Articles | Volume 8, issue 4
https://doi.org/10.5194/esd-8-921-2017
https://doi.org/10.5194/esd-8-921-2017
Research article
 | 
16 Oct 2017
Research article |  | 16 Oct 2017

Fractional governing equations of transient groundwater flow in confined aquifers with multi-fractional dimensions in fractional time

M. Levent Kavvas, Tongbi Tu, Ali Ercan, and James Polsinelli

Related authors

Ensemble modeling of the two-dimensional stochastic confined groundwater flow through the evolution of the hydraulic head's probability density function
Joaquin Meza and M. Levent Kavvas
EGUsphere, https://doi.org/10.31223/X5ND5B,https://doi.org/10.31223/X5ND5B, 2024
Preprint archived
Short summary
Fractional governing equations of transient groundwater flow in unconfined aquifers with multi-fractional dimensions in fractional time
M. Levent Kavvas, Tongbi Tu, Ali Ercan, and James Polsinelli
Earth Syst. Dynam., 11, 1–12, https://doi.org/10.5194/esd-11-1-2020,https://doi.org/10.5194/esd-11-1-2020, 2020
Short summary
Ensemble modeling of stochastic unsteady open-channel flow in terms of its time–space evolutionary probability distribution – Part 1: theoretical development
Alain Dib and M. Levent Kavvas
Hydrol. Earth Syst. Sci., 22, 1993–2005, https://doi.org/10.5194/hess-22-1993-2018,https://doi.org/10.5194/hess-22-1993-2018, 2018
Short summary
Ensemble modeling of stochastic unsteady open-channel flow in terms of its time–space evolutionary probability distribution – Part 2: numerical application
Alain Dib and M. Levent Kavvas
Hydrol. Earth Syst. Sci., 22, 2007–2021, https://doi.org/10.5194/hess-22-2007-2018,https://doi.org/10.5194/hess-22-2007-2018, 2018
Short summary
Maximization of the precipitation from tropical cyclones over a target area through physically based storm transposition
Mathieu Mure-Ravaud, Alain Dib, M. Levent Kavvas, and Elena Yegorova
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-665,https://doi.org/10.5194/hess-2017-665, 2018
Preprint withdrawn
Short summary

Related subject area

Dynamics of the Earth system: models
Stable stadial and interstadial states of the last glacial's climate identified in a combined stable water isotope and dust record from Greenland
Keno Riechers, Leonardo Rydin Gorjão, Forough Hassanibesheli, Pedro G. Lind, Dirk Witthaut, and Niklas Boers
Earth Syst. Dynam., 14, 593–607, https://doi.org/10.5194/esd-14-593-2023,https://doi.org/10.5194/esd-14-593-2023, 2023
Short summary
The modelled climatic response to the 18.6-year lunar nodal cycle and its role in decadal temperature trends
Manoj Joshi, Robert A. Hall, David P. Stevens, and Ed Hawkins
Earth Syst. Dynam., 14, 443–455, https://doi.org/10.5194/esd-14-443-2023,https://doi.org/10.5194/esd-14-443-2023, 2023
Short summary
The future of the El Niño–Southern Oscillation: using large ensembles to illuminate time-varying responses and inter-model differences
Nicola Maher, Robert C. Jnglin Wills, Pedro DiNezio, Jeremy Klavans, Sebastian Milinski, Sara C. Sanchez, Samantha Stevenson, Malte F. Stuecker, and Xian Wu
Earth Syst. Dynam., 14, 413–431, https://doi.org/10.5194/esd-14-413-2023,https://doi.org/10.5194/esd-14-413-2023, 2023
Short summary
Regime-oriented causal model evaluation of Atlantic–Pacific teleconnections in CMIP6
Soufiane Karmouche, Evgenia Galytska, Jakob Runge, Gerald A. Meehl, Adam S. Phillips, Katja Weigel, and Veronika Eyring
Earth Syst. Dynam., 14, 309–344, https://doi.org/10.5194/esd-14-309-2023,https://doi.org/10.5194/esd-14-309-2023, 2023
Short summary
Seasonal forecasting skill for the High Mountain Asia region in the Goddard Earth Observing System
Elias C. Massoud, Lauren Andrews, Rolf Reichle, Andrea Molod, Jongmin Park, Sophie Ruehr, and Manuela Girotto
Earth Syst. Dynam., 14, 147–171, https://doi.org/10.5194/esd-14-147-2023,https://doi.org/10.5194/esd-14-147-2023, 2023
Short summary

Cited articles

Atangana, A.: Drawdown in prolate spheroidal–spherical coordinates obtained via Green's function and perturbation methods, Commun. Nonlin. Sci. Numer. Simul., 19, 1259–1269, 2014.
Atangana, A. and Baleanu, D.: Modelling the advancement of the impurities and the melted oxygen concentration within the scope of fractional calculus, Int. J. Non-Lin. Mech., 67, 278–284, 2014.
Atangana, A. and Bildik, N.: The use of fractional order derivative to predict the groundwater flow, Math. Probl. Eng., 2013, 543026, https://doi.org/10.1155/2013/543026, 2013.
Atangana, A. and Vermeulen, P.: Analytical solutions of a space-time fractional derivative of groundwater flow equation, Abstr. Appl. Anal., 2014, 381753, https://doi.org/10.1155/2014/381753, 2014.
Baeumer, B. and Meerschaert, M.: Fractional diffusion with two time scales, Physica A, 373, 237–251, 2007.
Download
Short summary
A dimensionally consistent governing equation of transient, saturated groundwater flow in fractional time in a multi-fractional confined aquifer is developed. First a continuity equation for groundwater flow in fractional time and in a multi-fractional, multidimensional confined aquifer is developed. An equation of water flux is also developed. The governing equation of transient groundwater flow in a multi-fractional, multidimensional confined aquifer in fractional time is then obtained.
Altmetrics
Final-revised paper
Preprint