Articles | Volume 14, issue 3
https://doi.org/10.5194/esd-14-593-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-14-593-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Stable stadial and interstadial states of the last glacial's climate identified in a combined stable water isotope and dust record from Greenland
Keno Riechers
CORRESPONDING AUTHOR
Research Domain IV – Complexity Science, Potsdam Institute for Climate Impact Research,
Telegrafenberg A31, 14473 Potsdam, Germany
Earth System Modelling, School of Engineering & Design, Technical University of Munich, 80333 Munich, Germany
Leonardo Rydin Gorjão
Faculty of Science and Technology, Norwegian University of Life Sciences, 1432 Ås, Norway
Institute of Energy and Climate Research, Forschungszentrum Jülich, 52428 Jülich, Germany
Institute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany
Institute of Networked Energy Systems, German Aerospace Center (DLR), 26129 Oldenburg, Germany
Forough Hassanibesheli
Earth System Modelling, Helmholtz Centre Potsdam, GFZ German Research Center for
Geosciences, 14473 Potsdam, Germany
Pedro G. Lind
Department of Computer Science, OsloMet – Oslo Metropolitan University, 0130 Oslo, Norway
NordSTAR – Nordic Center for Sustainable and Trustworthy AI Research, 0166 Oslo, Norway
Artificial Intelligence Lab, Oslo Metropolitan University, 0166 Oslo, Norway
Dirk Witthaut
Institute of Energy and Climate Research, Forschungszentrum Jülich, 52428 Jülich, Germany
Institute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany
Niklas Boers
Earth System Modelling, School of Engineering & Design, Technical University of Munich, 80333 Munich, Germany
Research Domain IV – Complexity Science, Potsdam Institute for Climate Impact Research,
Telegrafenberg A31, 14473 Potsdam, Germany
Global Systems Institute, Department of Mathematics, University of Exeter, EX4 4QF Exeter, UK
Related authors
John Slattery, Louise C. Sime, Francesco Muschitiello, and Keno Riechers
Clim. Past, 20, 2431–2454, https://doi.org/10.5194/cp-20-2431-2024, https://doi.org/10.5194/cp-20-2431-2024, 2024
Short summary
Short summary
Dansgaard–Oeschger events are a series of abrupt past climate change events during which the atmosphere, sea ice, and ocean in the North Atlantic underwent rapid changes. One current topic of interest is the order in which these different changes occurred, which remains unknown. In this work, we find that the current best method used to investigate this topic is subject to substantial bias. This implies that it is not possible to reliably determine the order of the different changes.
Eirik Myrvoll-Nilsen, Keno Riechers, Martin Wibe Rypdal, and Niklas Boers
Clim. Past, 18, 1275–1294, https://doi.org/10.5194/cp-18-1275-2022, https://doi.org/10.5194/cp-18-1275-2022, 2022
Short summary
Short summary
In layer counted proxy records each measurement is accompanied by a timestamp typically measured by counting periodic layers. Knowledge of the uncertainty of this timestamp is important for a rigorous propagation to further analyses. By assuming a Bayesian regression model to the layer increments we express the dating uncertainty by the posterior distribution, from which chronologies can be sampled efficiently. We apply our framework to dating abrupt warming transitions during the last glacial.
Keno Riechers, Takahito Mitsui, Niklas Boers, and Michael Ghil
Clim. Past, 18, 863–893, https://doi.org/10.5194/cp-18-863-2022, https://doi.org/10.5194/cp-18-863-2022, 2022
Short summary
Short summary
Building upon Milancovic's theory of orbital forcing, this paper reviews the interplay between intrinsic variability and external forcing in the emergence of glacial interglacial cycles. It provides the reader with historical background information and with basic theoretical concepts used in recent paleoclimate research. Moreover, it presents new results which confirm the reduced stability of glacial-cycle dynamics after the mid-Pleistocene transition.
Keno Riechers and Niklas Boers
Clim. Past, 17, 1751–1775, https://doi.org/10.5194/cp-17-1751-2021, https://doi.org/10.5194/cp-17-1751-2021, 2021
Short summary
Short summary
Greenland ice core data show that the last glacial cycle was punctuated by a series of abrupt climate shifts comprising significant warming over Greenland, retreat of North Atlantic sea ice, and atmospheric reorganization. Statistical analysis of multi-proxy records reveals no systematic lead or lag between the transitions of proxies that represent different climatic subsystems, and hence no evidence for a potential trigger of these so-called Dansgaard–Oeschger events can be found.
John Slattery, Louise C. Sime, Francesco Muschitiello, and Keno Riechers
Clim. Past, 20, 2431–2454, https://doi.org/10.5194/cp-20-2431-2024, https://doi.org/10.5194/cp-20-2431-2024, 2024
Short summary
Short summary
Dansgaard–Oeschger events are a series of abrupt past climate change events during which the atmosphere, sea ice, and ocean in the North Atlantic underwent rapid changes. One current topic of interest is the order in which these different changes occurred, which remains unknown. In this work, we find that the current best method used to investigate this topic is subject to substantial bias. This implies that it is not possible to reliably determine the order of the different changes.
Vasilis Dakos, Chris A. Boulton, Joshua E. Buxton, Jesse F. Abrams, Beatriz Arellano-Nava, David I. Armstrong McKay, Sebastian Bathiany, Lana Blaschke, Niklas Boers, Daniel Dylewsky, Carlos López-Martínez, Isobel Parry, Paul Ritchie, Bregje van der Bolt, Larissa van der Laan, Els Weinans, and Sonia Kéfi
Earth Syst. Dynam., 15, 1117–1135, https://doi.org/10.5194/esd-15-1117-2024, https://doi.org/10.5194/esd-15-1117-2024, 2024
Short summary
Short summary
Tipping points are abrupt, rapid, and sometimes irreversible changes, and numerous approaches have been proposed to detect them in advance. Such approaches have been termed early warning signals and represent a set of methods for identifying changes in the underlying behaviour of a system across time or space that might indicate an approaching tipping point. Here, we review the literature to explore where, how, and which early warnings have been used in real-world case studies so far.
Nils Bochow, Anna Poltronieri, and Niklas Boers
EGUsphere, https://doi.org/10.5194/egusphere-2024-1597, https://doi.org/10.5194/egusphere-2024-1597, 2024
Short summary
Short summary
Using the latest climate models, we update the understanding of how the Greenland ice sheet responds to climate changes. We found that precipitation and temperature changes in Greenland vary across different regions. Our findings suggest that using uniform estimates for temperature and precipitation for modelling the response of the ice sheet can overestimate ice loss in Greenland. Therefore, this study highlights the need for spatially resolved data in predicting the ice sheet's future.
Maya Ben-Yami, Lana Blaschke, Sebastian Bathiany, and Niklas Boers
EGUsphere, https://doi.org/10.5194/egusphere-2024-1106, https://doi.org/10.5194/egusphere-2024-1106, 2024
Preprint archived
Short summary
Short summary
Recent work has used observations to find statistical signs that the Atlantic Meridional Overturning Circulation (AMOC) may be approaching a collapse. We find that in complex climate models in which the AMOC does not collapse before 2100, the statistical signs that are present in the observations are not found in the 1850–2014 equivalent model time series. This indicates that the observed statistical signs are not prone to false positives.
Takahito Mitsui and Niklas Boers
Clim. Past, 20, 683–699, https://doi.org/10.5194/cp-20-683-2024, https://doi.org/10.5194/cp-20-683-2024, 2024
Short summary
Short summary
In general, the variance and short-lag autocorrelations of the fluctuations increase in a system approaching a critical transition. Using these indicators, we identify statistical precursor signals for the Dansgaard–Oeschger cooling events recorded in two climatic proxies of three Greenland ice core records. We then provide a dynamical systems theory that bridges the gap between observing statistical precursor signals and the physical precursor signs empirically known in paleoclimate research.
Takahito Mitsui, Matteo Willeit, and Niklas Boers
Earth Syst. Dynam., 14, 1277–1294, https://doi.org/10.5194/esd-14-1277-2023, https://doi.org/10.5194/esd-14-1277-2023, 2023
Short summary
Short summary
The glacial–interglacial cycles of the Quaternary exhibit 41 kyr periodicity before the Mid-Pleistocene Transition (MPT) around 1.2–0.8 Myr ago and ~100 kyr periodicity after that. The mechanism generating these periodicities remains elusive. Through an analysis of an Earth system model of intermediate complexity, CLIMBER-2, we show that the dominant periodicities of glacial cycles can be explained from the viewpoint of synchronization theory.
Sara M. Vallejo-Bernal, Frederik Wolf, Niklas Boers, Dominik Traxl, Norbert Marwan, and Jürgen Kurths
Hydrol. Earth Syst. Sci., 27, 2645–2660, https://doi.org/10.5194/hess-27-2645-2023, https://doi.org/10.5194/hess-27-2645-2023, 2023
Short summary
Short summary
Employing event synchronization and complex networks analysis, we reveal a cascade of heavy rainfall events, related to intense atmospheric rivers (ARs): heavy precipitation events (HPEs) in western North America (NA) that occur in the aftermath of land-falling ARs are synchronized with HPEs in central and eastern Canada with a delay of up to 12 d. Understanding the effects of ARs in the rainfall over NA will lead to better anticipating the evolution of the climate dynamics in the region.
Maximilian Gelbrecht, Alistair White, Sebastian Bathiany, and Niklas Boers
Geosci. Model Dev., 16, 3123–3135, https://doi.org/10.5194/gmd-16-3123-2023, https://doi.org/10.5194/gmd-16-3123-2023, 2023
Short summary
Short summary
Differential programming is a technique that enables the automatic computation of derivatives of the output of models with respect to model parameters. Applying these techniques to Earth system modeling leverages the increasing availability of high-quality data to improve the models themselves. This can be done by either using calibration techniques that use gradient-based optimization or incorporating machine learning methods that can learn previously unresolved influences directly from data.
Taylor Smith, Ruxandra-Maria Zotta, Chris A. Boulton, Timothy M. Lenton, Wouter Dorigo, and Niklas Boers
Earth Syst. Dynam., 14, 173–183, https://doi.org/10.5194/esd-14-173-2023, https://doi.org/10.5194/esd-14-173-2023, 2023
Short summary
Short summary
Multi-instrument records with varying signal-to-noise ratios are becoming increasingly common as legacy sensors are upgraded, and data sets are modernized. Induced changes in higher-order statistics such as the autocorrelation and variance are not always well captured by cross-calibration schemes. Here we investigate using synthetic examples how strong resulting biases can be and how they can be avoided in order to make reliable statements about changes in the resilience of a system.
Eirik Myrvoll-Nilsen, Keno Riechers, Martin Wibe Rypdal, and Niklas Boers
Clim. Past, 18, 1275–1294, https://doi.org/10.5194/cp-18-1275-2022, https://doi.org/10.5194/cp-18-1275-2022, 2022
Short summary
Short summary
In layer counted proxy records each measurement is accompanied by a timestamp typically measured by counting periodic layers. Knowledge of the uncertainty of this timestamp is important for a rigorous propagation to further analyses. By assuming a Bayesian regression model to the layer increments we express the dating uncertainty by the posterior distribution, from which chronologies can be sampled efficiently. We apply our framework to dating abrupt warming transitions during the last glacial.
Keno Riechers, Takahito Mitsui, Niklas Boers, and Michael Ghil
Clim. Past, 18, 863–893, https://doi.org/10.5194/cp-18-863-2022, https://doi.org/10.5194/cp-18-863-2022, 2022
Short summary
Short summary
Building upon Milancovic's theory of orbital forcing, this paper reviews the interplay between intrinsic variability and external forcing in the emergence of glacial interglacial cycles. It provides the reader with historical background information and with basic theoretical concepts used in recent paleoclimate research. Moreover, it presents new results which confirm the reduced stability of glacial-cycle dynamics after the mid-Pleistocene transition.
Keno Riechers and Niklas Boers
Clim. Past, 17, 1751–1775, https://doi.org/10.5194/cp-17-1751-2021, https://doi.org/10.5194/cp-17-1751-2021, 2021
Short summary
Short summary
Greenland ice core data show that the last glacial cycle was punctuated by a series of abrupt climate shifts comprising significant warming over Greenland, retreat of North Atlantic sea ice, and atmospheric reorganization. Statistical analysis of multi-proxy records reveals no systematic lead or lag between the transitions of proxies that represent different climatic subsystems, and hence no evidence for a potential trigger of these so-called Dansgaard–Oeschger events can be found.
Charlotte Neubacher, Dirk Witthaut, and Jan Wohland
Adv. Geosci., 54, 205–215, https://doi.org/10.5194/adgeo-54-205-2021, https://doi.org/10.5194/adgeo-54-205-2021, 2021
Short summary
Short summary
In our study, we investigate the variability of potential offshore wind power over Europe on time scales of more than 10 years. Detailed spectral analysis of potential offshore wind power capacities over the last century indicates a strong coupling to large climate patterns such as the NAO. Furthermore, combining the wind power potential at the German North Sea and the Portuguese Atlantic coast shows that the variability can be mitigated.
Denis-Didier Rousseau, Pierre Antoine, Niklas Boers, France Lagroix, Michael Ghil, Johanna Lomax, Markus Fuchs, Maxime Debret, Christine Hatté, Olivier Moine, Caroline Gauthier, Diana Jordanova, and Neli Jordanova
Clim. Past, 16, 713–727, https://doi.org/10.5194/cp-16-713-2020, https://doi.org/10.5194/cp-16-713-2020, 2020
Short summary
Short summary
New investigations of European loess records from MIS 6 reveal the occurrence of paleosols and horizon showing slight pedogenesis similar to those from the last climatic cycle. These units are correlated with interstadials described in various marine, continental, and ice Northern Hemisphere records. Therefore, these MIS 6 interstadials can confidently be interpreted as DO-like events of the penultimate climate cycle.
Jan Wohland, Nour Eddine Omrani, Noel Keenlyside, and Dirk Witthaut
Wind Energ. Sci., 4, 515–526, https://doi.org/10.5194/wes-4-515-2019, https://doi.org/10.5194/wes-4-515-2019, 2019
Short summary
Short summary
Wind park planning and power system design require robust wind resource information. While most assessments are restricted to the last four decades, we use centennial reanalyses to study wind energy generation variability in Germany. We find that statistically significant multi-decadal variability exists. These long-term effects must be considered when planning future highly renewable power systems. Otherwise, there is a risk of inefficient system design and ill-informed investments.
Niklas Boers, Mickael D. Chekroun, Honghu Liu, Dmitri Kondrashov, Denis-Didier Rousseau, Anders Svensson, Matthias Bigler, and Michael Ghil
Earth Syst. Dynam., 8, 1171–1190, https://doi.org/10.5194/esd-8-1171-2017, https://doi.org/10.5194/esd-8-1171-2017, 2017
Short summary
Short summary
We use a Bayesian approach for inferring inverse, stochastic–dynamic models from northern Greenland (NGRIP) oxygen and dust records of subdecadal resolution for the interval 59 to 22 ka b2k. Our model reproduces the statistical and dynamical characteristics of the records, including the Dansgaard–Oeschger variability, with no need for external forcing. The crucial ingredients are cubic drift terms, nonlinear coupling terms between the oxygen and dust time series, and non-Markovian contributions.
Jan Wohland, Mark Reyers, Juliane Weber, and Dirk Witthaut
Earth Syst. Dynam., 8, 1047–1060, https://doi.org/10.5194/esd-8-1047-2017, https://doi.org/10.5194/esd-8-1047-2017, 2017
Short summary
Short summary
Solar and wind energy generation are weather dependent and can not be switched on when needed. Despite this, stable electricity supply can be obtained by aggregation over large areas, for example Europe. However, we show that strong climate change impedes spatial balancing of electricity because countries are more likely to suffer from simultaneous generation shortfall. As a consequence, local scarcity can less often be balanced by imports.
Denis-Didier Rousseau, Anders Svensson, Matthias Bigler, Adriana Sima, Jorgen Peder Steffensen, and Niklas Boers
Clim. Past, 13, 1181–1197, https://doi.org/10.5194/cp-13-1181-2017, https://doi.org/10.5194/cp-13-1181-2017, 2017
Short summary
Short summary
We show that the analysis of δ18O and dust in the Greenland ice cores, and a critical study of their source variations, reconciles these records with those observed on the Eurasian continent. We demonstrate the link between European and Chinese loess sequences, dust records in Greenland, and variations in the North Atlantic sea ice extent. The sources of the emitted and transported dust material are variable and relate to different environments.
Niklas Boers, Bedartha Goswami, and Michael Ghil
Clim. Past, 13, 1169–1180, https://doi.org/10.5194/cp-13-1169-2017, https://doi.org/10.5194/cp-13-1169-2017, 2017
Short summary
Short summary
We introduce a Bayesian framework to represent layer-counted proxy records as probability distributions on error-free time axes, accounting for both proxy and dating errors. Our method is applied to NGRIP δ18O data, revealing that the cumulative dating errors lead to substantial uncertainties for the older parts of the record. Applying our method to the widely used radiocarbon comparison curve derived from varved sediments of Lake Suigetsu provides the complete uncertainties of this curve.
Related subject area
Dynamics of the Earth system: models
The modelled climatic response to the 18.6-year lunar nodal cycle and its role in decadal temperature trends
The future of the El Niño–Southern Oscillation: using large ensembles to illuminate time-varying responses and inter-model differences
Regime-oriented causal model evaluation of Atlantic–Pacific teleconnections in CMIP6
Seasonal forecasting skill for the High Mountain Asia region in the Goddard Earth Observing System
Assessing sensitivities of climate model weighting to multiple methods, variables, and domains in the south-central United States
Global and northern-high-latitude net ecosystem production in the 21st century from CMIP6 experiments
Potential for bias in effective climate sensitivity from state-dependent energetic imbalance
Regional dynamical and statistical downscaling temperature, humidity and wind speed for the Beijing region under stratospheric aerosol injection geoengineering
Process-based estimate of global-mean sea-level changes in the Common Era
Present and future European heat wave magnitudes: climatologies, trends, and their associated uncertainties in GCM-RCM model chains
Improving the prediction of the Madden–Julian Oscillation of the ECMWF model by post-processing
Estimating the lateral transfer of organic carbon through the European river network using a land surface model
Effect of the Atlantic Meridional Overturning Circulation on atmospheric pCO2 variations
A methodology for the spatiotemporal identification of compound hazards: wind and precipitation extremes in Great Britain (1979–2019)
MESMER-M: an Earth system model emulator for spatially resolved monthly temperature
Evaluation of convection-permitting extreme precipitation simulations for the south of France
Agricultural management effects on mean and extreme temperature trends
Weakened impact of the Atlantic Niño on the future equatorial Atlantic and Guinea Coast rainfall
The fractional energy balance equation for climate projections through 2100
Climate change in the High Mountain Asia in CMIP6
The sensitivity of the El Niño–Southern Oscillation to volcanic aerosol spatial distribution in the MPI Grand Ensemble
Coupled regional Earth system modeling in the Baltic Sea region
Climate change projections of terrestrial primary productivity over the Hindu Kush Himalayan forests
Bookkeeping estimates of the net land-use change flux – a sensitivity study with the CMIP6 land-use dataset
Climate-controlled root zone parameters show potential to improve water flux simulations by land surface models
Space–time dependence of compound hot–dry events in the United States: assessment using a multi-site multi-variable weather generator
First assessment of the earth heat inventory within CMIP5 historical simulations
The thermal response of small and shallow lakes to climate change: new insights from 3D hindcast modelling
Labrador Sea subsurface density as a precursor of multidecadal variability in the North Atlantic: a multi-model study
How modelling paradigms affect simulated future land use change
Identifying meteorological drivers of extreme impacts: an application to simulated crop yields
Simulating compound weather extremes responsible for critical crop failure with stochastic weather generators
Characterisation of Atlantic meridional overturning hysteresis using Langevin dynamics
Evaluating the dependence structure of compound precipitation and wind speed extremes
Future sea level contribution from Antarctica inferred from CMIP5 model forcing and its dependence on precipitation ansatz
The extremely warm summer of 2018 in Sweden – set in a historical context
Effect of changing ocean circulation on deep ocean temperature in the last millennium
How large does a large ensemble need to be?
Reconstructing coupled time series in climate systems using three kinds of machine-learning methods
An investigation of weighting schemes suitable for incorporating large ensembles into multi-model ensembles
What could we learn about climate sensitivity from variability in the surface temperature record?
Using a nested single-model large ensemble to assess the internal variability of the North Atlantic Oscillation and its climatic implications for central Europe
Climate change in a conceptual atmosphere–phytoplankton model
Variability of surface climate in simulations of past and future
Statistical estimation of global surface temperature response to forcing under the assumption of temporal scaling
Emulating Earth system model temperatures with MESMER: from global mean temperature trajectories to grid-point-level realizations on land
A global semi-empirical glacial isostatic adjustment (GIA) model based on Gravity Recovery and Climate Experiment (GRACE) data
Improvement in the decadal prediction skill of the North Atlantic extratropical winter circulation through increased model resolution
Societal breakdown as an emergent property of large-scale behavioural models of land use change
Improving weather and climate predictions by training of supermodels
Manoj Joshi, Robert A. Hall, David P. Stevens, and Ed Hawkins
Earth Syst. Dynam., 14, 443–455, https://doi.org/10.5194/esd-14-443-2023, https://doi.org/10.5194/esd-14-443-2023, 2023
Short summary
Short summary
The 18.6-year lunar nodal cycle arises from variations in the angle of the Moon's orbital plane and affects ocean tides. In this work we use a climate model to examine the effect of this cycle on the ocean, surface, and atmosphere. The timing of anomalies is consistent with the so-called slowdown in global warming and has implications for when global temperatures will exceed 1.5 ℃ above pre-industrial levels. Regional anomalies have implications for seasonal climate areas such as Europe.
Nicola Maher, Robert C. Jnglin Wills, Pedro DiNezio, Jeremy Klavans, Sebastian Milinski, Sara C. Sanchez, Samantha Stevenson, Malte F. Stuecker, and Xian Wu
Earth Syst. Dynam., 14, 413–431, https://doi.org/10.5194/esd-14-413-2023, https://doi.org/10.5194/esd-14-413-2023, 2023
Short summary
Short summary
Understanding whether the El Niño–Southern Oscillation (ENSO) is likely to change in the future is important due to its widespread impacts. By using large ensembles, we can robustly isolate the time-evolving response of ENSO variability in 14 climate models. We find that ENSO variability evolves in a nonlinear fashion in many models and that there are large differences between models. These nonlinear changes imply that ENSO impacts may vary dramatically throughout the 21st century.
Soufiane Karmouche, Evgenia Galytska, Jakob Runge, Gerald A. Meehl, Adam S. Phillips, Katja Weigel, and Veronika Eyring
Earth Syst. Dynam., 14, 309–344, https://doi.org/10.5194/esd-14-309-2023, https://doi.org/10.5194/esd-14-309-2023, 2023
Short summary
Short summary
This study uses a causal discovery method to evaluate the ability of climate models to represent the interactions between the Atlantic multidecadal variability (AMV) and the Pacific decadal variability (PDV). The approach and findings in this study present a powerful methodology that can be applied to a number of environment-related topics, offering tremendous insights to improve the understanding of the complex Earth system and the state of the art of climate modeling.
Elias C. Massoud, Lauren Andrews, Rolf Reichle, Andrea Molod, Jongmin Park, Sophie Ruehr, and Manuela Girotto
Earth Syst. Dynam., 14, 147–171, https://doi.org/10.5194/esd-14-147-2023, https://doi.org/10.5194/esd-14-147-2023, 2023
Short summary
Short summary
In this study, we benchmark the forecast skill of the NASA’s Goddard Earth Observing System subseasonal-to-seasonal (GEOS-S2S version 2) hydrometeorological forecasts in the High Mountain Asia (HMA) region. Hydrometeorological forecast skill is dependent on the forecast lead time, the memory of the variable within the physical system, and the validation dataset used. Overall, these results benchmark the GEOS-S2S system’s ability to forecast HMA hydrometeorology on the seasonal timescale.
Adrienne M. Wootten, Elias C. Massoud, Duane E. Waliser, and Huikyo Lee
Earth Syst. Dynam., 14, 121–145, https://doi.org/10.5194/esd-14-121-2023, https://doi.org/10.5194/esd-14-121-2023, 2023
Short summary
Short summary
Climate projections and multi-model ensemble weighting are increasingly used for climate assessments. This study examines the sensitivity of projections to multi-model ensemble weighting strategies in the south-central United States. Model weighting and ensemble means are sensitive to the domain and variable used. There are numerous findings regarding the improvement in skill with model weighting and the sensitivity associated with various strategies.
Han Qiu, Dalei Hao, Yelu Zeng, Xuesong Zhang, and Min Chen
Earth Syst. Dynam., 14, 1–16, https://doi.org/10.5194/esd-14-1-2023, https://doi.org/10.5194/esd-14-1-2023, 2023
Short summary
Short summary
The carbon cycling in terrestrial ecosystems is complex. In our analyses, we found that both the global and the northern-high-latitude (NHL) ecosystems will continue to have positive net ecosystem production (NEP) in the next few decades under four global change scenarios but with large uncertainties. NHL ecosystems will experience faster climate warming but steadily contribute a small fraction of the global NEP. However, the relative uncertainty of NHL NEP is much larger than the global values.
Benjamin M. Sanderson and Maria Rugenstein
Earth Syst. Dynam., 13, 1715–1736, https://doi.org/10.5194/esd-13-1715-2022, https://doi.org/10.5194/esd-13-1715-2022, 2022
Short summary
Short summary
Equilibrium climate sensitivity (ECS) is a measure of how much long-term warming should be expected in response to a change in greenhouse gas concentrations. It is generally calculated in climate models by extrapolating global average temperatures to a point of where the planet is no longer a net absorber of energy. Here we show that some climate models experience energy leaks which change as the planet warms, undermining the standard approach and biasing some existing model estimates of ECS.
Jun Wang, John C. Moore, Liyun Zhao, Chao Yue, and Zhenhua Di
Earth Syst. Dynam., 13, 1625–1640, https://doi.org/10.5194/esd-13-1625-2022, https://doi.org/10.5194/esd-13-1625-2022, 2022
Short summary
Short summary
We examine how geoengineering using aerosols in the atmosphere might impact urban climate in the greater Beijing region containing over 50 million people. Climate models have too coarse resolutions to resolve regional variations well, so we compare two workarounds for this – an expensive physical model and a cheaper statistical method. The statistical method generally gives a reasonable representation of climate and has limited resolution and a different seasonality from the physical model.
Nidheesh Gangadharan, Hugues Goosse, David Parkes, Heiko Goelzer, Fabien Maussion, and Ben Marzeion
Earth Syst. Dynam., 13, 1417–1435, https://doi.org/10.5194/esd-13-1417-2022, https://doi.org/10.5194/esd-13-1417-2022, 2022
Short summary
Short summary
We describe the contributions of ocean thermal expansion and land-ice melting (ice sheets and glaciers) to global-mean sea-level (GMSL) changes in the Common Era. The mass contributions are the major sources of GMSL changes in the pre-industrial Common Era and glaciers are the largest contributor. The paper also describes the current state of climate modelling, uncertainties and knowledge gaps along with the potential implications of the past variabilities in the contemporary sea-level rise.
Changgui Lin, Erik Kjellström, Renate Anna Irma Wilcke, and Deliang Chen
Earth Syst. Dynam., 13, 1197–1214, https://doi.org/10.5194/esd-13-1197-2022, https://doi.org/10.5194/esd-13-1197-2022, 2022
Short summary
Short summary
This study endorses RCMs' added value on the driving GCMs in representing observed heat wave magnitudes. The future increase of heat wave magnitudes projected by GCMs is attenuated when downscaled by RCMs. Within the downscaling, uncertainties can be attributed almost equally to choice of RCMs and to the driving data associated with different GCMs. Uncertainties of GCMs in simulating heat wave magnitudes are transformed by RCMs in a complex manner rather than simply inherited.
Riccardo Silini, Sebastian Lerch, Nikolaos Mastrantonas, Holger Kantz, Marcelo Barreiro, and Cristina Masoller
Earth Syst. Dynam., 13, 1157–1165, https://doi.org/10.5194/esd-13-1157-2022, https://doi.org/10.5194/esd-13-1157-2022, 2022
Short summary
Short summary
The Madden–Julian Oscillation (MJO) has important socioeconomic impacts due to its influence on both tropical and extratropical weather extremes. In this study, we use machine learning (ML) to correct the predictions of the weather model holding the best performance, developed by the European Centre for Medium-Range Weather Forecasts (ECMWF). We show that the ML post-processing leads to an improved prediction of the MJO geographical location and intensity.
Haicheng Zhang, Ronny Lauerwald, Pierre Regnier, Philippe Ciais, Kristof Van Oost, Victoria Naipal, Bertrand Guenet, and Wenping Yuan
Earth Syst. Dynam., 13, 1119–1144, https://doi.org/10.5194/esd-13-1119-2022, https://doi.org/10.5194/esd-13-1119-2022, 2022
Short summary
Short summary
We present a land surface model which can simulate the complete lateral transfer of sediment and carbon from land to ocean through rivers. Our model captures the water, sediment, and organic carbon discharges in European rivers well. Application of our model in Europe indicates that lateral carbon transfer can strongly change regional land carbon budgets by affecting organic carbon distribution and soil moisture.
Amber Boot, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 13, 1041–1058, https://doi.org/10.5194/esd-13-1041-2022, https://doi.org/10.5194/esd-13-1041-2022, 2022
Short summary
Short summary
Atmospheric pCO2 of the past shows large variability on different timescales. We focus on the effect of the strength of Atlantic Meridional Overturning Circulation (AMOC) on this variability and on the AMOC–pCO2 relationship. We find that climatic boundary conditions and the representation of biology in our model are most important for this relationship. Under certain conditions, we find internal oscillations, which can be relevant for atmospheric pCO2 variability during glacial cycles.
Aloïs Tilloy, Bruce D. Malamud, and Amélie Joly-Laugel
Earth Syst. Dynam., 13, 993–1020, https://doi.org/10.5194/esd-13-993-2022, https://doi.org/10.5194/esd-13-993-2022, 2022
Short summary
Short summary
Compound hazards occur when two different natural hazards impact the same time period and spatial area. This article presents a methodology for the spatiotemporal identification of compound hazards (SI–CH). The methodology is applied to compound precipitation and wind extremes in Great Britain for the period 1979–2019. The study finds that the SI–CH approach can accurately identify single and compound hazard events and represent their spatial and temporal properties.
Shruti Nath, Quentin Lejeune, Lea Beusch, Sonia I. Seneviratne, and Carl-Friedrich Schleussner
Earth Syst. Dynam., 13, 851–877, https://doi.org/10.5194/esd-13-851-2022, https://doi.org/10.5194/esd-13-851-2022, 2022
Short summary
Short summary
Uncertainty within climate model projections on inter-annual timescales is largely affected by natural climate variability. Emulators are valuable tools for approximating climate model runs, allowing for easy exploration of such uncertainty spaces. This study takes a first step at building a spatially resolved, monthly temperature emulator that takes local yearly temperatures as the sole input, thus providing monthly temperature distributions which are of critical value to impact assessments.
Linh N. Luu, Robert Vautard, Pascal Yiou, and Jean-Michel Soubeyroux
Earth Syst. Dynam., 13, 687–702, https://doi.org/10.5194/esd-13-687-2022, https://doi.org/10.5194/esd-13-687-2022, 2022
Short summary
Short summary
This study downscales climate information from EURO-CORDEX (approx. 12 km) output to a higher horizontal resolution (approx. 3 km) for the south of France. We also propose a matrix of different indices to evaluate the high-resolution precipitation output. We find that a higher resolution reproduces more realistic extreme precipitation events at both daily and sub-daily timescales. Our results and approach are promising to apply to other Mediterranean regions and climate impact studies.
Aine M. Gormley-Gallagher, Sebastian Sterl, Annette L. Hirsch, Sonia I. Seneviratne, Edouard L. Davin, and Wim Thiery
Earth Syst. Dynam., 13, 419–438, https://doi.org/10.5194/esd-13-419-2022, https://doi.org/10.5194/esd-13-419-2022, 2022
Short summary
Short summary
Our results show that agricultural management can impact the local climate and highlight the need to evaluate land management in climate models. We use regression analysis on climate simulations and observations to assess irrigation and conservation agriculture impacts on warming trends. This allowed us to distinguish between the effects of land management and large-scale climate forcings such as rising CO2 concentrations and thus gain insight into the impacts under different climate regimes.
Koffi Worou, Hugues Goosse, Thierry Fichefet, and Fred Kucharski
Earth Syst. Dynam., 13, 231–249, https://doi.org/10.5194/esd-13-231-2022, https://doi.org/10.5194/esd-13-231-2022, 2022
Short summary
Short summary
Over the Guinea Coast, the increased rainfall associated with warm phases of the Atlantic Niño is reasonably well simulated by 24 climate models out of 31, for the present-day conditions. In a warmer climate, general circulation models project a gradual decrease with time of the rainfall magnitude associated with the Atlantic Niño for the 2015–2039, 2040–2069 and 2070–2099 periods. There is a higher confidence in these changes over the equatorial Atlantic than over the Guinea Coast.
Roman Procyk, Shaun Lovejoy, and Raphael Hébert
Earth Syst. Dynam., 13, 81–107, https://doi.org/10.5194/esd-13-81-2022, https://doi.org/10.5194/esd-13-81-2022, 2022
Short summary
Short summary
This paper presents a new class of energy balance model that accounts for the long memory within the Earth's energy storage. The model is calibrated on instrumental temperature records and the historical energy budget of the Earth using an error model predicted by the model itself. Our equilibrium climate sensitivity and future temperature projection estimates are consistent with those estimated by complex climate models.
Mickaël Lalande, Martin Ménégoz, Gerhard Krinner, Kathrin Naegeli, and Stefan Wunderle
Earth Syst. Dynam., 12, 1061–1098, https://doi.org/10.5194/esd-12-1061-2021, https://doi.org/10.5194/esd-12-1061-2021, 2021
Short summary
Short summary
Climate change over High Mountain Asia is investigated with CMIP6 climate models. A general cold bias is found in this area, often related to a snow cover overestimation in the models. Ensemble experiments generally encompass the past observed trends, suggesting that even biased models can reproduce the trends. Depending on the future scenario, a warming from 1.9 to 6.5 °C, associated with a snow cover decrease and precipitation increase, is expected at the end of the 21st century.
Benjamin Ward, Francesco S. R. Pausata, and Nicola Maher
Earth Syst. Dynam., 12, 975–996, https://doi.org/10.5194/esd-12-975-2021, https://doi.org/10.5194/esd-12-975-2021, 2021
Short summary
Short summary
Using the largest ensemble of a climate model currently available, the Max Planck Institute Grand Ensemble (MPI-GE), we investigated the impact of the spatial distribution of volcanic aerosols on the El Niño–Southern Oscillation (ENSO) response. By selecting three eruptions with different aerosol distributions, we found that the shift of the Intertropical Convergence Zone (ITCZ) is the main driver of the ENSO response, while other mechanisms commonly invoked seem less important in our model.
Matthias Gröger, Christian Dieterich, Jari Haapala, Ha Thi Minh Ho-Hagemann, Stefan Hagemann, Jaromir Jakacki, Wilhelm May, H. E. Markus Meier, Paul A. Miller, Anna Rutgersson, and Lichuan Wu
Earth Syst. Dynam., 12, 939–973, https://doi.org/10.5194/esd-12-939-2021, https://doi.org/10.5194/esd-12-939-2021, 2021
Short summary
Short summary
Regional climate studies are typically pursued by single Earth system component models (e.g., ocean models and atmosphere models). These models are driven by prescribed data which hamper the simulation of feedbacks between Earth system components. To overcome this, models were developed that interactively couple model components and allow an adequate simulation of Earth system interactions important for climate. This article reviews recent developments of such models for the Baltic Sea region.
Halima Usman, Thomas A. M. Pugh, Anders Ahlström, and Sofia Baig
Earth Syst. Dynam., 12, 857–870, https://doi.org/10.5194/esd-12-857-2021, https://doi.org/10.5194/esd-12-857-2021, 2021
Short summary
Short summary
The study assesses the impacts of climate change on forest productivity in the Hindu Kush Himalayan region. LPJ-GUESS was simulated from 1851 to 2100. In first approach, the model was compared with observational estimates. The comparison showed a moderate agreement. In the second approach, the model was assessed for the temporal and spatial trends of net biome productivity and its components along with carbon pool. Increases in both variables were predicted in 2100.
Kerstin Hartung, Ana Bastos, Louise Chini, Raphael Ganzenmüller, Felix Havermann, George C. Hurtt, Tammas Loughran, Julia E. M. S. Nabel, Tobias Nützel, Wolfgang A. Obermeier, and Julia Pongratz
Earth Syst. Dynam., 12, 763–782, https://doi.org/10.5194/esd-12-763-2021, https://doi.org/10.5194/esd-12-763-2021, 2021
Short summary
Short summary
In this study, we model the relative importance of several contributors to the land-use and land-cover change (LULCC) flux based on a LULCC dataset including uncertainty estimates. The uncertainty of LULCC is as relevant as applying wood harvest and gross transitions for the cumulative LULCC flux over the industrial period. However, LULCC uncertainty matters less than the other two factors for the LULCC flux in 2014; historical LULCC uncertainty is negligible for estimates of future scenarios.
Fransje van Oorschot, Ruud J. van der Ent, Markus Hrachowitz, and Andrea Alessandri
Earth Syst. Dynam., 12, 725–743, https://doi.org/10.5194/esd-12-725-2021, https://doi.org/10.5194/esd-12-725-2021, 2021
Short summary
Short summary
The roots of vegetation largely control the Earth's water cycle by transporting water from the subsurface to the atmosphere but are not adequately represented in land surface models, causing uncertainties in modeled water fluxes. We replaced the root parameters in an existing model with more realistic ones that account for a climate control on root development and found improved timing of modeled river discharge. Further extension of our approach could improve modeled water fluxes globally.
Manuela I. Brunner, Eric Gilleland, and Andrew W. Wood
Earth Syst. Dynam., 12, 621–634, https://doi.org/10.5194/esd-12-621-2021, https://doi.org/10.5194/esd-12-621-2021, 2021
Short summary
Short summary
Compound hot and dry events can lead to severe impacts whose severity may depend on their timescale and spatial extent. Here, we show that the spatial extent and timescale of compound hot–dry events are strongly related, spatial compound event extents are largest at
sub-seasonal timescales, and short events are driven more by high temperatures, while longer events are more driven by low precipitation. Future climate impact studies should therefore be performed at different timescales.
Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, and Joel Finnis
Earth Syst. Dynam., 12, 581–600, https://doi.org/10.5194/esd-12-581-2021, https://doi.org/10.5194/esd-12-581-2021, 2021
Short summary
Short summary
The current radiative imbalance at the top of the atmosphere is increasing the heat stored in the oceans, atmosphere, continental subsurface and cryosphere, with consequences for societies and ecosystems (e.g. sea level rise). We performed the first assessment of the ability of global climate models to represent such heat storage in the climate subsystems. Models are able to reproduce the observed atmosphere heat content, with biases in the simulation of heat content in the rest of components.
Francesco Piccioni, Céline Casenave, Bruno Jacques Lemaire, Patrick Le Moigne, Philippe Dubois, and Brigitte Vinçon-Leite
Earth Syst. Dynam., 12, 439–456, https://doi.org/10.5194/esd-12-439-2021, https://doi.org/10.5194/esd-12-439-2021, 2021
Short summary
Short summary
Small lakes are ecosystems highly impacted by climate change. Here, the thermal regime of a small, shallow lake over the past six decades was reconstructed via 3D modelling. Significant changes were found: strong water warming in spring and summer (0.7 °C/decade) as well as increased stratification and thermal energy for cyanobacteria growth, especially in spring. The strong spatial patterns detected for stratification might create local conditions particularly favourable to cyanobacteria bloom.
Pablo Ortega, Jon I. Robson, Matthew Menary, Rowan T. Sutton, Adam Blaker, Agathe Germe, Jöel J.-M. Hirschi, Bablu Sinha, Leon Hermanson, and Stephen Yeager
Earth Syst. Dynam., 12, 419–438, https://doi.org/10.5194/esd-12-419-2021, https://doi.org/10.5194/esd-12-419-2021, 2021
Short summary
Short summary
Deep Labrador Sea densities are receiving increasing attention because of their link to many of the processes that govern decadal climate oscillations in the North Atlantic and their potential use as a precursor of those changes. This article explores those links and how they are represented in global climate models, documenting the main differences across models. Models are finally compared with observational products to identify the ones that reproduce the links more realistically.
Calum Brown, Ian Holman, and Mark Rounsevell
Earth Syst. Dynam., 12, 211–231, https://doi.org/10.5194/esd-12-211-2021, https://doi.org/10.5194/esd-12-211-2021, 2021
Short summary
Short summary
The variety of human and natural processes in the land system can be modelled in many different ways. However, little is known about how and why basic model assumptions affect model results. We compared two models that represent land use in completely distinct ways and found several results that differed greatly. We identify the main assumptions that caused these differences and therefore key issues that need to be addressed for more robust model development.
Johannes Vogel, Pauline Rivoire, Cristina Deidda, Leila Rahimi, Christoph A. Sauter, Elisabeth Tschumi, Karin van der Wiel, Tianyi Zhang, and Jakob Zscheischler
Earth Syst. Dynam., 12, 151–172, https://doi.org/10.5194/esd-12-151-2021, https://doi.org/10.5194/esd-12-151-2021, 2021
Short summary
Short summary
We present a statistical approach for automatically identifying multiple drivers of extreme impacts based on LASSO regression. We apply the approach to simulated crop failure in the Northern Hemisphere and identify which meteorological variables including climate extreme indices and which seasons are relevant to predict crop failure. The presented approach can help unravel compounding drivers in high-impact events and could be applied to other impacts such as wildfires or flooding.
Peter Pfleiderer, Aglaé Jézéquel, Juliette Legrand, Natacha Legrix, Iason Markantonis, Edoardo Vignotto, and Pascal Yiou
Earth Syst. Dynam., 12, 103–120, https://doi.org/10.5194/esd-12-103-2021, https://doi.org/10.5194/esd-12-103-2021, 2021
Short summary
Short summary
In 2016, northern France experienced an unprecedented wheat crop loss. This crop loss was likely due to an extremely warm December 2015 and abnormally high precipitation during the following spring season. Using stochastic weather generators we investigate how severe the metrological conditions leading to the crop loss could be in current climate conditions. We find that December temperatures were close to the plausible maximum but that considerably wetter springs would be possible.
Jelle van den Berk, Sybren Drijfhout, and Wilco Hazeleger
Earth Syst. Dynam., 12, 69–81, https://doi.org/10.5194/esd-12-69-2021, https://doi.org/10.5194/esd-12-69-2021, 2021
Short summary
Short summary
A collapse of the Atlantic Meridional Overturning Circulation can be described by six parameters and Langevin dynamics. These parameters can be determined from collapses seen in climate models of intermediate complexity. With this parameterisation, it might be possible to estimate how much fresh water is needed to observe a collapse in more complicated models and reality.
Jakob Zscheischler, Philippe Naveau, Olivia Martius, Sebastian Engelke, and Christoph C. Raible
Earth Syst. Dynam., 12, 1–16, https://doi.org/10.5194/esd-12-1-2021, https://doi.org/10.5194/esd-12-1-2021, 2021
Short summary
Short summary
Compound extremes such as heavy precipitation and extreme winds can lead to large damage. To date it is unclear how well climate models represent such compound extremes. Here we present a new measure to assess differences in the dependence structure of bivariate extremes. This measure is applied to assess differences in the dependence of compound precipitation and wind extremes between three model simulations and one reanalysis dataset in a domain in central Europe.
Christian B. Rodehacke, Madlene Pfeiffer, Tido Semmler, Özgür Gurses, and Thomas Kleiner
Earth Syst. Dynam., 11, 1153–1194, https://doi.org/10.5194/esd-11-1153-2020, https://doi.org/10.5194/esd-11-1153-2020, 2020
Short summary
Short summary
In the warmer future, Antarctica's ice sheet will lose more ice due to enhanced iceberg calving and a warming ocean that melts more floating ice from below. However, the hydrological cycle is also stronger in a warmer world. Hence, more snowfall will precipitate on Antarctica and may balance the amplified ice loss. We have used future climate scenarios from various global climate models to perform numerous ice sheet simulations to show that precipitation may counteract mass loss.
Renate Anna Irma Wilcke, Erik Kjellström, Changgui Lin, Daniela Matei, Anders Moberg, and Evangelos Tyrlis
Earth Syst. Dynam., 11, 1107–1121, https://doi.org/10.5194/esd-11-1107-2020, https://doi.org/10.5194/esd-11-1107-2020, 2020
Short summary
Short summary
Two long-lasting high-pressure systems in summer 2018 led to heat waves over Scandinavia and an extended summer period with devastating impacts on both agriculture and human life. Using five climate model ensembles, the unique 263-year Stockholm temperature time series and a composite 150-year time series for the whole of Sweden, we found that anthropogenic climate change has strongly increased the probability of a warm summer, such as the one observed in 2018, occurring in Sweden.
Jeemijn Scheen and Thomas F. Stocker
Earth Syst. Dynam., 11, 925–951, https://doi.org/10.5194/esd-11-925-2020, https://doi.org/10.5194/esd-11-925-2020, 2020
Short summary
Short summary
Variability of sea surface temperatures (SST) in 1200–2000 CE is quite well-known, but the history of deep ocean temperatures is not. Forcing an ocean model with these SSTs, we simulate temperatures in the ocean interior. The circulation changes alter the amplitude and timing of deep ocean temperature fluctuations below 2 km depth, e.g. delaying the atmospheric signal by ~ 200 years in the deep Atlantic. Thus ocean circulation changes are shown to be as important as SST changes at these depths.
Sebastian Milinski, Nicola Maher, and Dirk Olonscheck
Earth Syst. Dynam., 11, 885–901, https://doi.org/10.5194/esd-11-885-2020, https://doi.org/10.5194/esd-11-885-2020, 2020
Short summary
Short summary
Initial-condition large ensembles with ensemble sizes ranging from 30 to 100 members have become a commonly used tool to quantify the forced response and internal variability in various components of the climate system, but there is no established method to determine the required ensemble size for a given problem. We propose a new framework that can be used to estimate the required ensemble size from a model's control run or an existing large ensemble.
Yu Huang, Lichao Yang, and Zuntao Fu
Earth Syst. Dynam., 11, 835–853, https://doi.org/10.5194/esd-11-835-2020, https://doi.org/10.5194/esd-11-835-2020, 2020
Short summary
Short summary
We investigate the applicability of machine learning (ML) on time series reconstruction and find that the dynamical coupling relation and nonlinear causality are crucial for the application of ML. Our results could provide insights into causality and ML approaches for paleoclimate reconstruction, parameterization schemes, and prediction in climate studies.
Anna Louise Merrifield, Lukas Brunner, Ruth Lorenz, Iselin Medhaug, and Reto Knutti
Earth Syst. Dynam., 11, 807–834, https://doi.org/10.5194/esd-11-807-2020, https://doi.org/10.5194/esd-11-807-2020, 2020
Short summary
Short summary
Justifiable uncertainty estimates of future change in northern European winter and Mediterranean summer temperature can be obtained by weighting a multi-model ensemble comprised of projections from different climate models and multiple projections from the same climate model. Weights reduce the influence of model biases and handle dependence by identifying a projection's model of origin from historical characteristics; contributions from the same model are scaled by the number of members.
James D. Annan, Julia C. Hargreaves, Thorsten Mauritsen, and Bjorn Stevens
Earth Syst. Dynam., 11, 709–719, https://doi.org/10.5194/esd-11-709-2020, https://doi.org/10.5194/esd-11-709-2020, 2020
Short summary
Short summary
In this paper we explore the potential of variability for constraining the equilibrium response of the climate system to external forcing. We show that the constraint is inherently skewed, with a long tail to high sensitivity, and that while the variability may contain some useful information, it is unlikely to generate a tight constraint.
Andrea Böhnisch, Ralf Ludwig, and Martin Leduc
Earth Syst. Dynam., 11, 617–640, https://doi.org/10.5194/esd-11-617-2020, https://doi.org/10.5194/esd-11-617-2020, 2020
Short summary
Short summary
North Atlantic air pressure variations influencing European climate variables are simulated in coarse-resolution global climate models (GCMs). As single-model runs do not sufficiently describe variations of their patterns, several model runs with slightly diverging initial conditions are analyzed. The study shows that GCM and regional climate model (RCM) patterns vary in a similar range over the same domain, while RCMs add consistent fine-scale information due to their higher spatial resolution.
György Károlyi, Rudolf Dániel Prokaj, István Scheuring, and Tamás Tél
Earth Syst. Dynam., 11, 603–615, https://doi.org/10.5194/esd-11-603-2020, https://doi.org/10.5194/esd-11-603-2020, 2020
Short summary
Short summary
We construct a conceptual model to understand the interplay between the atmosphere and the ocean biosphere in a climate change framework, including couplings between extraction of carbon dioxide by phytoplankton and climate change, temperature and carrying capacity of phytoplankton, and wind energy and phytoplankton production. We find that sufficiently strong mixing can result in decaying global phytoplankton content.
Kira Rehfeld, Raphaël Hébert, Juan M. Lora, Marcus Lofverstrom, and Chris M. Brierley
Earth Syst. Dynam., 11, 447–468, https://doi.org/10.5194/esd-11-447-2020, https://doi.org/10.5194/esd-11-447-2020, 2020
Short summary
Short summary
Under continued anthropogenic greenhouse gas emissions, it is likely that global mean surface temperature will continue to increase. Little is known about changes in climate variability. We analyze surface climate variability and compare it to mean change in colder- and warmer-than-present climate model simulations. In most locations, but not on subtropical land, simulated temperature variability up to decadal timescales decreases with mean temperature, and precipitation variability increases.
Eirik Myrvoll-Nilsen, Sigrunn Holbek Sørbye, Hege-Beate Fredriksen, Håvard Rue, and Martin Rypdal
Earth Syst. Dynam., 11, 329–345, https://doi.org/10.5194/esd-11-329-2020, https://doi.org/10.5194/esd-11-329-2020, 2020
Short summary
Short summary
This paper presents efficient Bayesian methods for linear response models of global mean surface temperature that take into account long-range dependence. We apply the methods to the instrumental temperature record and historical model runs in the CMIP5 ensemble to provide estimates of the transient climate response and temperature projections under the Representative Concentration Pathways.
Lea Beusch, Lukas Gudmundsson, and Sonia I. Seneviratne
Earth Syst. Dynam., 11, 139–159, https://doi.org/10.5194/esd-11-139-2020, https://doi.org/10.5194/esd-11-139-2020, 2020
Short summary
Short summary
Earth system models (ESMs) are invaluable to study the climate system but expensive to run. Here, we present a statistical tool which emulates ESMs at a negligible computational cost by creating stochastic realizations of yearly land temperature field time series. Thereby, 40 ESMs are considered, and for each ESM, a single simulation is required to train the tool. The resulting ESM-specific realizations closely resemble ESM simulations not employed during training at point to regional scales.
Yu Sun and Riccardo E. M. Riva
Earth Syst. Dynam., 11, 129–137, https://doi.org/10.5194/esd-11-129-2020, https://doi.org/10.5194/esd-11-129-2020, 2020
Short summary
Short summary
The solid Earth is still deforming because of the effect of past ice sheets through glacial isostatic adjustment (GIA). Satellite gravity observations by the Gravity Recovery and Climate Experiment (GRACE) mission are sensitive to those signals but are superimposed on the redistribution effect of water masses by the hydrological cycle. We propose a method separating the two signals, providing new constraints for forward GIA models and estimating the global water cycle's patterns and magnitude.
Mareike Schuster, Jens Grieger, Andy Richling, Thomas Schartner, Sebastian Illing, Christopher Kadow, Wolfgang A. Müller, Holger Pohlmann, Stephan Pfahl, and Uwe Ulbrich
Earth Syst. Dynam., 10, 901–917, https://doi.org/10.5194/esd-10-901-2019, https://doi.org/10.5194/esd-10-901-2019, 2019
Short summary
Short summary
Decadal climate predictions are valuable to society as they allow us to estimate climate conditions several years in advance. We analyze the latest version of the German MiKlip prediction system (https://www.fona-miklip.de) and assess the effect of the model resolution on the skill of the system. The increase in the resolution of the system reduces the bias and significantly improves the forecast skill for North Atlantic extratropical winter dynamics for lead times of two to five winters.
Calum Brown, Bumsuk Seo, and Mark Rounsevell
Earth Syst. Dynam., 10, 809–845, https://doi.org/10.5194/esd-10-809-2019, https://doi.org/10.5194/esd-10-809-2019, 2019
Short summary
Short summary
Concerns are growing that human activity will lead to social and environmental breakdown, but it is hard to anticipate when and where such breakdowns might occur. We developed a new model of land management decisions in Europe to explore possible future changes and found that decision-making that takes into account social and environmental conditions can produce unexpected outcomes that include societal breakdown in challenging conditions.
Francine Schevenhoven, Frank Selten, Alberto Carrassi, and Noel Keenlyside
Earth Syst. Dynam., 10, 789–807, https://doi.org/10.5194/esd-10-789-2019, https://doi.org/10.5194/esd-10-789-2019, 2019
Short summary
Short summary
Weather and climate predictions potentially improve by dynamically combining different models into a
supermodel. A crucial step is to train the supermodel on the basis of observations. Here, we apply two different training methods to the global atmosphere–ocean–land model SPEEDO. We demonstrate that both training methods yield climate and weather predictions of superior quality compared to the individual models. Supermodel predictions can also outperform the commonly used multi-model mean.
Cited articles
Andersen, K. K., Svensson, A., Johnsen, S. J., Rasmussen, S. O., Bigler, M.,
Röthlisberger, R., Ruth, U., Siggaard-Andersen, M. L., Peder
Steffensen, J., Dahl-Jensen, D., Vinther, B. M., and Clausen, H. B.: The
Greenland Ice Core Chronology 2005, 15–42 ka, Part 1: constructing
the time scale, Quaternary Sci. Rev., 25, 3246–3257,
https://doi.org/10.1016/j.quascirev.2006.08.002, 2006. a, b
Anvari, M., Tabar, M. R. R., Peinke, J., and Lehnertz, K.: Disentangling the
stochastic behavior of complex time series, Sci. Rep., 6, 35435,
https://doi.org/10.1038/srep35435, 2016. a
Armstrong McKay, D. I., Staal, A., Abrams, J. F., Winkelmann, R.,
Sakschewski, B., Loriani, S., Fetzer, I., Cornell, S. E., Rockström,
J., and Lenton, T. M.: Exceeding 1.5 ∘C global warming could trigger
multiple climate tipping points, Science, 377, eabn7950,
https://doi.org/10.1126/science.abn7950, 2022. a
Ashwin, P., Wieczorek, S., Vitolo, R., and Cox, P.: Tipping points in open
systems: Bifurcation, noise-induced and rate-dependent examples in the
climate system, Philos. T. R. Soc. A, 370, 1166–1184,
https://doi.org/10.1098/rsta.2011.0306, 2012. a
Boers, N.: Observation-based early-warning signals for a collapse of the
Atlantic Meridional Overturning Circulation, Nat. Clim. Change, 11,
680–688, https://doi.org/10.1038/s41558-021-01097-4, 2021. a, b
Boers, N. and Rypdal, M.: Critical slowing down suggests that the western
Greenland Ice Sheet is close to a tipping point, P.
Natl. Acad. Sci. USA, 118, e2024192118,
https://doi.org/10.1073/pnas.2024192118, 2021. a, b
Boers, N., Ghil, M., and Rousseau, D. D.: Ocean circulation, ice shelf, and sea
ice interactions explain Dansgaard–Oeschger cycles, P.
Natl. Acad. Sci. USA, 115,
E11005–E11014, https://doi.org/10.1073/pnas.1802573115, 2018. a, b, c
Boers, N., Ghil, M., and Stocker, T. F.: Theoretical and paleoclimatic evidence
for abrupt transitions in the Earth system, Environ. Res. Lett.,
17, 093006, https://doi.org/10.1088/1748-9326/ac8944, 2022. a
Boulton, C. A., Allison, L. C., and Lenton, T. M.: Early warning signals of
Atlantic Meridional Overturning Circulation collapse in a fully
coupled climate model, Nat. Commun., 5, 5752,
https://doi.org/10.1038/ncomms6752, 2014. a
Boulton, C. A., Lenton, T. M., and Boers, N.: Pronounced loss of Amazon
rainforest resilience since the early 2000s, Nat. Clim. Change, 12,
271–278, https://doi.org/10.1038/s41558-022-01287-8, 2022. a
Brovkin, V., Brook, E., Williams, J. W., Bathiany, S., Lenton, T. M., Barton,
M., DeConto, R. M., Donges, J. F., Ganopolski, A., McManus, J., Praetorius,
S., de Vernal, A., Abe-Ouchi, A., Cheng, H., Claussen, M., Crucifix, M.,
Gallopín, G., Iglesias, V., Kaufman, D. S., Kleinen, T., Lambert, F.,
van der Leeuw, S., Liddy, H., Loutre, M.-f., McGee, D., Rehfeld, K., Rhodes,
R., Seddon, A. W. R., Trauth, M. H., Vanderveken, L., and Yu, Z.: Past abrupt
changes, tipping points and cascading impacts in the Earth system, Nat.
Geosci., 14, 550–558, https://doi.org/10.1038/s41561-021-00790-5, 2021. a
Cheng, H., Sinha, A., Cruz, F. W., Wang, X., Edwards, R. L., D'Horta, F. M.,
Ribas, C. C., Vuille, M., Stott, L. D., and Auler, A. S.: Climate change
patterns in Amazonia and biodiversity, Nat. Commun., 4, 1411,
https://doi.org/10.1038/ncomms2415, 2013. a
Clark, P. U., Pisias, N. G., Stocker, T. F., and Weaver, A. J.: The role of the
thermohaline circulation in abrupt climate change, Nature, 415, 863–869,
https://doi.org/10.1038/415863a, 2002. a
Corrick, E. C., Drysdale, R. N., Hellstrom, J. C., Capron, E., Rasmussen,
S. O., Zhang, X., Fleitmann, D., Couchoud, I., Wolff, E., and Monsoon, S. A.:
Synchronous timing of abrupt climate changes during the last glacial period,
Science, 369, 963–969, https://doi.org/10.1126/science.aay5538, 2020. a
Dansgaard, W., Clausen, H. B., Gundestrup, N., Hammer, C. U., Johnsen, S. F.,
Kristinsdottir, P. M., and Reeh, N.: A New Greenland Deep Ice Core,
Science, 218, 1273–1278, https://doi.org/10.1126/science.218.4579.1273, 1982. a
Dansgaard, W., Johnsen, S., Clausen, H., Dahl-Jensen, D., Gundestrup, N.,
Hammer, C., and Oeschger, H.: North Atlantic Climatic Oscillations
Revealed by Deep Greenland Ice Cores, American Geophysical
Union, 29, 288–298, https://doi.org/10.1029/GM029p0288, 1984. a
Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup,
N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P.,
Sveinbjörnsdottir, A. E., Jouzel, J., and Bond, G.: Evidence for
general instability of past climate from a 250-kyr ice-core record, Nature,
364, 218–220, https://doi.org/10.1038/364218a0, 1993. a
Davis, W. and Buffett, B.: Estimation of drift and diffusion functions from
unevenly sampled time-series data, Phys. Rev. E, 106, 014140,
https://doi.org/10.1103/PhysRevE.106.014140, 2022. a
Ditlevsen, P. D.: Observation of α-stable noise induced millennial
climate changes from an ice-core record, Geophys. Res. Lett., 26,
1441–1444, https://doi.org/10.1029/1999GL900252, 1999. a, b
Dokken, T. M., Nisancioglu, K. H., Li, C., Battisti, D. S., and Kissel, C.:
Dansgaard–Oeschger cycles: Interactions between ocean and sea ice
intrinsic to the Nordic seas, Paleoceanography, 28, 491–502,
https://doi.org/10.1002/palo.20042, 2013. a
Epanechnikov, V. A.: Non-Parametric Estimation of a Multivariate Probability
Density, Theory Probab. Appl., 14, 153–158,
https://doi.org/10.1137/1114019, 1967. a
EPICA Community Members: One-to-one coupling of glacial climate variability
in Greenland and Antarctica, Nature, 444, 5–8,
https://doi.org/10.1038/nature05301, 2006. a
Erhardt, T., Capron, E., Olander Rasmussen, S., Schüpbach, S., Bigler,
M., Adolphi, F., and Fischer, H.: Decadal-scale progression of the onset of
Dansgaard–Oeschger warming events, Clim. Past, 15, 811–825,
https://doi.org/10.5194/cp-15-811-2019, 2019. a
Fischer, H., Siggaard-Andersen, M. L., Ruth, U., Röthlisberger, R., and
Wolff, E.: Glacial/interglacial changes in mineral dust and sea-salt records
in polar ice cores: Sources, transport, and deposition, Rev.
Geophys., 45, 1–26, https://doi.org/10.1029/2005RG000192, 2007. a, b, c, d
Ganopolski, A. and Rahmstorf, S.: Abrupt Glacial Climate Changes due to
Stochastic Resonance, Phys. Rev. Lett., 88, 038501,
https://doi.org/10.1103/PhysRevLett.88.038501, 2002. a
Gardiner, C.: Stochastic Methods: A Handbook for the Natural and Social
Sciences, Springer-Verlag Berlin Heidelberg, 4th Edn., ISBN 3-540-15607-0, 2009. a
Ghil, M.: Steady-State Solutions of a Diffusive Energy-Balance Climate Model
and Their Stability, Tech. Rep. IMM410, Courant Institute of Mathematical
Sciences, New York University, New York,
https://ntrs.nasa.gov/api/citations/19750014903/downloads/19750014903.pdf (last access: 28 April 2023),
1975. a
Gkinis, V., Simonsen, S. B., Buchardt, S. L., White, J. W., and Vinther, B. M.:
Water isotope diffusion rates from the NorthGRIP ice core for the last
16,000 years – Glaciological and paleoclimatic implications, Earth
Planet. Sc. Lett., 405, 132–141, https://doi.org/10.1016/j.epsl.2014.08.022,
2014. a, b, c
Gottschalk, J., Skinner, L. C., Misra, S., Waelbroeck, C., Menviel, L., and
Timmermann, A.: Abrupt changes in the southern extent of North Atlantic Deep
Water during Dansgaard-Oeschger events, Nat. Geosci., 8, 950–954,
https://doi.org/10.1038/ngeo2558, 2015. a
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R.,
Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A.,
Fernández del Río, J., Wiebe, M., Peterson, Pearu andGérard-Marchant, P.,
Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant,
T. E.: Array programming with NumPy, Nature, 585, 357–362,
https://doi.org/10.1038/s41586-020-2649-2, 2020. a
Henry, L. G., McManus, J. F., Curry, W. B., Roberts, N. L., Piotrowski, A. M.,
and Keigwin, L. D.: North Atlantic ocean circulation and abrupt climate
change during the last glaciation, Science, 353, 470–474,
https://doi.org/10.1126/science.aaf5529, 2016. a
Hunter, J. D.: Matplotlib: A 2D Graphics Environment, Comput.
Sci. Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007. a
Johnsen, S. J., Clausen, H. B., Dansgaard, W., Fuhrer, K., Gundestrup, N.,
Hammer, C. U., Iversen, P., Jouzel, J., Stauffer, B., and Steffensen, J.:
Irregular glacial interstadials recorded in a new Greenland ice core,
Nature, 359, 311–313, https://doi.org/10.1038/359311a0, 1992. a
Johnsen, S. J., Dahl-Jensen, D., Gundestrup, N., Steffensen, J. P., Clausen,
H. B., Miller, H., Masson-Delmotte, V., Sveinbjörnsdottir, A. E., and
White, J.: Oxygen isotope and palaeotemperature records from six Greenland
ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP,
J. Quaternary Sci., 16, 299–307, https://doi.org/10.1002/jqs.622, 2001. a
Jouzel, J., Alley, R. B., Cuffey, K. M., Dansgaard, W., Grootes, P., Hoffmann,
G., Johnsen, S. J., Koster, R. D., Peel, D., Shuman, C. A., Stievenard, M.,
Stuiver, M., and White, J.: Validity of the temperature reconstruction from
water isotopes in ice cores, J. Geophys. Res.-Ocean., 102,
26471–26487, https://doi.org/10.1029/97JC01283, 1997. a
Kanner, L. C., Burns, S. J., Cheng, H., and Edwards, R. L.: High-Latitude
Forcing of the South American Summer Monsoon During the Last Glacial,
Science, 335, 570–573, https://doi.org/10.1126/science.1213397, 2012. a
Kindler, P., Guillevic, M., Baumgartner, M., Schwander, J., Landais, A., and
Leuenberger, M.: Temperature reconstruction from 10 to 120 kyr b2k from the
NGRIP ice core, Clim. Past, 10, 887–902,
https://doi.org/10.5194/cp-10-887-2014, 2014. a
Kleppin, H., Jochum, M., Otto-Bliesner, B., Shields, C. A., and Yeager, S.:
Stochastic atmospheric forcing as a cause of Greenland climate transitions,
J. Clim., 28, 7741–7763, https://doi.org/10.1175/JCLI-D-14-00728.1, 2015. a
Kondrashov, D., Kravtsov, S., Robertson, A. W., and Ghil, M.: A Hierarchy of
Data-Based ENSO Models, J. Clim., 18, 4425–4444,
https://doi.org/10.1175/JCLI3567.1, 2005. a
Kondrashov, D., Chekroun, M. D., and Ghil, M.: Data-driven non-Markovian
closure models, Physica D, 297, 33–55,
https://doi.org/10.1016/j.physd.2014.12.005, 2015. a
Kramers, H. A.: Brownian motion in a field of force and the diffusion model of
chemical reactions, Physica, 7, 284–304,
https://doi.org/10.1016/S0031-8914(40)90098-2, 1940. a, b
Kriechers, R.: kriechers/esd-2021-95: esd-2021-95 (Version v1), Zenodo [code], https://doi.org/10.5281/zenodo.7898825, 2023. a
Kwasniok, F.: Analysis and modelling of glacial climate transitions using
simple dynamical systems, Philos. T. R. Soc. A, 371, 20110472,
https://doi.org/10.1098/rsta.2011.0472, 2013. a, b, c, d
Lamouroux, D. and Lehnertz, K.: Kernel-based regression of drift and diffusion
coefficients of stochastic processes, Phys. Lett. A, 373, 3507–3512,
https://doi.org/10.1016/j.physleta.2009.07.073, 2009. a
Lehnertz, K., Zabawa, L., and Tabar, M. R. R.: Characterizing abrupt
transitions in stochastic dynamics, New J. Phys., 20, 113043,
https://doi.org/10.1088/1367-2630/aaf0d7, 2018. a
Lenton, T., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S., and
Schellnhuber, H. J.: Tipping elements in the Earth's climate system,
P. Natl. Acad. Sci. USA, 105, 1786–1793, https://doi.org/10.1073/pnas.0705414105, 2008. a
Lenton, T. M. and Schellnhuber, H. J.: Tipping the Scales, Nat. Clim.
Change, 1, 97–98, https://doi.org/10.1038/climate.2007.65, 2007. a
Li, C. and Born, A.: Coupled atmosphere-ice-ocean dynamics in
Dansgaard–Oeschger events, Quaternary Sci. Rev., 203, 1–20,
https://doi.org/10.1016/j.quascirev.2018.10.031, 2019. a, b
Li, T.-Y., Han, L.-Y., Cheng, H., Edwards, R. L., Shen, C.-C., Li, H.-C., Li,
J.-Y., Huang, C.-X., Zhang, T.-T., and Zhao, X.: Evolution of the
Asian summer monsoon during Dansgaard/Oeschger events 13–17 recorded in
a stalagmite constrained by high-precision chronology from southwest China,
Quaternary Res., 88, 121–128, https://doi.org/10.1017/qua.2017.22, 2017. a
Livina, V. N., Kwasniok, F., and Lenton, T. M.: Potential analysis reveals changing number of climate states during the last 60 kyr, Clim. Past, 6, 77–82, https://doi.org/10.5194/cp-6-77-2010, 2010. a, b, c
Lohmann, J. and Ditlevsen, P. D.: A consistent statistical model selection for
abrupt glacial climate changes, Clim. Dynam., 52, 6411–6426,
https://doi.org/10.1007/s00382-018-4519-2, 2018a. a, b, c, d
Lohmann, J. and Ditlevsen, P. D.: Random and externally controlled occurrences of Dansgaard–Oeschger events, Clim. Past, 14, 609–617, https://doi.org/10.5194/cp-14-609-2018, 2018b. a
Lynch-Stieglitz, J.: The Atlantic Meridional Overturning Circulation
and Abrupt Climate Change, Annu. Rev. Mar. Sci., 9, 83–104,
https://doi.org/10.1146/annurev-marine-010816-060415, 2017. a, b
Majda, A. J., Franzke, C. L., Fischer, A., and Crommelin, D. T.: Distinct
metastable atmospheric regimes despite nearly Gaussian statistics: A paradigm
model, P. Natl. Acad. Sci. USA, 103, 8309–8314, https://doi.org/10.1073/pnas.0602641103, 2006. a
McKinney, W.: Data Structures for Statistical Computing in
Python, in: Proceedings of the 9th Python in Science Conference, 28 June–3 July 2010, Austin, Texas,
edited by: van der Walt, S. and Millman, J., 56–61,
https://doi.org/10.25080/Majora-92bf1922-00a, 2010. a
Menviel, L. C., Skinner, L. C., Tarasov, L., and Tzedakis, P. C.: An
ice–climate oscillatory framework for Dansgaard–Oeschger cycles,
Nat. Rev. Earth Environ., 1, 677–693,
https://doi.org/10.1038/s43017-020-00106-y, 2020. a, b, c, d
Mitsui, T. and Crucifix, M.: Influence of external forcings on abrupt
millennial-scale climate changes: a statistical modelling study, Clim.
Dynam., 48, 2729–2749, https://doi.org/10.1007/s00382-016-3235-z, 2017. a, b, c
Nadaraya, E. A.: On Estimating Regression, Theor. Probab.
Appl., 9, 141–142, https://doi.org/10.1137/1109020, 1964. a
Niels Bohr Institute: Center for Ice and Climate – Data icesamples and software, University of Copenhagen, Copenhagen, Denmark, [data sets],
https://www.iceandclimate.nbi.ku.dk/data/ and https://www.iceandclimate.nbi.ku.dk/data/NGRIP_dust_on_GICC05_20y_december2014.txt,
last access: 28 April 2023. a, b, c
North, G. R.: Analytical Solution to a Simple Climate Model with Diffusive Heat
Transport, J. Atmos. Sci., 32, 1301–1307,
https://doi.org/10.1175/1520-0469(1975)032<1301:ASTASC>2.0.CO;2, 1975. a
Rasmussen, S. O., Andersen, K. K., Svensson, A. M., Steffensen, J. P., Vinther,
B. M., Clausen, H. B., Siggaard-Andersen, M. L., Johnsen, S. J., Larsen,
L. B., Dahl-Jensen, D., Bigler, M., Röthlisberger, R., Fischer, H.,
Goto-Azuma, K., Hansson, M. E., and Ruth, U.: A new Greenland ice core
chronology for the last glacial termination, J. Geophys. Res.-Atmos., 111, D06102, https://doi.org/10.1029/2005JD006079, 2006. a, b
Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt, S. L.,
Clausen, H. B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S. J., Fischer, H.,
Gkinis, V., Guillevic, M., Hoek, W. Z., Lowe, J. J., Pedro, J. B., Popp, T.,
Seierstad, I. K., Steffensen, J. P., Svensson, A. M., Vallelonga, P.,
Vinther, B. M., Walker, M. J., Wheatley, J. J., and Winstrup, M.: A
stratigraphic framework for abrupt climatic changes during the Last Glacial
period based on three synchronized Greenland ice-core records: Refining
and extending the INTIMATE event stratigraphy, Quaternary Sci. Rev.,
106, 14–28, https://doi.org/10.1016/j.quascirev.2014.09.007, 2014. a, b, c, d, e
Rial, J. A. and Saha, R.: Modeling Abrupt Climate Change as the Interaction
Between Sea Ice Extent and Mean Ocean Temperature Under Orbital Insolation
Forcing, in: Abrupt Climate Change: Mechanisms, Patterns, and Impact in
2011, edited by: Rashid, H., Polyak, L., and
Mosley-Thompson, E., American Geophysical Union (AGU), 57–74,
https://doi.org/10.1029/2010GM001027, 2011. a
Risken, H. and Frank, T.: The Fokker–Planck equation, Springer-Verlag,
Berlin, Heidelberg, 2nd Edn., https://doi.org/10.1007/978-3-642-61544-3, 1996. a, b
Roberts, A. and Saha, R.: Relaxation oscillations in an idealized ocean
circulation model, Clim. Dynam., 48, 2123–2134,
https://doi.org/10.1007/s00382-016-3195-3, 2017. a, b, c
Rosier, S. H. R., Reese, R., Donges, J. F., De Rydt, J., Gudmundsson, G. H., and Winkelmann, R.: The tipping points and early warning indicators for Pine Island Glacier, West Antarctica, The Cryosphere, 15, 1501–1516, https://doi.org/10.5194/tc-15-1501-2021, 2021. a, b
Ruth, U., Bigler, M., Röthlisberger, R., Siggaard-Andersen, M. L.,
Kipfstuhl, S., Goto-Azuma, K., Hansson, M. E., Johnsen, S. J., Lu, H., and
Steffensen, J. P.: Ice core evidence for a very tight link between North
Atlantic and east Asian glacial climate, Geophys. Res. Lett.,
34, L03706, https://doi.org/10.1029/2006GL027876, 2007. a
Rydin Gorjão, L. and Meirinhos, F.:
kramersmoyal
: Kramers–Moyal
coefficients for stochastic processes, J. Open Sour. Softw., 4,
1693, https://doi.org/10.21105/joss.01693, 2019. a
Rydin Gorjão, L., Heysel, J., Lehnertz, K., and Tabar, M. R. R.: Analysis and
data-driven reconstruction of bivariate jump-diffusion processes, Phys.
Rev. E, 100, 062127, https://doi.org/10.1103/PhysRevE.100.062127, 2019. a, b
Schüpbach, S., Fischer, H., Bigler, M., Erhardt, T., Gfeller, G.,
Leuenberger, D., Mini, O., Mulvaney, R., Abram, N. J., Fleet, L., Frey,
M. M., Thomas, E., Svensson, A., Dahl-Jensen, D., Kettner, E., Kjaer, H.,
Seierstad, I., Steffensen, J. P., Rasmussen, S. O., Vallelonga, P., Winstrup,
M., Wegner, A., Twarloh, B., Wolff, K., Schmidt, K., Goto-Azuma, K.,
Kuramoto, T., Hirabayashi, M., Uetake, J., Zheng, J., Bourgeois, J., Fisher,
D., Zhiheng, D., Xiao, C., Legrand, M., Spolaor, A., Gabrieli, J., Barbante,
C., Kang, J. H., Hur, S. D., Hong, S. B., Hwang, H. J., Hong, S., Hansson,
M., Iizuka, Y., Oyabu, I., Muscheler, R., Adolphi, F., Maselli, O.,
McConnell, J., and Wolff, E. W.: Greenland records of aerosol source and
atmospheric lifetime changes from the Eemian to the Holocene, Nat.
Commun., 9, 1476, https://doi.org/10.1038/s41467-018-03924-3, 2018. a
Seierstad, I. K., Abbott, P. M., Bigler, M., Blunier, T., Bourne, A. J., Brook,
E., Buchardt, S. L., Buizert, C., Clausen, H. B., Cook, E., Dahl-Jensen, D.,
Davies, S. M., Guillevic, M., Johnsen, S. J., Pedersen, D. S., Popp, T. J.,
Rasmussen, S. O., Severinghaus, J. P., Svensson, A., and Vinther, B. M.:
Consistently dated records from the Greenland GRIP, GISP2 and NGRIP
ice cores for the past 104 ka reveal regional millennial-scale
δ18O gradients with possible Heinrich event imprint, Quaternary
Sci. Rev., 106, 29–46, https://doi.org/10.1016/j.quascirev.2014.10.032, 2014. a, b, c
Silverman, B. W.: Density Estimation for Statistics and Data Analysis,
Routledge, Boca Raton, 1st Edn.,
https://doi.org/10.1201/9781315140919, 1998. a
Snyder, C. W.: Evolution of global temperature over the past two million years,
Nature, 538, 226–228, https://doi.org/10.1038/nature19798, 2016. a, b, c, d
Stommel, H.: Thermohahe Convection with Two Stable Regimes, Tellus, 13,
224–230, 1961. a
Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Davies, S. M., Johnsen, S. J., Muscheler, R., Parrenin, F., Rasmussen, S. O., Röthlisberger, R., Seierstad, I., Steffensen, J. P., and Vinther, B. M.: A 60 000 year Greenland stratigraphic ice core chronology, Clim. Past, 4, 47–57, https://doi.org/10.5194/cp-4-47-2008, 2008. a, b
Valdes, P.: Built for stability, Nat. Geosci., 4, 414–416,
https://doi.org/10.1038/ngeo1200, 2011. a
Vettoretti, G. and Peltier, W. R.: Fast physics and slow physics in the
nonlinear Dansgaard–Oeschger relaxation oscillation, J. Clim.,
31, 3423–3449, https://doi.org/10.1175/JCLI-D-17-0559.1, 2018. a
Vettoretti, G., Ditlevsen, P., Jochum, M., and Rasmussen, S. O.: Atmospheric
CO2 control of spontaneous millennial-scale ice age climate oscillations,
Nat. Geosci., 15, 300–306, https://doi.org/10.1038/s41561-022-00920-7, 2022. a, b, c
Vinther, B. M., Clausen, H. B., Johnsen, S. J., Rasmussen, S. O., Andersen,
K. K., Buchardt, S. L., Dahl-Jensen, D., Seierstad, I. K., Siggaard-Andersen,
M. L., Steffensen, J. P., Svensson, A., Olsen, J., and Heinemeier, J.: A
synchronized dating of three Greenland ice cores throughout the Holocene,
J. Geophys. Res.-Atmos., 111, D13102,
https://doi.org/10.1029/2005JD006921, 2006. a, b
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van
der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson,
A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng,
Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R.,
Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro,
A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 contributors:
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,
Nat. Method., 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Voelker, A. H.: Global distribution of centennial-scale records for Marine
Isotope Stage (MIS) 3: A database, Quaternary Sci. Rev., 21,
1185–1212, https://doi.org/10.1016/S0277-3791(01)00139-1, 2002. a
WAIS Divide Project Members: Precise interpolar phasing of abrupt climate
change during the last ice age, Nature, 520, 661–665,
https://doi.org/10.1038/nature14401, 2015. a
Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C. C., and
Dorale, J. A.: A high-resolution absolute-dated late pleistocene monsoon
record from Hulu Cave, China, Science, 294, 2345–2348,
https://doi.org/10.1126/science.1064618, 2001. a
Watson, G. S.: Smooth Regression Analysis, Sankhyā: Smooth Regression Analysis, Sankhya A, 26, 359–372, 1964. a
Woollings, T., Hannachi, A., and Hoskins, B.: Variability of the North
Atlantic eddy-driven jet stream, Q. J. Roy.
Meteor. Soc., 136, 856–868, https://doi.org/10.1002/qj.625, 2010.
a
Zhang, X., Lohmann, G., Knorr, G., and Purcell, C.: Abrupt glacial climate
shifts controlled by ice sheet changes, Nature, 512, 290–294,
https://doi.org/10.1038/nature13592, 2014. a
Short summary
Paleoclimate proxy records show that the North Atlantic climate repeatedly transitioned between two regimes during the last glacial interval. This study investigates a bivariate proxy record from a Greenland ice core which reflects past Greenland temperatures and large-scale atmospheric conditions. We reconstruct the underlying deterministic drift by estimating first-order Kramers–Moyal coefficients and identify two separate stable states in agreement with the aforementioned climatic regimes.
Paleoclimate proxy records show that the North Atlantic climate repeatedly transitioned between...
Altmetrics
Final-revised paper
Preprint