Articles | Volume 14, issue 3
https://doi.org/10.5194/esd-14-593-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-14-593-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Stable stadial and interstadial states of the last glacial's climate identified in a combined stable water isotope and dust record from Greenland
Keno Riechers
CORRESPONDING AUTHOR
Research Domain IV – Complexity Science, Potsdam Institute for Climate Impact Research,
Telegrafenberg A31, 14473 Potsdam, Germany
Earth System Modelling, School of Engineering & Design, Technical University of Munich, 80333 Munich, Germany
Leonardo Rydin Gorjão
Faculty of Science and Technology, Norwegian University of Life Sciences, 1432 Ås, Norway
Institute of Energy and Climate Research, Forschungszentrum Jülich, 52428 Jülich, Germany
Institute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany
Institute of Networked Energy Systems, German Aerospace Center (DLR), 26129 Oldenburg, Germany
Forough Hassanibesheli
Earth System Modelling, Helmholtz Centre Potsdam, GFZ German Research Center for
Geosciences, 14473 Potsdam, Germany
Pedro G. Lind
Department of Computer Science, OsloMet – Oslo Metropolitan University, 0130 Oslo, Norway
NordSTAR – Nordic Center for Sustainable and Trustworthy AI Research, 0166 Oslo, Norway
Artificial Intelligence Lab, Oslo Metropolitan University, 0166 Oslo, Norway
Dirk Witthaut
Institute of Energy and Climate Research, Forschungszentrum Jülich, 52428 Jülich, Germany
Institute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany
Niklas Boers
Earth System Modelling, School of Engineering & Design, Technical University of Munich, 80333 Munich, Germany
Research Domain IV – Complexity Science, Potsdam Institute for Climate Impact Research,
Telegrafenberg A31, 14473 Potsdam, Germany
Global Systems Institute, Department of Mathematics, University of Exeter, EX4 4QF Exeter, UK
Related authors
John Slattery, Louise C. Sime, Francesco Muschitiello, and Keno Riechers
Clim. Past, 20, 2431–2454, https://doi.org/10.5194/cp-20-2431-2024, https://doi.org/10.5194/cp-20-2431-2024, 2024
Short summary
Short summary
Dansgaard–Oeschger events are a series of abrupt past climate change events during which the atmosphere, sea ice, and ocean in the North Atlantic underwent rapid changes. One current topic of interest is the order in which these different changes occurred, which remains unknown. In this work, we find that the current best method used to investigate this topic is subject to substantial bias. This implies that it is not possible to reliably determine the order of the different changes.
Eirik Myrvoll-Nilsen, Keno Riechers, Martin Wibe Rypdal, and Niklas Boers
Clim. Past, 18, 1275–1294, https://doi.org/10.5194/cp-18-1275-2022, https://doi.org/10.5194/cp-18-1275-2022, 2022
Short summary
Short summary
In layer counted proxy records each measurement is accompanied by a timestamp typically measured by counting periodic layers. Knowledge of the uncertainty of this timestamp is important for a rigorous propagation to further analyses. By assuming a Bayesian regression model to the layer increments we express the dating uncertainty by the posterior distribution, from which chronologies can be sampled efficiently. We apply our framework to dating abrupt warming transitions during the last glacial.
Keno Riechers, Takahito Mitsui, Niklas Boers, and Michael Ghil
Clim. Past, 18, 863–893, https://doi.org/10.5194/cp-18-863-2022, https://doi.org/10.5194/cp-18-863-2022, 2022
Short summary
Short summary
Building upon Milancovic's theory of orbital forcing, this paper reviews the interplay between intrinsic variability and external forcing in the emergence of glacial interglacial cycles. It provides the reader with historical background information and with basic theoretical concepts used in recent paleoclimate research. Moreover, it presents new results which confirm the reduced stability of glacial-cycle dynamics after the mid-Pleistocene transition.
Keno Riechers and Niklas Boers
Clim. Past, 17, 1751–1775, https://doi.org/10.5194/cp-17-1751-2021, https://doi.org/10.5194/cp-17-1751-2021, 2021
Short summary
Short summary
Greenland ice core data show that the last glacial cycle was punctuated by a series of abrupt climate shifts comprising significant warming over Greenland, retreat of North Atlantic sea ice, and atmospheric reorganization. Statistical analysis of multi-proxy records reveals no systematic lead or lag between the transitions of proxies that represent different climatic subsystems, and hence no evidence for a potential trigger of these so-called Dansgaard–Oeschger events can be found.
Michael Aich, Philipp Hess, Baoxiang Pan, Sebastian Bathiany, Yu Huang, and Niklas Boers
EGUsphere, https://doi.org/10.5194/egusphere-2025-2646, https://doi.org/10.5194/egusphere-2025-2646, 2025
Short summary
Short summary
Accurately simulating rainfall is essential to understand the impacts of climate change, especially extreme events such as floods and droughts. Climate models simulate the atmosphere at a coarse resolution and often misrepresent precipitation, leading to biased and overly smooth fields. We improve the precipitation using a machine learning model that is data-efficient, preserves key climate signals such as trends and variability, and significantly improves the representation of extreme events.
Nils Bochow, Anna Poltronieri, and Niklas Boers
The Cryosphere, 18, 5825–5863, https://doi.org/10.5194/tc-18-5825-2024, https://doi.org/10.5194/tc-18-5825-2024, 2024
Short summary
Short summary
Using the latest climate models, we update the understanding of how the Greenland ice sheet responds to climate changes. We found that precipitation and temperature changes in Greenland vary across different regions. Our findings suggest that using uniform estimates for temperature and precipitation for modelling the response of the ice sheet can overestimate ice loss in Greenland. Therefore, this study highlights the need for spatially resolved data in predicting the ice sheet's future.
Takahito Mitsui, Peter Ditlevsen, Niklas Boers, and Michel Crucifix
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2024-39, https://doi.org/10.5194/esd-2024-39, 2024
Revised manuscript accepted for ESD
Short summary
Short summary
The late Pleistocene glacial cycles are dominated by a 100-kyr periodicity, rather than other major astronomical periods like 19, 23, 41, or 400 kyr. Various models propose distinct mechanisms to explain this, but their diversity may obscure the key factor behind the 100-kyr periodicity. We propose a time-scale matching hypothesis, suggesting that the ice-sheet climate system responds to astronomical forcing at ~100 kyr because its intrinsic timescale is closer to 100 kyr than to other periods.
Clara Hummel, Niklas Boers, and Martin Rypdal
EGUsphere, https://doi.org/10.5194/egusphere-2024-3567, https://doi.org/10.5194/egusphere-2024-3567, 2024
Short summary
Short summary
We revisit early warning signals (EWS) for past abrupt climate changes known as Dansgaard-Oeschger (DO) events. Using advanced statistical methods, we find fewer significant EWS than previously reported. While some signals appear consistent across Greenland ice core records, they are not enough to identify the still unknown physical mechanisms behind DO events. This study highlights the complexity of predicting climate changes and urges caution in interpreting (paleo-)climate data.
John Slattery, Louise C. Sime, Francesco Muschitiello, and Keno Riechers
Clim. Past, 20, 2431–2454, https://doi.org/10.5194/cp-20-2431-2024, https://doi.org/10.5194/cp-20-2431-2024, 2024
Short summary
Short summary
Dansgaard–Oeschger events are a series of abrupt past climate change events during which the atmosphere, sea ice, and ocean in the North Atlantic underwent rapid changes. One current topic of interest is the order in which these different changes occurred, which remains unknown. In this work, we find that the current best method used to investigate this topic is subject to substantial bias. This implies that it is not possible to reliably determine the order of the different changes.
Vasilis Dakos, Chris A. Boulton, Joshua E. Buxton, Jesse F. Abrams, Beatriz Arellano-Nava, David I. Armstrong McKay, Sebastian Bathiany, Lana Blaschke, Niklas Boers, Daniel Dylewsky, Carlos López-Martínez, Isobel Parry, Paul Ritchie, Bregje van der Bolt, Larissa van der Laan, Els Weinans, and Sonia Kéfi
Earth Syst. Dynam., 15, 1117–1135, https://doi.org/10.5194/esd-15-1117-2024, https://doi.org/10.5194/esd-15-1117-2024, 2024
Short summary
Short summary
Tipping points are abrupt, rapid, and sometimes irreversible changes, and numerous approaches have been proposed to detect them in advance. Such approaches have been termed early warning signals and represent a set of methods for identifying changes in the underlying behaviour of a system across time or space that might indicate an approaching tipping point. Here, we review the literature to explore where, how, and which early warnings have been used in real-world case studies so far.
Maya Ben-Yami, Lana Blaschke, Sebastian Bathiany, and Niklas Boers
EGUsphere, https://doi.org/10.5194/egusphere-2024-1106, https://doi.org/10.5194/egusphere-2024-1106, 2024
Preprint archived
Short summary
Short summary
Recent work has used observations to find statistical signs that the Atlantic Meridional Overturning Circulation (AMOC) may be approaching a collapse. We find that in complex climate models in which the AMOC does not collapse before 2100, the statistical signs that are present in the observations are not found in the 1850–2014 equivalent model time series. This indicates that the observed statistical signs are not prone to false positives.
Takahito Mitsui and Niklas Boers
Clim. Past, 20, 683–699, https://doi.org/10.5194/cp-20-683-2024, https://doi.org/10.5194/cp-20-683-2024, 2024
Short summary
Short summary
In general, the variance and short-lag autocorrelations of the fluctuations increase in a system approaching a critical transition. Using these indicators, we identify statistical precursor signals for the Dansgaard–Oeschger cooling events recorded in two climatic proxies of three Greenland ice core records. We then provide a dynamical systems theory that bridges the gap between observing statistical precursor signals and the physical precursor signs empirically known in paleoclimate research.
Takahito Mitsui, Matteo Willeit, and Niklas Boers
Earth Syst. Dynam., 14, 1277–1294, https://doi.org/10.5194/esd-14-1277-2023, https://doi.org/10.5194/esd-14-1277-2023, 2023
Short summary
Short summary
The glacial–interglacial cycles of the Quaternary exhibit 41 kyr periodicity before the Mid-Pleistocene Transition (MPT) around 1.2–0.8 Myr ago and ~100 kyr periodicity after that. The mechanism generating these periodicities remains elusive. Through an analysis of an Earth system model of intermediate complexity, CLIMBER-2, we show that the dominant periodicities of glacial cycles can be explained from the viewpoint of synchronization theory.
Sara M. Vallejo-Bernal, Frederik Wolf, Niklas Boers, Dominik Traxl, Norbert Marwan, and Jürgen Kurths
Hydrol. Earth Syst. Sci., 27, 2645–2660, https://doi.org/10.5194/hess-27-2645-2023, https://doi.org/10.5194/hess-27-2645-2023, 2023
Short summary
Short summary
Employing event synchronization and complex networks analysis, we reveal a cascade of heavy rainfall events, related to intense atmospheric rivers (ARs): heavy precipitation events (HPEs) in western North America (NA) that occur in the aftermath of land-falling ARs are synchronized with HPEs in central and eastern Canada with a delay of up to 12 d. Understanding the effects of ARs in the rainfall over NA will lead to better anticipating the evolution of the climate dynamics in the region.
Maximilian Gelbrecht, Alistair White, Sebastian Bathiany, and Niklas Boers
Geosci. Model Dev., 16, 3123–3135, https://doi.org/10.5194/gmd-16-3123-2023, https://doi.org/10.5194/gmd-16-3123-2023, 2023
Short summary
Short summary
Differential programming is a technique that enables the automatic computation of derivatives of the output of models with respect to model parameters. Applying these techniques to Earth system modeling leverages the increasing availability of high-quality data to improve the models themselves. This can be done by either using calibration techniques that use gradient-based optimization or incorporating machine learning methods that can learn previously unresolved influences directly from data.
Taylor Smith, Ruxandra-Maria Zotta, Chris A. Boulton, Timothy M. Lenton, Wouter Dorigo, and Niklas Boers
Earth Syst. Dynam., 14, 173–183, https://doi.org/10.5194/esd-14-173-2023, https://doi.org/10.5194/esd-14-173-2023, 2023
Short summary
Short summary
Multi-instrument records with varying signal-to-noise ratios are becoming increasingly common as legacy sensors are upgraded, and data sets are modernized. Induced changes in higher-order statistics such as the autocorrelation and variance are not always well captured by cross-calibration schemes. Here we investigate using synthetic examples how strong resulting biases can be and how they can be avoided in order to make reliable statements about changes in the resilience of a system.
Eirik Myrvoll-Nilsen, Keno Riechers, Martin Wibe Rypdal, and Niklas Boers
Clim. Past, 18, 1275–1294, https://doi.org/10.5194/cp-18-1275-2022, https://doi.org/10.5194/cp-18-1275-2022, 2022
Short summary
Short summary
In layer counted proxy records each measurement is accompanied by a timestamp typically measured by counting periodic layers. Knowledge of the uncertainty of this timestamp is important for a rigorous propagation to further analyses. By assuming a Bayesian regression model to the layer increments we express the dating uncertainty by the posterior distribution, from which chronologies can be sampled efficiently. We apply our framework to dating abrupt warming transitions during the last glacial.
Keno Riechers, Takahito Mitsui, Niklas Boers, and Michael Ghil
Clim. Past, 18, 863–893, https://doi.org/10.5194/cp-18-863-2022, https://doi.org/10.5194/cp-18-863-2022, 2022
Short summary
Short summary
Building upon Milancovic's theory of orbital forcing, this paper reviews the interplay between intrinsic variability and external forcing in the emergence of glacial interglacial cycles. It provides the reader with historical background information and with basic theoretical concepts used in recent paleoclimate research. Moreover, it presents new results which confirm the reduced stability of glacial-cycle dynamics after the mid-Pleistocene transition.
Keno Riechers and Niklas Boers
Clim. Past, 17, 1751–1775, https://doi.org/10.5194/cp-17-1751-2021, https://doi.org/10.5194/cp-17-1751-2021, 2021
Short summary
Short summary
Greenland ice core data show that the last glacial cycle was punctuated by a series of abrupt climate shifts comprising significant warming over Greenland, retreat of North Atlantic sea ice, and atmospheric reorganization. Statistical analysis of multi-proxy records reveals no systematic lead or lag between the transitions of proxies that represent different climatic subsystems, and hence no evidence for a potential trigger of these so-called Dansgaard–Oeschger events can be found.
Charlotte Neubacher, Dirk Witthaut, and Jan Wohland
Adv. Geosci., 54, 205–215, https://doi.org/10.5194/adgeo-54-205-2021, https://doi.org/10.5194/adgeo-54-205-2021, 2021
Short summary
Short summary
In our study, we investigate the variability of potential offshore wind power over Europe on time scales of more than 10 years. Detailed spectral analysis of potential offshore wind power capacities over the last century indicates a strong coupling to large climate patterns such as the NAO. Furthermore, combining the wind power potential at the German North Sea and the Portuguese Atlantic coast shows that the variability can be mitigated.
Cited articles
Andersen, K. K., Svensson, A., Johnsen, S. J., Rasmussen, S. O., Bigler, M.,
Röthlisberger, R., Ruth, U., Siggaard-Andersen, M. L., Peder
Steffensen, J., Dahl-Jensen, D., Vinther, B. M., and Clausen, H. B.: The
Greenland Ice Core Chronology 2005, 15–42 ka, Part 1: constructing
the time scale, Quaternary Sci. Rev., 25, 3246–3257,
https://doi.org/10.1016/j.quascirev.2006.08.002, 2006. a, b
Anvari, M., Tabar, M. R. R., Peinke, J., and Lehnertz, K.: Disentangling the
stochastic behavior of complex time series, Sci. Rep., 6, 35435,
https://doi.org/10.1038/srep35435, 2016. a
Armstrong McKay, D. I., Staal, A., Abrams, J. F., Winkelmann, R.,
Sakschewski, B., Loriani, S., Fetzer, I., Cornell, S. E., Rockström,
J., and Lenton, T. M.: Exceeding 1.5 ∘C global warming could trigger
multiple climate tipping points, Science, 377, eabn7950,
https://doi.org/10.1126/science.abn7950, 2022. a
Ashwin, P., Wieczorek, S., Vitolo, R., and Cox, P.: Tipping points in open
systems: Bifurcation, noise-induced and rate-dependent examples in the
climate system, Philos. T. R. Soc. A, 370, 1166–1184,
https://doi.org/10.1098/rsta.2011.0306, 2012. a
Boers, N.: Observation-based early-warning signals for a collapse of the
Atlantic Meridional Overturning Circulation, Nat. Clim. Change, 11,
680–688, https://doi.org/10.1038/s41558-021-01097-4, 2021. a, b
Boers, N. and Rypdal, M.: Critical slowing down suggests that the western
Greenland Ice Sheet is close to a tipping point, P.
Natl. Acad. Sci. USA, 118, e2024192118,
https://doi.org/10.1073/pnas.2024192118, 2021. a, b
Boers, N., Ghil, M., and Rousseau, D. D.: Ocean circulation, ice shelf, and sea
ice interactions explain Dansgaard–Oeschger cycles, P.
Natl. Acad. Sci. USA, 115,
E11005–E11014, https://doi.org/10.1073/pnas.1802573115, 2018. a, b, c
Boers, N., Ghil, M., and Stocker, T. F.: Theoretical and paleoclimatic evidence
for abrupt transitions in the Earth system, Environ. Res. Lett.,
17, 093006, https://doi.org/10.1088/1748-9326/ac8944, 2022. a
Boulton, C. A., Allison, L. C., and Lenton, T. M.: Early warning signals of
Atlantic Meridional Overturning Circulation collapse in a fully
coupled climate model, Nat. Commun., 5, 5752,
https://doi.org/10.1038/ncomms6752, 2014. a
Boulton, C. A., Lenton, T. M., and Boers, N.: Pronounced loss of Amazon
rainforest resilience since the early 2000s, Nat. Clim. Change, 12,
271–278, https://doi.org/10.1038/s41558-022-01287-8, 2022. a
Brovkin, V., Brook, E., Williams, J. W., Bathiany, S., Lenton, T. M., Barton,
M., DeConto, R. M., Donges, J. F., Ganopolski, A., McManus, J., Praetorius,
S., de Vernal, A., Abe-Ouchi, A., Cheng, H., Claussen, M., Crucifix, M.,
Gallopín, G., Iglesias, V., Kaufman, D. S., Kleinen, T., Lambert, F.,
van der Leeuw, S., Liddy, H., Loutre, M.-f., McGee, D., Rehfeld, K., Rhodes,
R., Seddon, A. W. R., Trauth, M. H., Vanderveken, L., and Yu, Z.: Past abrupt
changes, tipping points and cascading impacts in the Earth system, Nat.
Geosci., 14, 550–558, https://doi.org/10.1038/s41561-021-00790-5, 2021. a
Cheng, H., Sinha, A., Cruz, F. W., Wang, X., Edwards, R. L., D'Horta, F. M.,
Ribas, C. C., Vuille, M., Stott, L. D., and Auler, A. S.: Climate change
patterns in Amazonia and biodiversity, Nat. Commun., 4, 1411,
https://doi.org/10.1038/ncomms2415, 2013. a
Clark, P. U., Pisias, N. G., Stocker, T. F., and Weaver, A. J.: The role of the
thermohaline circulation in abrupt climate change, Nature, 415, 863–869,
https://doi.org/10.1038/415863a, 2002. a
Corrick, E. C., Drysdale, R. N., Hellstrom, J. C., Capron, E., Rasmussen,
S. O., Zhang, X., Fleitmann, D., Couchoud, I., Wolff, E., and Monsoon, S. A.:
Synchronous timing of abrupt climate changes during the last glacial period,
Science, 369, 963–969, https://doi.org/10.1126/science.aay5538, 2020. a
Dansgaard, W., Clausen, H. B., Gundestrup, N., Hammer, C. U., Johnsen, S. F.,
Kristinsdottir, P. M., and Reeh, N.: A New Greenland Deep Ice Core,
Science, 218, 1273–1278, https://doi.org/10.1126/science.218.4579.1273, 1982. a
Dansgaard, W., Johnsen, S., Clausen, H., Dahl-Jensen, D., Gundestrup, N.,
Hammer, C., and Oeschger, H.: North Atlantic Climatic Oscillations
Revealed by Deep Greenland Ice Cores, American Geophysical
Union, 29, 288–298, https://doi.org/10.1029/GM029p0288, 1984. a
Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup,
N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P.,
Sveinbjörnsdottir, A. E., Jouzel, J., and Bond, G.: Evidence for
general instability of past climate from a 250-kyr ice-core record, Nature,
364, 218–220, https://doi.org/10.1038/364218a0, 1993. a
Davis, W. and Buffett, B.: Estimation of drift and diffusion functions from
unevenly sampled time-series data, Phys. Rev. E, 106, 014140,
https://doi.org/10.1103/PhysRevE.106.014140, 2022. a
Ditlevsen, P. D.: Observation of α-stable noise induced millennial
climate changes from an ice-core record, Geophys. Res. Lett., 26,
1441–1444, https://doi.org/10.1029/1999GL900252, 1999. a, b
Dokken, T. M., Nisancioglu, K. H., Li, C., Battisti, D. S., and Kissel, C.:
Dansgaard–Oeschger cycles: Interactions between ocean and sea ice
intrinsic to the Nordic seas, Paleoceanography, 28, 491–502,
https://doi.org/10.1002/palo.20042, 2013. a
Epanechnikov, V. A.: Non-Parametric Estimation of a Multivariate Probability
Density, Theory Probab. Appl., 14, 153–158,
https://doi.org/10.1137/1114019, 1967. a
EPICA Community Members: One-to-one coupling of glacial climate variability
in Greenland and Antarctica, Nature, 444, 5–8,
https://doi.org/10.1038/nature05301, 2006. a
Erhardt, T., Capron, E., Olander Rasmussen, S., Schüpbach, S., Bigler,
M., Adolphi, F., and Fischer, H.: Decadal-scale progression of the onset of
Dansgaard–Oeschger warming events, Clim. Past, 15, 811–825,
https://doi.org/10.5194/cp-15-811-2019, 2019. a
Fischer, H., Siggaard-Andersen, M. L., Ruth, U., Röthlisberger, R., and
Wolff, E.: Glacial/interglacial changes in mineral dust and sea-salt records
in polar ice cores: Sources, transport, and deposition, Rev.
Geophys., 45, 1–26, https://doi.org/10.1029/2005RG000192, 2007. a, b, c, d
Ganopolski, A. and Rahmstorf, S.: Abrupt Glacial Climate Changes due to
Stochastic Resonance, Phys. Rev. Lett., 88, 038501,
https://doi.org/10.1103/PhysRevLett.88.038501, 2002. a
Gardiner, C.: Stochastic Methods: A Handbook for the Natural and Social
Sciences, Springer-Verlag Berlin Heidelberg, 4th Edn., ISBN 3-540-15607-0, 2009. a
Ghil, M.: Steady-State Solutions of a Diffusive Energy-Balance Climate Model
and Their Stability, Tech. Rep. IMM410, Courant Institute of Mathematical
Sciences, New York University, New York,
https://ntrs.nasa.gov/api/citations/19750014903/downloads/19750014903.pdf (last access: 28 April 2023),
1975. a
Gkinis, V., Simonsen, S. B., Buchardt, S. L., White, J. W., and Vinther, B. M.:
Water isotope diffusion rates from the NorthGRIP ice core for the last
16,000 years – Glaciological and paleoclimatic implications, Earth
Planet. Sc. Lett., 405, 132–141, https://doi.org/10.1016/j.epsl.2014.08.022,
2014. a, b, c
Gottschalk, J., Skinner, L. C., Misra, S., Waelbroeck, C., Menviel, L., and
Timmermann, A.: Abrupt changes in the southern extent of North Atlantic Deep
Water during Dansgaard-Oeschger events, Nat. Geosci., 8, 950–954,
https://doi.org/10.1038/ngeo2558, 2015. a
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R.,
Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A.,
Fernández del Río, J., Wiebe, M., Peterson, Pearu andGérard-Marchant, P.,
Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant,
T. E.: Array programming with NumPy, Nature, 585, 357–362,
https://doi.org/10.1038/s41586-020-2649-2, 2020. a
Henry, L. G., McManus, J. F., Curry, W. B., Roberts, N. L., Piotrowski, A. M.,
and Keigwin, L. D.: North Atlantic ocean circulation and abrupt climate
change during the last glaciation, Science, 353, 470–474,
https://doi.org/10.1126/science.aaf5529, 2016. a
Hunter, J. D.: Matplotlib: A 2D Graphics Environment, Comput.
Sci. Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007. a
Johnsen, S. J., Clausen, H. B., Dansgaard, W., Fuhrer, K., Gundestrup, N.,
Hammer, C. U., Iversen, P., Jouzel, J., Stauffer, B., and Steffensen, J.:
Irregular glacial interstadials recorded in a new Greenland ice core,
Nature, 359, 311–313, https://doi.org/10.1038/359311a0, 1992. a
Johnsen, S. J., Dahl-Jensen, D., Gundestrup, N., Steffensen, J. P., Clausen,
H. B., Miller, H., Masson-Delmotte, V., Sveinbjörnsdottir, A. E., and
White, J.: Oxygen isotope and palaeotemperature records from six Greenland
ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP,
J. Quaternary Sci., 16, 299–307, https://doi.org/10.1002/jqs.622, 2001. a
Jouzel, J., Alley, R. B., Cuffey, K. M., Dansgaard, W., Grootes, P., Hoffmann,
G., Johnsen, S. J., Koster, R. D., Peel, D., Shuman, C. A., Stievenard, M.,
Stuiver, M., and White, J.: Validity of the temperature reconstruction from
water isotopes in ice cores, J. Geophys. Res.-Ocean., 102,
26471–26487, https://doi.org/10.1029/97JC01283, 1997. a
Kanner, L. C., Burns, S. J., Cheng, H., and Edwards, R. L.: High-Latitude
Forcing of the South American Summer Monsoon During the Last Glacial,
Science, 335, 570–573, https://doi.org/10.1126/science.1213397, 2012. a
Kindler, P., Guillevic, M., Baumgartner, M., Schwander, J., Landais, A., and
Leuenberger, M.: Temperature reconstruction from 10 to 120 kyr b2k from the
NGRIP ice core, Clim. Past, 10, 887–902,
https://doi.org/10.5194/cp-10-887-2014, 2014. a
Kleppin, H., Jochum, M., Otto-Bliesner, B., Shields, C. A., and Yeager, S.:
Stochastic atmospheric forcing as a cause of Greenland climate transitions,
J. Clim., 28, 7741–7763, https://doi.org/10.1175/JCLI-D-14-00728.1, 2015. a
Kondrashov, D., Kravtsov, S., Robertson, A. W., and Ghil, M.: A Hierarchy of
Data-Based ENSO Models, J. Clim., 18, 4425–4444,
https://doi.org/10.1175/JCLI3567.1, 2005. a
Kondrashov, D., Chekroun, M. D., and Ghil, M.: Data-driven non-Markovian
closure models, Physica D, 297, 33–55,
https://doi.org/10.1016/j.physd.2014.12.005, 2015. a
Kramers, H. A.: Brownian motion in a field of force and the diffusion model of
chemical reactions, Physica, 7, 284–304,
https://doi.org/10.1016/S0031-8914(40)90098-2, 1940. a, b
Kriechers, R.: kriechers/esd-2021-95: esd-2021-95 (Version v1), Zenodo [code], https://doi.org/10.5281/zenodo.7898825, 2023. a
Kwasniok, F.: Analysis and modelling of glacial climate transitions using
simple dynamical systems, Philos. T. R. Soc. A, 371, 20110472,
https://doi.org/10.1098/rsta.2011.0472, 2013. a, b, c, d
Lamouroux, D. and Lehnertz, K.: Kernel-based regression of drift and diffusion
coefficients of stochastic processes, Phys. Lett. A, 373, 3507–3512,
https://doi.org/10.1016/j.physleta.2009.07.073, 2009. a
Lehnertz, K., Zabawa, L., and Tabar, M. R. R.: Characterizing abrupt
transitions in stochastic dynamics, New J. Phys., 20, 113043,
https://doi.org/10.1088/1367-2630/aaf0d7, 2018. a
Lenton, T., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S., and
Schellnhuber, H. J.: Tipping elements in the Earth's climate system,
P. Natl. Acad. Sci. USA, 105, 1786–1793, https://doi.org/10.1073/pnas.0705414105, 2008. a
Lenton, T. M. and Schellnhuber, H. J.: Tipping the Scales, Nat. Clim.
Change, 1, 97–98, https://doi.org/10.1038/climate.2007.65, 2007. a
Li, C. and Born, A.: Coupled atmosphere-ice-ocean dynamics in
Dansgaard–Oeschger events, Quaternary Sci. Rev., 203, 1–20,
https://doi.org/10.1016/j.quascirev.2018.10.031, 2019. a, b
Li, T.-Y., Han, L.-Y., Cheng, H., Edwards, R. L., Shen, C.-C., Li, H.-C., Li,
J.-Y., Huang, C.-X., Zhang, T.-T., and Zhao, X.: Evolution of the
Asian summer monsoon during Dansgaard/Oeschger events 13–17 recorded in
a stalagmite constrained by high-precision chronology from southwest China,
Quaternary Res., 88, 121–128, https://doi.org/10.1017/qua.2017.22, 2017. a
Livina, V. N., Kwasniok, F., and Lenton, T. M.: Potential analysis reveals changing number of climate states during the last 60 kyr, Clim. Past, 6, 77–82, https://doi.org/10.5194/cp-6-77-2010, 2010. a, b, c
Lohmann, J. and Ditlevsen, P. D.: A consistent statistical model selection for
abrupt glacial climate changes, Clim. Dynam., 52, 6411–6426,
https://doi.org/10.1007/s00382-018-4519-2, 2018a. a, b, c, d
Lohmann, J. and Ditlevsen, P. D.: Random and externally controlled occurrences of Dansgaard–Oeschger events, Clim. Past, 14, 609–617, https://doi.org/10.5194/cp-14-609-2018, 2018b. a
Lynch-Stieglitz, J.: The Atlantic Meridional Overturning Circulation
and Abrupt Climate Change, Annu. Rev. Mar. Sci., 9, 83–104,
https://doi.org/10.1146/annurev-marine-010816-060415, 2017. a, b
Majda, A. J., Franzke, C. L., Fischer, A., and Crommelin, D. T.: Distinct
metastable atmospheric regimes despite nearly Gaussian statistics: A paradigm
model, P. Natl. Acad. Sci. USA, 103, 8309–8314, https://doi.org/10.1073/pnas.0602641103, 2006. a
McKinney, W.: Data Structures for Statistical Computing in
Python, in: Proceedings of the 9th Python in Science Conference, 28 June–3 July 2010, Austin, Texas,
edited by: van der Walt, S. and Millman, J., 56–61,
https://doi.org/10.25080/Majora-92bf1922-00a, 2010. a
Menviel, L. C., Skinner, L. C., Tarasov, L., and Tzedakis, P. C.: An
ice–climate oscillatory framework for Dansgaard–Oeschger cycles,
Nat. Rev. Earth Environ., 1, 677–693,
https://doi.org/10.1038/s43017-020-00106-y, 2020. a, b, c, d
Mitsui, T. and Crucifix, M.: Influence of external forcings on abrupt
millennial-scale climate changes: a statistical modelling study, Clim.
Dynam., 48, 2729–2749, https://doi.org/10.1007/s00382-016-3235-z, 2017. a, b, c
Nadaraya, E. A.: On Estimating Regression, Theor. Probab.
Appl., 9, 141–142, https://doi.org/10.1137/1109020, 1964. a
Niels Bohr Institute: Center for Ice and Climate – Data icesamples and software, University of Copenhagen, Copenhagen, Denmark, [data sets],
https://www.iceandclimate.nbi.ku.dk/data/ and https://www.iceandclimate.nbi.ku.dk/data/NGRIP_dust_on_GICC05_20y_december2014.txt,
last access: 28 April 2023. a, b, c
North, G. R.: Analytical Solution to a Simple Climate Model with Diffusive Heat
Transport, J. Atmos. Sci., 32, 1301–1307,
https://doi.org/10.1175/1520-0469(1975)032<1301:ASTASC>2.0.CO;2, 1975. a
Rasmussen, S. O., Andersen, K. K., Svensson, A. M., Steffensen, J. P., Vinther,
B. M., Clausen, H. B., Siggaard-Andersen, M. L., Johnsen, S. J., Larsen,
L. B., Dahl-Jensen, D., Bigler, M., Röthlisberger, R., Fischer, H.,
Goto-Azuma, K., Hansson, M. E., and Ruth, U.: A new Greenland ice core
chronology for the last glacial termination, J. Geophys. Res.-Atmos., 111, D06102, https://doi.org/10.1029/2005JD006079, 2006. a, b
Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt, S. L.,
Clausen, H. B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S. J., Fischer, H.,
Gkinis, V., Guillevic, M., Hoek, W. Z., Lowe, J. J., Pedro, J. B., Popp, T.,
Seierstad, I. K., Steffensen, J. P., Svensson, A. M., Vallelonga, P.,
Vinther, B. M., Walker, M. J., Wheatley, J. J., and Winstrup, M.: A
stratigraphic framework for abrupt climatic changes during the Last Glacial
period based on three synchronized Greenland ice-core records: Refining
and extending the INTIMATE event stratigraphy, Quaternary Sci. Rev.,
106, 14–28, https://doi.org/10.1016/j.quascirev.2014.09.007, 2014. a, b, c, d, e
Rial, J. A. and Saha, R.: Modeling Abrupt Climate Change as the Interaction
Between Sea Ice Extent and Mean Ocean Temperature Under Orbital Insolation
Forcing, in: Abrupt Climate Change: Mechanisms, Patterns, and Impact in
2011, edited by: Rashid, H., Polyak, L., and
Mosley-Thompson, E., American Geophysical Union (AGU), 57–74,
https://doi.org/10.1029/2010GM001027, 2011. a
Risken, H. and Frank, T.: The Fokker–Planck equation, Springer-Verlag,
Berlin, Heidelberg, 2nd Edn., https://doi.org/10.1007/978-3-642-61544-3, 1996. a, b
Roberts, A. and Saha, R.: Relaxation oscillations in an idealized ocean
circulation model, Clim. Dynam., 48, 2123–2134,
https://doi.org/10.1007/s00382-016-3195-3, 2017. a, b, c
Rosier, S. H. R., Reese, R., Donges, J. F., De Rydt, J., Gudmundsson, G. H., and Winkelmann, R.: The tipping points and early warning indicators for Pine Island Glacier, West Antarctica, The Cryosphere, 15, 1501–1516, https://doi.org/10.5194/tc-15-1501-2021, 2021. a, b
Ruth, U., Bigler, M., Röthlisberger, R., Siggaard-Andersen, M. L.,
Kipfstuhl, S., Goto-Azuma, K., Hansson, M. E., Johnsen, S. J., Lu, H., and
Steffensen, J. P.: Ice core evidence for a very tight link between North
Atlantic and east Asian glacial climate, Geophys. Res. Lett.,
34, L03706, https://doi.org/10.1029/2006GL027876, 2007. a
Rydin Gorjão, L. and Meirinhos, F.:
kramersmoyal
: Kramers–Moyal
coefficients for stochastic processes, J. Open Sour. Softw., 4,
1693, https://doi.org/10.21105/joss.01693, 2019. a
Rydin Gorjão, L., Heysel, J., Lehnertz, K., and Tabar, M. R. R.: Analysis and
data-driven reconstruction of bivariate jump-diffusion processes, Phys.
Rev. E, 100, 062127, https://doi.org/10.1103/PhysRevE.100.062127, 2019. a, b
Schüpbach, S., Fischer, H., Bigler, M., Erhardt, T., Gfeller, G.,
Leuenberger, D., Mini, O., Mulvaney, R., Abram, N. J., Fleet, L., Frey,
M. M., Thomas, E., Svensson, A., Dahl-Jensen, D., Kettner, E., Kjaer, H.,
Seierstad, I., Steffensen, J. P., Rasmussen, S. O., Vallelonga, P., Winstrup,
M., Wegner, A., Twarloh, B., Wolff, K., Schmidt, K., Goto-Azuma, K.,
Kuramoto, T., Hirabayashi, M., Uetake, J., Zheng, J., Bourgeois, J., Fisher,
D., Zhiheng, D., Xiao, C., Legrand, M., Spolaor, A., Gabrieli, J., Barbante,
C., Kang, J. H., Hur, S. D., Hong, S. B., Hwang, H. J., Hong, S., Hansson,
M., Iizuka, Y., Oyabu, I., Muscheler, R., Adolphi, F., Maselli, O.,
McConnell, J., and Wolff, E. W.: Greenland records of aerosol source and
atmospheric lifetime changes from the Eemian to the Holocene, Nat.
Commun., 9, 1476, https://doi.org/10.1038/s41467-018-03924-3, 2018. a
Seierstad, I. K., Abbott, P. M., Bigler, M., Blunier, T., Bourne, A. J., Brook,
E., Buchardt, S. L., Buizert, C., Clausen, H. B., Cook, E., Dahl-Jensen, D.,
Davies, S. M., Guillevic, M., Johnsen, S. J., Pedersen, D. S., Popp, T. J.,
Rasmussen, S. O., Severinghaus, J. P., Svensson, A., and Vinther, B. M.:
Consistently dated records from the Greenland GRIP, GISP2 and NGRIP
ice cores for the past 104 ka reveal regional millennial-scale
δ18O gradients with possible Heinrich event imprint, Quaternary
Sci. Rev., 106, 29–46, https://doi.org/10.1016/j.quascirev.2014.10.032, 2014. a, b, c
Silverman, B. W.: Density Estimation for Statistics and Data Analysis,
Routledge, Boca Raton, 1st Edn.,
https://doi.org/10.1201/9781315140919, 1998. a
Snyder, C. W.: Evolution of global temperature over the past two million years,
Nature, 538, 226–228, https://doi.org/10.1038/nature19798, 2016. a, b, c, d
Stommel, H.: Thermohahe Convection with Two Stable Regimes, Tellus, 13,
224–230, 1961. a
Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Davies, S. M., Johnsen, S. J., Muscheler, R., Parrenin, F., Rasmussen, S. O., Röthlisberger, R., Seierstad, I., Steffensen, J. P., and Vinther, B. M.: A 60 000 year Greenland stratigraphic ice core chronology, Clim. Past, 4, 47–57, https://doi.org/10.5194/cp-4-47-2008, 2008. a, b
Valdes, P.: Built for stability, Nat. Geosci., 4, 414–416,
https://doi.org/10.1038/ngeo1200, 2011. a
Vettoretti, G. and Peltier, W. R.: Fast physics and slow physics in the
nonlinear Dansgaard–Oeschger relaxation oscillation, J. Clim.,
31, 3423–3449, https://doi.org/10.1175/JCLI-D-17-0559.1, 2018. a
Vettoretti, G., Ditlevsen, P., Jochum, M., and Rasmussen, S. O.: Atmospheric
CO2 control of spontaneous millennial-scale ice age climate oscillations,
Nat. Geosci., 15, 300–306, https://doi.org/10.1038/s41561-022-00920-7, 2022. a, b, c
Vinther, B. M., Clausen, H. B., Johnsen, S. J., Rasmussen, S. O., Andersen,
K. K., Buchardt, S. L., Dahl-Jensen, D., Seierstad, I. K., Siggaard-Andersen,
M. L., Steffensen, J. P., Svensson, A., Olsen, J., and Heinemeier, J.: A
synchronized dating of three Greenland ice cores throughout the Holocene,
J. Geophys. Res.-Atmos., 111, D13102,
https://doi.org/10.1029/2005JD006921, 2006. a, b
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van
der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson,
A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng,
Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R.,
Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro,
A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 contributors:
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,
Nat. Method., 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Voelker, A. H.: Global distribution of centennial-scale records for Marine
Isotope Stage (MIS) 3: A database, Quaternary Sci. Rev., 21,
1185–1212, https://doi.org/10.1016/S0277-3791(01)00139-1, 2002. a
WAIS Divide Project Members: Precise interpolar phasing of abrupt climate
change during the last ice age, Nature, 520, 661–665,
https://doi.org/10.1038/nature14401, 2015. a
Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C. C., and
Dorale, J. A.: A high-resolution absolute-dated late pleistocene monsoon
record from Hulu Cave, China, Science, 294, 2345–2348,
https://doi.org/10.1126/science.1064618, 2001. a
Watson, G. S.: Smooth Regression Analysis, Sankhyā: Smooth Regression Analysis, Sankhya A, 26, 359–372, 1964. a
Woollings, T., Hannachi, A., and Hoskins, B.: Variability of the North
Atlantic eddy-driven jet stream, Q. J. Roy.
Meteor. Soc., 136, 856–868, https://doi.org/10.1002/qj.625, 2010.
a
Zhang, X., Lohmann, G., Knorr, G., and Purcell, C.: Abrupt glacial climate
shifts controlled by ice sheet changes, Nature, 512, 290–294,
https://doi.org/10.1038/nature13592, 2014. a
Short summary
Paleoclimate proxy records show that the North Atlantic climate repeatedly transitioned between two regimes during the last glacial interval. This study investigates a bivariate proxy record from a Greenland ice core which reflects past Greenland temperatures and large-scale atmospheric conditions. We reconstruct the underlying deterministic drift by estimating first-order Kramers–Moyal coefficients and identify two separate stable states in agreement with the aforementioned climatic regimes.
Paleoclimate proxy records show that the North Atlantic climate repeatedly transitioned between...
Altmetrics
Final-revised paper
Preprint