. L., Brost, J. J., and
Luong, T.: Long-Term Changes in the Climatology of Transient Inverted Troughs
over the North American Monsoon Region and Their Effects on Precipitation,
J. Climate, 29, 6037–6064, https://doi.org/10.1175/JCLI-D-15-0726.1, 2016.
Lee, J.-Y. and Wang, B.: Future change of global monsoon in the CMIP5, Clim.
Dynam., 42, 101–119, https://doi.org/10.1007/s00382-012-1564-0, 2014.
Liu, J., Wang, B., Ding, Q., Kuang, X., Soon, W., and Zorita, E.: Centennial
variations of the global monsoon precipitation in the last millennium:
Results from ECHO-G model, J. Climate, 22, 2356–2371,
https://doi.org/10.1175/2008JCLI2353.1, 2009.
Liu, F., Chai, J., Wang, B., Liu, J., Zhang, X., and Wang, Z.: Global monsoon
precipitation responses to large volcanic eruptions, Nature Scientific
Reports, 6, 24331, https://doi.org/10.1038/srep24331, 2016.
Lorenz, C. and Kunstmann, H.: The hydrological cycle in three state of-
the-art reanalyses: Intercomparison and performance analysis, J
Hydrometeor., 13, 1397–1420, https://doi.org/10.1175/jhm-d-11-088.1, 2012.
Mendez-Barroso, L. A. and Vivoni, E. R.: Observed Shifts in Land Surface
Conditions during the North American Monsoon: Implications for a
Vegetation-Rainfall Feedback Mechanism, J. Arid Environ., 74, 549–555, 2010.
Méndez-Barroso, L. A., Vivoni, E. R., Watts, C. J., and Rodríguez,
J. C.: Seasonal and interannual relations between precipitation, surface soil
moisture and vegetation dynamics in the North American monsoon region, J.
Hydrol., 377, 59–70, 2009.
Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C.,
Ebisuzaki, W., Jovic, D., Woollen, J., Rogers, E., and Berbery, E. H.: North
American Regional Reanalysis, B. Am. Meteorol. Soc., 87, 343–360, 2006.
Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters,
A. G. C. A., and Dolman, A. J.: Global land-surface evaporation estimated
from satellite-based observations, Hydrol. Earth Syst. Sci., 15, 453–469,
https://doi.org/10.5194/hess-15-453-2011, 2011.
Miralles, D. G., Nieto, R., McDowell, N. G., Dorigo, W. A., Verhoest, N. E.
C., Liu, Y. Y., Teuling, A. J., Dolman, A. J., Good, S. P., and Gimeno, L.:
Contribution of water-limited ecoregions to their own supply of rainfall,
Environ. Res. Lett., 11, 124007, https://doi.org/10.1088/1748-9326/11/12/124007, 2016.
Mitchell, D. L., Ivanova, D., Rabin, R., Brown, T. J., and Redmond, K.: Gulf
of California sea surface temperatures and the North American monsoon:
Mechanistic implications from observations, J. Climate, 15, 2261–2281, 2002.
Mohtadi, M., Prange, M., and Steinke, S.: Palaeoclimatic insights into
forcing and response of monsoon rainfall, Nature, 533, 191–199,
https://doi.org/10.1038/nature17450, 2016.
Newman, A. and Johnson, R. H.: Mechanisms for Precipitation Enhancement in a
North American Monsoon Upper-Tropospheric Trough, J. Atmos. Sci., 69,
1775–1792, https://doi.org/10.1175/JAS-D-11-0223.1, 2012.
Newman, A. J. and Johnson, R. H.: Dynamics of a Simulated North American
Monsoon Gulf Surge Event, Mon. Weather Rev., 141, 3238–3253,
https://doi.org/10.1175/MWR-D-12-00294.1, 2013.
Ordoñez, P., Ribera, P., Gallego, D., and Peña-Ortiz. C.: Major
moisture sources for Western and Southern India and their role on
synoptic-scale rainfall events, Hydrol. Process., 26, 3886–3895,
https://doi.org/10.1002/hyp.8455, 2012.
Pascale, S. and Bordoni, S.: Tropical and extratropical controls of Gulf of
California surges and summertime precipitation over the southwestern United
States, Mon. Weather Rev., 144, 2695–2718, https://doi.org/10.1175/MWR-D-15-0429.1,
2016.
Pascale, S., Bordoni, S., Kapnick, S. B., Vechhi, G. A., Jia, L., Delworth,
T. L., Underwood, S., and Andersoon, W.: The Impact of Horizontal Resolution
on North American Monsoon Gulf of California Moisture Surges in a Suite of
Coupled Global Climate Models, J. Climate, 29, 7911–7944,
https://doi.org/10.1175/JCLI-D-16-0199.1, 2016.
Perdigón-Morales, J., Romero-Centeno, R., Ordoñez Perez, P., and
Barrett, B. S.: The midsummer drought in Mexico: perspectives on duration and
intensity from the CHIRPS precipitation database, Int. J. Climatol., 38,
2174–2186, https://doi.org/10.1002/joc.5322, 2018.
Pytlak, E., Goering, M., and Bennett, A.: Upper Tropospheric Troughs and
Their Interaction with the North American Monsoon, 19th Conf. on Hydrology,
9–13 January 2005, San Diego, CA, USA, Amer. Meteor. Soc., 1–5, available
at: https://ams.confex.com/ams/pdfpapers/85393.pdf (last access:
25 January 2019), 2005.
Ralph, F. M. and Galarneau Jr., T. J.: The Chiricahua Gap and the Role of
Easterly Water Vapor Transport in Southeastern Arizona Monsoon Precipitation,
J. Hydrometeorol., 18, 2511–2520, https://doi.org/10.1175/JHM-D-17-0031.1, 2017.
Ramage, C. S.: Monsoon meteorology. Academic Press, London, UK, p. 296, 1971.
Rogers, P. J. and Johnson, R. H.: Analysis of the 13–14 July Gulf Surge
Event during the 2004 North American Monsoon Experiment, Mon. Weather Rev.,
135, 3098–3117, https://doi.org/10.1175/MWR3450.1, 2007.
Ruprecht, E. and Kahl, T.: Investigation of the atmospheric water budget of
the BALTEX area using NCEP/NCAR reanalysis data, Tellus, 55A, 426–437,
2003.
Schiffer, N. J. and Nesbitt, S. W.: Flow, Moisture, and Thermodynamic
Variability Associated with Gulf of California Surges within the North
American Monsoon, J. Climate, 25, 4220–4241,
https://doi.org/10.1175/JCLI-D-11-00266.1, 2012.
Schmitz, J. T. and Mullen, S. L.: Water vapor transport associated with the
summertime North American monsoon as depicted by ECMWF analyses, J. Climate,
9, 1621–1634, 1996.
Seastrand, S., Serra, Y., Castro, C., and Ritchie, E.: The dominant
synoptic-scale modes of North American monsoon precipitation, Int. J.
Climatol., 35, 2019–2032, https://doi.org/10.1002/joc.4104, 2015.
Simmonds, I., Bi, D., and Hope, P.: Atmospheric Water Vapor Flux and Its
Association with Rainfall over China in Summer, J. Climate, 12, 1353–1367,
1999.
Stensrud, D. J., Gall, R. L., Mullen, S. L., and Howard, K. W.: Model
Climatology of the Mexican Monsoon, J. Climate, 8, 1775–1794, 1995.
Stensrud, D. J., Gall, R., and Nordquist, M. K.: Surges over the Gulf of
California during the Mexican Monsoon, Mon. Weather Rev., 125, 417–437,
1997.
Stohl, A. and James, P.: A Lagrangian analysis of the atmospheric branch of
the global water cycle. Part 1: Method description, validation, and
demonstration for the August 2002 flooding in central Europe, J.
Hydrometeorol., 5, 656–678, 2004.
Stohl, A. and James, P.: A Lagrangian analysis of the atmospheric branch of
the global water cycle. Part 2: Earth's river catchments, ocean basins, and
moisture transports between them, J. Hydrometeorol., 6, 961–984, 2005.
Stohl, A., Wotawa, G., Seibert, P., and Kromp-Kolb, H.: Interpolation errors
in wind fields as a function of spatial and temporal resolution and their
impact on different types of kinematic trajectories, J. Appl. Meteorol., 34,
2149–2165, 1995.
Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.: Technical
note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmos.
Chem. Phys., 5, 2461–2474, https://doi.org/10.5194/acp-5-2461-2005, 2005.
Trenberth, K. E., Fasullo, J. T., and Mackaro, J.: Atmospheric moisture
transports from ocean to land and global energy flows in reanalyses, J.
Climate, 24, 4907–4924, https://doi.org/10.1175/2011jcli4171.1, 2011.
Vera, C., Higgins, W., Amador, J., Ambrizzi, T., Garreaud, R., Gochis, D.,
Gutzler, D., Lettenmaier, D., Marengo, J., Mechoso, C. R., Nogues-Paegle, J.,
Silva Dias, P. L., and Zhang, C.: Toward a Unified View of the American
Monsoon Systems, J. Climate – Special Section, 19, 4977–4999, 2006.
Vivoni, E. R., Moreno, H. A., Mascaro, G., Rodríguez, J. C., Watts, C.
J., Garatuza-Payan, J., and Scott, R. L.: Observed Relation between
Evapotranspiration and Soil Moisture in the North American Monsoon Region,
Geophys. Res. Lett., 35, L22403, https://doi.org/10.1029/2008GL036001, 2008.
Wang, B. and Ding, Q.: Changes in global monsoon precipitation over the past
56 years, Geophys. Res. Lett., 33, L06711, https://doi.org/10.1029/2005GL025347,
2006.
Wang, B. and Ding, Q.: Global monsoon: dominant mode of annual variation in
the tropics, Dynam. Atmos. Oceans, 44, 165–183, 2008.
Wang, B., Liu, J., Kim, H. J., Webster, P. J., and Yim, S.-Y.: Recent change
of the global monsoon precipitation (1979–2008), Clim. Dynam., 39,
1123–1135, https://doi.org/10.1007/s00382-011-1266-z, 2012.
Wang, B., Li, J., Cane, M. A., Liu, J., Webster, P. J., Xiang, B., Kim,
H.-M., Cao, J., and Ha, K.-J.: Toward Predicting Changes in the Land Monsoon
Rainfall a Decade in Advance, J. Climate, 31, 2699–2714,
https://doi.org/10.1175/JCLI-D-17-0521.1, 2018.
Xiang, T., Vivoni, E. R., and Gochis, D. J.: Influence of Initial Soil
Moisture and Vegetation Conditions on Monsoon Precipitation Events in
Northwest Mexico, Atmosfera, 31, 25–45, 2018.
Short summary
The identification of moisture sources for a region is of prominent importance regarding the characterization of precipitation. In this work, the moisture sources for the western North American monsoon (WNAM) region are identified; these sources are the Gulf of California, the WNAM itself, eastern Mexico and the Caribbean Sea. We find that rainfall intensity over the WNAM region is related to the amount of moisture transported from the Caribbean Sea and eastern Mexico during the preceding days.
The identification of moisture sources for a region is of prominent importance regarding the...
Altmetrics
Final-revised paper
Preprint