Articles | Volume 14, issue 2
https://doi.org/10.5194/esd-14-443-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-14-443-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The modelled climatic response to the 18.6-year lunar nodal cycle and its role in decadal temperature trends
School of Environmental Sciences, University of East Anglia, Norwich
NR4 7TJ, United Kingdom
Climatic Research Unit, University of East Anglia, Norwich NR4 7TJ,
United Kingdom
Robert A. Hall
School of Environmental Sciences, University of East Anglia, Norwich
NR4 7TJ, United Kingdom
David P. Stevens
School of Mathematics, University of East Anglia, Norwich NR4 7TJ,
United Kingdom
Ed Hawkins
National Centre for Atmospheric Science, Department of Meteorology,
University of Reading, Reading RG6 6BB, United Kingdom
Related authors
Feifei Luo, Bjørn H. Samset, Camilla W. Stjern, Manoj Joshi, Laura J. Wilcox, Robert J. Allen, Wei Hua, and Shuanglin Li
Atmos. Chem. Phys., 25, 7647–7667, https://doi.org/10.5194/acp-25-7647-2025, https://doi.org/10.5194/acp-25-7647-2025, 2025
Short summary
Short summary
Black carbon (BC) aerosol is emitted from the incomplete combustion of biomass and fossil fuels. We found that Asian BC leads to strong local cooling and drying. Reductions in precipitation primarily depend on the thermodynamic effects due to solar radiation absorption by BC. The combined thermodynamic and dynamic effects shape the spatial pattern of precipitation responses to Asian BC. These results help us further understand the impact of emissions of anthropogenic aerosols on Asian climate.
Duncan Watson-Parris, Laura J. Wilcox, Camilla W. Stjern, Robert J. Allen, Geeta Persad, Massimo A. Bollasina, Annica M. L. Ekman, Carley E. Iles, Manoj Joshi, Marianne T. Lund, Daniel McCoy, Daniel M. Westervelt, Andrew I. L. Williams, and Bjørn H. Samset
Atmos. Chem. Phys., 25, 4443–4454, https://doi.org/10.5194/acp-25-4443-2025, https://doi.org/10.5194/acp-25-4443-2025, 2025
Short summary
Short summary
In 2020, regulations by the International Maritime Organization aimed to reduce aerosol emissions from ships. These aerosols previously had a cooling effect, which the regulations might reduce, revealing more greenhouse gas warming. Here we find that, while there is regional warming, the global 2020–2040 temperature rise is only +0.03 °C. This small change is difficult to distinguish from natural climate variability, indicating the regulations have had a limited effect on observed warming to date.
Siyu Meng, Xun Gong, Benjamin Webber, Manoj Joshi, Xiaokun Ding, Xiang Gong, Mingliang Gu, and Huiwang Gao
EGUsphere, https://doi.org/10.5194/egusphere-2025-13, https://doi.org/10.5194/egusphere-2025-13, 2025
Short summary
Short summary
The North Pacific Ocean Desert (NPOD), with low phytoplankton biomass, covers about 40 % of the North Pacific. The variations in NPOD seasonal cycle, which have a greater impact than its annual mean changes, are influenced by the El Niño-Southern Oscillation from 1998 to 2021. However, from 2021 to 2100, a weakened NPOD seasonal cycle is expected due to climate change. These changes in NPOD seasonal cycle could affect fisheries and marine ecosystems.
William J. Dow, Christine M. McKenna, Manoj M. Joshi, Adam T. Blaker, Richard Rigby, and Amanda C. Maycock
Weather Clim. Dynam., 5, 357–367, https://doi.org/10.5194/wcd-5-357-2024, https://doi.org/10.5194/wcd-5-357-2024, 2024
Short summary
Short summary
Changes to sea surface temperatures in the extratropical North Pacific are driven partly by patterns of local atmospheric circulation, such as the Aleutian Low. We show that an intensification of the Aleutian Low could contribute to small changes in temperatures across the equatorial Pacific via the initiation of two mechanisms. The effect, although significant, is unlikely to explain fully the recently observed multi-year shift of a pattern of climate variability across the wider Pacific.
Thomas Wilder, Xiaoming Zhai, David Munday, and Manoj Joshi
Ocean Sci., 19, 1669–1686, https://doi.org/10.5194/os-19-1669-2023, https://doi.org/10.5194/os-19-1669-2023, 2023
Short summary
Short summary
The dissipation rate of eddy energy in current energy budget-based eddy parameterisations is still relatively unconstrained, leading to uncertainties in ocean transport and ocean heat uptake. Here, we derive a dissipation rate due to the interaction of surface winds and eddy currents, a process known to significantly damp ocean eddies. The dissipation rate is quantified using seasonal climatology and displays wide spatial variability, with some of the largest values found in the Southern Ocean.
Jack Giddings, Karen J. Heywood, Adrian J. Matthews, Manoj M. Joshi, Benjamin G. M. Webber, Alejandra Sanchez-Franks, Brian A. King, and Puthenveettil N. Vinayachandran
Ocean Sci., 17, 871–890, https://doi.org/10.5194/os-17-871-2021, https://doi.org/10.5194/os-17-871-2021, 2021
Short summary
Short summary
Little is known about the impact of chlorophyll on SST in the Bay of Bengal (BoB). Solar irradiance measured by an ocean glider and three Argo floats is used to determine the effect of chlorophyll on BoB SST during the 2016 summer monsoon. The Southwest Monsoon Current has high chlorophyll concentrations (∼0.5 mg m−3) and shallow solar penetration depths (∼14 m). Ocean mixed layer model simulations show that SST increases by 0.35°C per month, with the potential to influence monsoon rainfall.
Adam T. Blaker, Manoj Joshi, Bablu Sinha, David P. Stevens, Robin S. Smith, and Joël J.-M. Hirschi
Geosci. Model Dev., 14, 275–293, https://doi.org/10.5194/gmd-14-275-2021, https://doi.org/10.5194/gmd-14-275-2021, 2021
Short summary
Short summary
FORTE 2.0 is a flexible coupled atmosphere–ocean general circulation model that can be run on modest hardware. We present two 2000-year simulations which show that FORTE 2.0 is capable of producing a stable climate. Earlier versions of FORTE were used for a wide range of studies, ranging from aquaplanet configurations to investigating the cold European winters of 2009–2010. This paper introduces the updated model for which the code and configuration are now publicly available.
Jack Giddings, Adrian J. Matthews, Nicholas P. Klingaman, Karen J. Heywood, Manoj Joshi, and Benjamin G. M. Webber
Weather Clim. Dynam., 1, 635–655, https://doi.org/10.5194/wcd-1-635-2020, https://doi.org/10.5194/wcd-1-635-2020, 2020
Short summary
Short summary
The impact of chlorophyll on the southwest monsoon is unknown. Here, seasonally varying chlorophyll in the Bay of Bengal was imposed in a general circulation model coupled to an ocean mixed layer model. The SST increases by 0.5 °C in response to chlorophyll forcing and shallow mixed layer depths in coastal regions during the inter-monsoon. Precipitation increases significantly to 3 mm d-1 across Myanmar during June and over northeast India and Bangladesh during October, decreasing model bias.
Feifei Luo, Bjørn H. Samset, Camilla W. Stjern, Manoj Joshi, Laura J. Wilcox, Robert J. Allen, Wei Hua, and Shuanglin Li
Atmos. Chem. Phys., 25, 7647–7667, https://doi.org/10.5194/acp-25-7647-2025, https://doi.org/10.5194/acp-25-7647-2025, 2025
Short summary
Short summary
Black carbon (BC) aerosol is emitted from the incomplete combustion of biomass and fossil fuels. We found that Asian BC leads to strong local cooling and drying. Reductions in precipitation primarily depend on the thermodynamic effects due to solar radiation absorption by BC. The combined thermodynamic and dynamic effects shape the spatial pattern of precipitation responses to Asian BC. These results help us further understand the impact of emissions of anthropogenic aerosols on Asian climate.
Derrick Muheki, Bas Vercruysse, Krishna Kumar Thirukokaranam Chandrasekar, Christophe Verbruggen, Julie M. Birkholz, Koen Hufkens, Hans Verbeeck, Pascal Boeckx, Seppe Lampe, Ed Hawkins, Peter Thorne, Dominique Kankonde Ntumba, Olivier Kapalay Moulasa, and Wim Thiery
EGUsphere, https://doi.org/10.5194/egusphere-2024-3779, https://doi.org/10.5194/egusphere-2024-3779, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Archives worldwide host vast records of observed weather data crucial for understanding climate variability. However, most of these records are still in paper form, limiting their use. To address this, we developed MeteoSaver, an open-source tool, to transcribe these records to machine-readable format. Applied to ten handwritten temperature sheets, it achieved a median accuracy of 74%. This tool offers a promising solution to preserve records from archives and unlock historical weather insights.
Maren Elisabeth Richter, Karen J. Heywood, and Rob A. Hall
EGUsphere, https://doi.org/10.5194/egusphere-2025-1994, https://doi.org/10.5194/egusphere-2025-1994, 2025
Short summary
Short summary
Warm ocean water causes rapid melting of Antarctic glaciers. The circulation and mixing of warm water in ice shelf cavities is mostly unknown. We observed ocean currents and mixing under Dotson Ice Shelf. Mixing is low, with patches of higher mixing associated with stronger currents and vertical current shear. The levels of turbulent mixing will lead to negligible heat loss during the path of the warm water to the grounding line, leaving plenty of heat available to melt the ice shelf there.
Duncan Watson-Parris, Laura J. Wilcox, Camilla W. Stjern, Robert J. Allen, Geeta Persad, Massimo A. Bollasina, Annica M. L. Ekman, Carley E. Iles, Manoj Joshi, Marianne T. Lund, Daniel McCoy, Daniel M. Westervelt, Andrew I. L. Williams, and Bjørn H. Samset
Atmos. Chem. Phys., 25, 4443–4454, https://doi.org/10.5194/acp-25-4443-2025, https://doi.org/10.5194/acp-25-4443-2025, 2025
Short summary
Short summary
In 2020, regulations by the International Maritime Organization aimed to reduce aerosol emissions from ships. These aerosols previously had a cooling effect, which the regulations might reduce, revealing more greenhouse gas warming. Here we find that, while there is regional warming, the global 2020–2040 temperature rise is only +0.03 °C. This small change is difficult to distinguish from natural climate variability, indicating the regulations have had a limited effect on observed warming to date.
Siyu Meng, Xun Gong, Benjamin Webber, Manoj Joshi, Xiaokun Ding, Xiang Gong, Mingliang Gu, and Huiwang Gao
EGUsphere, https://doi.org/10.5194/egusphere-2025-13, https://doi.org/10.5194/egusphere-2025-13, 2025
Short summary
Short summary
The North Pacific Ocean Desert (NPOD), with low phytoplankton biomass, covers about 40 % of the North Pacific. The variations in NPOD seasonal cycle, which have a greater impact than its annual mean changes, are influenced by the El Niño-Southern Oscillation from 1998 to 2021. However, from 2021 to 2100, a weakened NPOD seasonal cycle is expected due to climate change. These changes in NPOD seasonal cycle could affect fisheries and marine ecosystems.
Kirsty Jane Pringle, Richard Rigby, Steven Turnock, Carly Reddington, Meruyert Shayakhmetova, Malcolm Illingworth, Denis Barclay, Neil Chue Hong, Ed Hawkins, Douglas S. Hamilton, Ethan Brain, and James B. McQuaid
EGUsphere, https://doi.org/10.5194/egusphere-2024-3961, https://doi.org/10.5194/egusphere-2024-3961, 2025
Short summary
Short summary
The Air Quality Stripes images visualise historical changes in particulate matter air pollution in over 150 cities worldwide. The project celebrates significant improvements in air quality in regions like Europe, North America, and China, while highlighting the urgent need for action in areas such as Central Asia. Designed to raise awareness, it aims to inspire discussions about the critical impact of air pollution and the global inequalities it causes.
Colin Peter Morice, David I. Berry, Richard C. Cornes, Kathryn Cowtan, Thomas Cropper, Ed Hawkins, John J. Kennedy, Timothy J. Osborn, Nick A. Rayner, Beatriz R. Rivas, Andrew P. Schurer, Michael Taylor, Praveen R. Teleti, Emily J. Wallis, Jonathan Winn, and Elizabeth C. Kent
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-500, https://doi.org/10.5194/essd-2024-500, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
We present a new data set of global gridded surface air temperature change extending back to the 1780s. This is achieved using marine air temperature observations with newly available estimates of diurnal heating biases together with an updated land station database that includes bias adjustments for early thermometer enclosures. These developments allow the data set to extend further into the past than current data sets that use sea surface temperature rather than marine air temperature data.
Ed Hawkins, Nigel Arnell, Jamie Hannaford, and Rowan Sutton
Geosci. Commun., 7, 161–165, https://doi.org/10.5194/gc-7-161-2024, https://doi.org/10.5194/gc-7-161-2024, 2024
Short summary
Short summary
Climate change can often seem rather remote, especially when the discussion is about global averages which appear to have little relevance to local experiences. But those global changes are already affecting people, even if they do not fully realise it, and effective communication of this issue is critical. We use long observations and well-understood physical principles to visually highlight how global emissions influence local flood risk in one river basin in the UK.
Omar V. Müller, Patrick C. McGuire, Pier Luigi Vidale, and Ed Hawkins
Hydrol. Earth Syst. Sci., 28, 2179–2201, https://doi.org/10.5194/hess-28-2179-2024, https://doi.org/10.5194/hess-28-2179-2024, 2024
Short summary
Short summary
This work evaluates how rivers are projected to change in the near future compared to the recent past in the context of a warming world. We show that important rivers of the world will notably change their flows, mainly during peaks, exceeding the variations that rivers used to exhibit. Such large changes may produce more frequent floods, alter hydropower generation, and potentially affect the ocean's circulation.
William J. Dow, Christine M. McKenna, Manoj M. Joshi, Adam T. Blaker, Richard Rigby, and Amanda C. Maycock
Weather Clim. Dynam., 5, 357–367, https://doi.org/10.5194/wcd-5-357-2024, https://doi.org/10.5194/wcd-5-357-2024, 2024
Short summary
Short summary
Changes to sea surface temperatures in the extratropical North Pacific are driven partly by patterns of local atmospheric circulation, such as the Aleutian Low. We show that an intensification of the Aleutian Low could contribute to small changes in temperatures across the equatorial Pacific via the initiation of two mechanisms. The effect, although significant, is unlikely to explain fully the recently observed multi-year shift of a pattern of climate variability across the wider Pacific.
Thomas Wilder, Xiaoming Zhai, David Munday, and Manoj Joshi
Ocean Sci., 19, 1669–1686, https://doi.org/10.5194/os-19-1669-2023, https://doi.org/10.5194/os-19-1669-2023, 2023
Short summary
Short summary
The dissipation rate of eddy energy in current energy budget-based eddy parameterisations is still relatively unconstrained, leading to uncertainties in ocean transport and ocean heat uptake. Here, we derive a dissipation rate due to the interaction of surface winds and eddy currents, a process known to significantly damp ocean eddies. The dissipation rate is quantified using seasonal climatology and displays wide spatial variability, with some of the largest values found in the Southern Ocean.
Ed Hawkins, Gilbert P. Compo, and Prashant D. Sardeshmukh
Earth Syst. Dynam., 14, 1081–1084, https://doi.org/10.5194/esd-14-1081-2023, https://doi.org/10.5194/esd-14-1081-2023, 2023
Short summary
Short summary
Adapting to climate change requires an understanding of how extreme weather events are changing. We propose a new approach to examine how the consequences of a particular weather pattern have been made worse by climate change, using an example of a severe windstorm that occurred in 1903. When this storm is translated into a warmer world, it produces higher wind speeds and increased rainfall, suggesting that this storm would be more damaging if it occurred today rather than 120 years ago.
Ed Hawkins, Philip Brohan, Samantha N. Burgess, Stephen Burt, Gilbert P. Compo, Suzanne L. Gray, Ivan D. Haigh, Hans Hersbach, Kiki Kuijjer, Oscar Martínez-Alvarado, Chesley McColl, Andrew P. Schurer, Laura Slivinski, and Joanne Williams
Nat. Hazards Earth Syst. Sci., 23, 1465–1482, https://doi.org/10.5194/nhess-23-1465-2023, https://doi.org/10.5194/nhess-23-1465-2023, 2023
Short summary
Short summary
We examine a severe windstorm that occurred in February 1903 and caused significant damage in the UK and Ireland. Using newly digitized weather observations from the time of the storm, combined with a modern weather forecast model, allows us to determine why this storm caused so much damage. We demonstrate that the event is one of the most severe windstorms to affect this region since detailed records began. The approach establishes a new tool to improve assessments of risk from extreme weather.
Peter M. F. Sheehan, Gillian M. Damerell, Philip J. Leadbitter, Karen J. Heywood, and Rob A. Hall
Ocean Sci., 19, 77–92, https://doi.org/10.5194/os-19-77-2023, https://doi.org/10.5194/os-19-77-2023, 2023
Short summary
Short summary
We calculate the rate of turbulent kinetic energy dissipation, i.e. the mixing driven by small-scale ocean turbulence, in the western tropical Atlantic Ocean via two methods. We find good agreement between the results of both. A region of elevated mixing is found between 200 and 500 m, and we calculate the associated heat and salt fluxes. We find that double-diffusive mixing in salt fingers, a common feature of the tropical oceans, drives larger heat and salt fluxes than the turbulent mixing.
Callum Rollo, Karen J. Heywood, and Rob A. Hall
Geosci. Instrum. Method. Data Syst., 11, 359–373, https://doi.org/10.5194/gi-11-359-2022, https://doi.org/10.5194/gi-11-359-2022, 2022
Short summary
Short summary
Using an underwater buoyancy-powered autonomous glider, we collected profiles of temperature and salinity from the ocean north-east of Barbados. Most of the temperature and salinity profiles contained staircase-like structures of alternating constant values and large gradients. We wrote an algorithm to identify these staircases. We hypothesise that these staircases are prevented from forming where background gradients in temperature and salinity are too great.
Yixi Zheng, David P. Stevens, Karen J. Heywood, Benjamin G. M. Webber, and Bastien Y. Queste
The Cryosphere, 16, 3005–3019, https://doi.org/10.5194/tc-16-3005-2022, https://doi.org/10.5194/tc-16-3005-2022, 2022
Short summary
Short summary
New observations reveal the Thwaites gyre in a habitually ice-covered region in the Amundsen Sea for the first time. This gyre rotates anticlockwise, despite the wind here favouring clockwise gyres like the Pine Island Bay gyre – the only other ocean gyre reported in the Amundsen Sea. We use an ocean model to suggest that sea ice alters the wind stress felt by the ocean and hence determines the gyre direction and strength. These processes may also be applied to other gyres in polar oceans.
Yanxin Wang, Karen J. Heywood, David P. Stevens, and Gillian M. Damerell
Ocean Sci., 18, 839–855, https://doi.org/10.5194/os-18-839-2022, https://doi.org/10.5194/os-18-839-2022, 2022
Short summary
Short summary
It is important that climate models give accurate projections of future extremes in summer and winter sea surface temperature because these affect many features of the global climate system. Our results demonstrate that some models would give large errors if used for future projections of these features, and models with more detailed representation of vertical structure in the ocean tend to have a better representation of sea surface temperature, particularly in summer.
Jack Giddings, Karen J. Heywood, Adrian J. Matthews, Manoj M. Joshi, Benjamin G. M. Webber, Alejandra Sanchez-Franks, Brian A. King, and Puthenveettil N. Vinayachandran
Ocean Sci., 17, 871–890, https://doi.org/10.5194/os-17-871-2021, https://doi.org/10.5194/os-17-871-2021, 2021
Short summary
Short summary
Little is known about the impact of chlorophyll on SST in the Bay of Bengal (BoB). Solar irradiance measured by an ocean glider and three Argo floats is used to determine the effect of chlorophyll on BoB SST during the 2016 summer monsoon. The Southwest Monsoon Current has high chlorophyll concentrations (∼0.5 mg m−3) and shallow solar penetration depths (∼14 m). Ocean mixed layer model simulations show that SST increases by 0.35°C per month, with the potential to influence monsoon rainfall.
Adam T. Blaker, Manoj Joshi, Bablu Sinha, David P. Stevens, Robin S. Smith, and Joël J.-M. Hirschi
Geosci. Model Dev., 14, 275–293, https://doi.org/10.5194/gmd-14-275-2021, https://doi.org/10.5194/gmd-14-275-2021, 2021
Short summary
Short summary
FORTE 2.0 is a flexible coupled atmosphere–ocean general circulation model that can be run on modest hardware. We present two 2000-year simulations which show that FORTE 2.0 is capable of producing a stable climate. Earlier versions of FORTE were used for a wide range of studies, ranging from aquaplanet configurations to investigating the cold European winters of 2009–2010. This paper introduces the updated model for which the code and configuration are now publicly available.
Jonathan K. P. Shonk, Andrew G. Turner, Amulya Chevuturi, Laura J. Wilcox, Andrea J. Dittus, and Ed Hawkins
Atmos. Chem. Phys., 20, 14903–14915, https://doi.org/10.5194/acp-20-14903-2020, https://doi.org/10.5194/acp-20-14903-2020, 2020
Short summary
Short summary
We use a set of model simulations of the 20th century to demonstrate that the uncertainty in the cooling effect of man-made aerosol emissions has a wide range of impacts on global monsoons. For the weakest cooling, the impact of aerosol is overpowered by greenhouse gas (GHG) warming and monsoon rainfall increases in the late 20th century. For the strongest cooling, aerosol impact dominates over GHG warming, leading to reduced monsoon rainfall, particularly from 1950 to 1980.
Laura J. Wilcox, Zhen Liu, Bjørn H. Samset, Ed Hawkins, Marianne T. Lund, Kalle Nordling, Sabine Undorf, Massimo Bollasina, Annica M. L. Ekman, Srinath Krishnan, Joonas Merikanto, and Andrew G. Turner
Atmos. Chem. Phys., 20, 11955–11977, https://doi.org/10.5194/acp-20-11955-2020, https://doi.org/10.5194/acp-20-11955-2020, 2020
Short summary
Short summary
Projected changes in man-made aerosol range from large reductions to moderate increases in emissions until 2050. Rapid reductions between the present and the 2050s lead to enhanced increases in global and Asian summer monsoon precipitation relative to scenarios with continued increases in aerosol. Relative magnitude and spatial distribution of aerosol changes are particularly important for South Asian summer monsoon precipitation changes, affecting the sign of the trend in the coming decades.
Jack Giddings, Adrian J. Matthews, Nicholas P. Klingaman, Karen J. Heywood, Manoj Joshi, and Benjamin G. M. Webber
Weather Clim. Dynam., 1, 635–655, https://doi.org/10.5194/wcd-1-635-2020, https://doi.org/10.5194/wcd-1-635-2020, 2020
Short summary
Short summary
The impact of chlorophyll on the southwest monsoon is unknown. Here, seasonally varying chlorophyll in the Bay of Bengal was imposed in a general circulation model coupled to an ocean mixed layer model. The SST increases by 0.5 °C in response to chlorophyll forcing and shallow mixed layer depths in coastal regions during the inter-monsoon. Precipitation increases significantly to 3 mm d-1 across Myanmar during June and over northeast India and Bangladesh during October, decreasing model bias.
Cited articles
Agosta, E. A.: The 18.6-year nodal tidal cycle and the bi-decadal
precipitation oscillation over the plains to the east of subtropical Andes,
South America, Int. J. Climatol., 34, 1606–1614, https://doi.org/10.1002/joc.3787, 2013.
Årthun, M., Wills, R. C. J., Johnson, H. L., Chafik, L., and Langehaug,
H. R.: Mechanisms of Decadal North Atlantic Climate Variability and
Implications for the Recent Cold Anomaly, J. Climate, 34, 3421–3439,
2021.
Baart, F., van Gelder, P. H. A. J. M., de Ronde, J., van Konginsveld, M., and
Wouters C.: The Effect of the 18.6-Year Lunar Nodal Cycle on Regional
Sea-Level Rise Estimates, J. Coastal Res., 28, 511–516, 2012.
Blaker, A. T., Joshi, M., Sinha, B., Stevens, D. P., Smith, R. S., and Hirschi, J. J.-M.: FORTE 2.0: a fast, parallel and flexible coupled climate model, Geosci. Model Dev., 14, 275–293, https://doi.org/10.5194/gmd-14-275-2021, 2021.
Currie, R.: Evidence for 18.6-year lunar nodal drought in western North
America during the past millennium, J. Geophys. Res., 89, 1247–1476, 1984.
Dangendorf, S., Hay, C., Calafat, F. M., Marcos, M., Piecuch, C. G., Berk, K.,
and Jensen, J.: Persistent acceleration in global sea-level rise since the
1960s, Nat. Clim. Change, 9, 705–710, 2019.
de Lavergne, C., Vic, C., Madec, G., Roquet, F., Waterhouse, A. F., Whalen,
C. B., Cuypers, Y., Bouruet-Aubertot, P., Ferron, B., and Hibiya, T.: A parameterization of local and remote tidal mixing, J. Adv.
Model. Earth System., 12, e2020MS002065, https://doi.org/10.1029/2020MS002065, 2020.
Drijfhout, S. S., Blaker, A. T., Josey, S. A., Nurser, A. J. G., Sinha, B.,
and Balmaseda, M. A.: Surface warming hiatus caused by increased heat uptake
across multiple ocean basins, Geophys. Res. Lett., 41, 7868–7874, 2014.
Egbert, G. D. and Erofeeva, S. Y.: Efficient inverse modeling of barotropic
ocean tides, J. Atmos. Ocean. Tech., 19, 183–204, 2002.
Egbert, G. D. and Ray, R. D.: Significant dissipation of tidal energy in
the deep ocean inferred from satellite altimeter data, Nature, 405, 775–778,
2000.
Gratiot, N., Anthony, E. J., Gardel, A., Gaucherel, C., Priosy, C., and
Wells, J. T.: Significant contribution of the 18.6 year tidal cycle to
regional coastal changes, Nat. Geosci., 1, 169–172, 2008.
Gray, L., Scaife, A. A., Mitchell, D. M., Osprey, S., Ineson, S., Hardiman,
S., Butchart, N., Knight, J., Sutton, R., and Kodera, K.: A lagged response
to the 11 year solar cycle in observed winter Atlantic/European weather
patterns, J. Geophys. Res., 118, 13405–13420, 2013.
Gray, L. J., Woollings, T. J., Andrews, M., and Knight, J.: Eleven-year solar
cycle signal in the NAO and Atlantic/European blocking, Q. J. Roy.
Meteor. Soc., 142, 1890–1903, 2016.
Guemas, V., Doblas-Reyes, F. J., Andreu-Burillo, I., and Asif, M.:
Retrospective prediction of the global warming slowdown in the past decade,
Nat. Clim. Change., 3, 649–653, 2013.
Hall, R. and Joshi, M.: Lunar nodal cycle amplitude modulation map. lcycle_amplitude_modulation(.nc), UEA [data set], https://research-portal.uea.ac.uk/en/datasets/lunar-nodal-cycle-amplitude-modulation-map (last access: 12 April 2023), 2022.
Hamamoto, M. and Yasuda I.: Synchronized interdecadal variations behind
regime shifts in the Pacific Decadal Oscillation, J. Oceanogr., 77, 383–392,
2021.
Joshi, M., Stringer, M., van der Wiel, K., O'Callaghan, A., and Fueglistaler, S.: IGCM4: a fast, parallel and flexible intermediate climate model, Geosci. Model Dev., 8, 1157–1167, https://doi.org/10.5194/gmd-8-1157-2015, 2015.
Kosaka, Y. and Xie, S.-P.: Recent global-warming hiatus tied to equatorial
Pacific surface cooling, Nature, 501, 403–407, 2013.
Lee, J.-Y., Marotzke, J., Bala, G., Cao, L., Corti, S., Dunne, J. P., Engelbrecht, F., Fischer, E., Fyfe, J. C., Jones, C., Maycock, A., Mutemi, J., Ndiaye, O., Panickal, S., and Zhou, T.: Future Global Climate: Scenario-Based Projections and Near-Term Information, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 553–672, https://doi.org/10.1017/9781009157896.006, 2021.
Loder, J. W. and Garrett, C.: The 18.6-Year Cycle of Sea Surface Temperature
in Shallow Seas, J. Geophys. Res., 83, 1967–1970, 1978.
MacKinnon, J. A., Alford, M. H., Ansong, J. K., Arbic, B. K., Barna,
A., Briegleb, B. P., Bryan, F. O., Buijsman, M. C., Chassignet, E.
P., Danabasoglu, G., MacKinnon, J. A., Alford, M. H., Ansong, J. K., Arbic,
B. K., Barna, A., Briegleb, B. P., Bryan, F. O., Buijsman, M.
C., Chassignet, E. P., Danabasoglu, G., Diggs, S., Griffies, S.
M., Hallberg, R. W., Jayne, S. R., Jochum, M., Klymak, J. M., Kunze,
E., Large, W. G., Legg, S., Mater, B., Melet, A. V., Merchant, L.
M., Musgrave, R., Nash, J. D., Norton, N. J., Pickering, A., Pinkel,
R., Polzin, K., Simmons, H. L., Laurent, L. S. C., Sun, O. M., Trossman, D.
S., Waterhouse, A. F., Whalen, C. B., and Zhao, Z.: Climate process team on
internal-wave driven ocean mixing, B. Am. Meteorol.
Soc., 98, 2429–2454, 2017.
Meehl, G. A., Arblaster, J. M., Fasullo, J. Y., Hu, A., and Trenberth, K. E.:
Model-based evidence of deep-ocean heat uptake during surface-temperature
hiatus periods, Nat. Clim. Change, 1, 360–364, 2011.
Munk, W. and Wunsch, C.: Abyssal recipies II: energetics of tidal and wind
mixing, Deep-Sea Res. Pt. I, 45, 1977–2010, 1998.
Omrani, N.-E., Keenlyside, N., Matthes, K., Boljka, L., Zanchettin, D.,
Jungclaus, J. H., and Lubis, S. W.: Coupled stratosphere-troposphere-Atlantic
multidecadal oscillation and its importance for near-future climate
projection, npj Clim. Atmos. Sci., 5, 59, https://doi.org/10.1038/s41612-022-00275-1, 2022.
Osafune, S. and Yasuda, I.: Remote impacts of the 18.6 year period
modulation of localized tidal mixing in the North Pacific, J. Geophys.
Res., 118, 3128–3137, 2013.
Osafune, S., Masuda, S., and Sugiura, N.: Role of the oceanic bridge in
linking the 18.6 year modulation of tidal mixing and long-term SST change in
the North Pacific, Geophys. Res. Lett., 41, 7284–7290, 2014.
Osafune, S., Kouketsu, S., Masuda, S., and Sugiura, N.: Dynamical ocean
response controlling the eastward movement of a heat content anomaly caused
by the 18.6-year modulation of localized tidally induced mixing, J. Geophys.
Res.-Oceans, 125, e2019JC015513, https://doi.org/10.1029/2019JC015513, 2020.
Pease, C. H., Turet, P., and Pritchard, R. S.: Barents Sea tidal and inertial
motions from Argos ice buoys during the Coordinated Eastern Arctic
Experiment, J. Geophys. Res., 100, 24705–24718, 1995.
Pond, S. and Pickard, G. (Eds.): Introduction to Dynamical Oceanography, 2nd
Edn., Butterworth-Heinemann, ISBN 978-0750624961, 1983.
Pugh, D. T. (Ed.): Tides, Surges and Mean Sea-Level, Wiley-Blackwell, ISBN 978-0471915058, 1987.
Ray, R. D.: Decadal Climate Variability: Is There a Tidal Connection?, J.
Climate, 20, 3542–3560, 2007.
St. Laurent, L. C., Simmons, H. L., and Jayne, S. R.: Estimating tidally
driven mixing in the deep ocean, Geophys. Res. Lett., 29, 2106,
https://doi.org/10.1029/2002GL015633, 2002.
Santer, B. D., Bonfils, C., Painter, J. F., Zelinka, M. D., Mears, C.,
Solomon, S., Schmidt, G. A., Fyfe, J. C., Cole, J. N. S., Nazarenko, L.,
Taylor, K. E., and Wentz, F. J.: Volcanic contribution to decadal changes in
tropospheric temperature, Nat. Geosci., 7, 185–189, 2014.
Solomon, S., Rosenlof, K. H., Portmann, R. W., Daniel, J. S., Davis, S. M.,
Sanford, T. J., and Plattner, G.-K.: Contributions of Stratospheric Water
Vapor to Decadal Changes in the Rate of Global Warming, Science, 327,
1219–1223, 2010.
Stroeve, J. C., Kattsov, V., Barrett, A., Serreze, M., Pavlova, T., Holland,
M., and Meier, W. N.: Trends in Arctic sea ice extent from CMIP5, CMIP3 and
observations, Geophys. Res. Lett., 39, L16502, https://doi.org/10.1029/2012GL052676, 2012.
Tanaka, Y., Yasuda, I., Hasumi, H., Tatebe, H., and Osafune, S.: Effects of
the 18.6-yr Modulation of Tidal Mixing on the North Pacific, J. Climate, 25,
7625–7640, 2012.
Webb, D. J.: An ocean model code for array processor computers, Comput.
Geosci., 22, 569–578, 1996.
Yasuda, I.: Impact of the astronomical lunar 18.6-yr tidal cycle on
El-Niño and Southern Oscillation, Sci. Rep., 8, 15206, https://doi.org/10.1038/s41598-018-33526-4, 2018.
Yasuda, I., Osafune, S., and Tatebe, H.: Possible explanation linking 18.6-year
period nodal tidal cycle with bi-decadal variations of ocean and climate in
the North Pacific, Geophys. Res. Lett., 33, L08606,
https://doi.org/10.1029/2005GL025237, 2006.
Yndestad, H.: The influence of the lunar nodal cycle on Arctic climate,
J. Mar. Sci., 63, 401–420, 2006.
Short summary
The 18.6-year lunar nodal cycle arises from variations in the angle of the Moon's orbital plane and affects ocean tides. In this work we use a climate model to examine the effect of this cycle on the ocean, surface, and atmosphere. The timing of anomalies is consistent with the so-called slowdown in global warming and has implications for when global temperatures will exceed 1.5 ℃ above pre-industrial levels. Regional anomalies have implications for seasonal climate areas such as Europe.
The 18.6-year lunar nodal cycle arises from variations in the angle of the Moon's orbital plane...
Altmetrics
Final-revised paper
Preprint