Articles | Volume 13, issue 3
https://doi.org/10.5194/esd-13-1289-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-13-1289-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Combining machine learning and SMILEs to classify, better understand, and project changes in ENSO events
The Ocean in the Earth System, Max Planck Institute for Meteorology, Hamburg, Germany
Cooperative Institute for Research in Environmental Sciences (CIRES) and Department of Atmospheric and Oceanic Sciences (ATOC), University of Colorado at Boulder, Boulder, CO 80309, USA
Thibault P. Tabarin
independent researcher: Boulder, CO 80303, USA
Sebastian Milinski
The Ocean in the Earth System, Max Planck Institute for Meteorology, Hamburg, Germany
Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO 80307, USA
Cooperative Programs for the Advancement of Earth System Science, University Corporation for Atmospheric Research, Boulder, CO 80307, USA
Related authors
Ming Cheng, Nicola Maher, and Michael J. Ellwood
EGUsphere, https://doi.org/10.5194/egusphere-2025-2633, https://doi.org/10.5194/egusphere-2025-2633, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The Southern Ocean helps regulate Earth’s climate by cycling nutrients and carbon. We studied how well 14 modern climate models represent key ocean properties, such as plant growth, nutrients, and carbon particles. By comparing model results with real-world observations, we found large differences in model performance. Some models captured certain features better than others. Our findings can guide future improvements in ocean and climate predictions.
Nicola Maher, Adam S. Phillips, Clara Deser, Robert C. Jnglin Wills, Flavio Lehner, John Fasullo, Julie M. Caron, Lukas Brunner, and Urs Beyerle
EGUsphere, https://doi.org/10.5194/egusphere-2024-3684, https://doi.org/10.5194/egusphere-2024-3684, 2024
Short summary
Short summary
We present a new multi-model large ensemble archive (MMLEAv2) and introduce the newly updated Climate Variability Diagnostics Package version 6 (CVDPv6), which is designed specifically for use with large ensembles. For highly variable quantities, we demonstrate that a model might evaluate poorly or favourably compared to the single realisation of the world that the observations represent, highlighting the need for large ensembles for model evaluation.
Andrew D. King, Tilo Ziehn, Matthew Chamberlain, Alexander R. Borowiak, Josephine R. Brown, Liam Cassidy, Andrea J. Dittus, Michael Grose, Nicola Maher, Seungmok Paik, Sarah E. Perkins-Kirkpatrick, and Aditya Sengupta
Earth Syst. Dynam., 15, 1353–1383, https://doi.org/10.5194/esd-15-1353-2024, https://doi.org/10.5194/esd-15-1353-2024, 2024
Short summary
Short summary
Governments are targeting net-zero emissions later this century with the aim of limiting global warming in line with the Paris Agreement. However, few studies explore the long-term consequences of reaching net-zero emissions and the effects of a delay in reaching net-zero. We use the Australian Earth system model to examine climate evolution under net-zero emissions. We find substantial changes which differ regionally, including continued Southern Ocean warming and Antarctic sea ice reduction.
Víctor Malagón-Santos, Aimée B. A. Slangen, Tim H. J. Hermans, Sönke Dangendorf, Marta Marcos, and Nicola Maher
Ocean Sci., 19, 499–515, https://doi.org/10.5194/os-19-499-2023, https://doi.org/10.5194/os-19-499-2023, 2023
Short summary
Short summary
Climate change will alter heat and freshwater fluxes as well as ocean circulation, driving local changes in sea level. This sea-level change component is known as ocean dynamic sea level (DSL), and it is usually projected using computationally expensive global climate models. Statistical models are a cheaper alternative for projecting DSL but may contain significant errors. Here, we partly remove those errors (driven by internal climate variability) by using pattern recognition techniques.
Nicola Maher, Robert C. Jnglin Wills, Pedro DiNezio, Jeremy Klavans, Sebastian Milinski, Sara C. Sanchez, Samantha Stevenson, Malte F. Stuecker, and Xian Wu
Earth Syst. Dynam., 14, 413–431, https://doi.org/10.5194/esd-14-413-2023, https://doi.org/10.5194/esd-14-413-2023, 2023
Short summary
Short summary
Understanding whether the El Niño–Southern Oscillation (ENSO) is likely to change in the future is important due to its widespread impacts. By using large ensembles, we can robustly isolate the time-evolving response of ENSO variability in 14 climate models. We find that ENSO variability evolves in a nonlinear fashion in many models and that there are large differences between models. These nonlinear changes imply that ENSO impacts may vary dramatically throughout the 21st century.
Benjamin Ward, Francesco S. R. Pausata, and Nicola Maher
Earth Syst. Dynam., 12, 975–996, https://doi.org/10.5194/esd-12-975-2021, https://doi.org/10.5194/esd-12-975-2021, 2021
Short summary
Short summary
Using the largest ensemble of a climate model currently available, the Max Planck Institute Grand Ensemble (MPI-GE), we investigated the impact of the spatial distribution of volcanic aerosols on the El Niño–Southern Oscillation (ENSO) response. By selecting three eruptions with different aerosol distributions, we found that the shift of the Intertropical Convergence Zone (ITCZ) is the main driver of the ENSO response, while other mechanisms commonly invoked seem less important in our model.
Nicola Maher, Sebastian Milinski, and Ralf Ludwig
Earth Syst. Dynam., 12, 401–418, https://doi.org/10.5194/esd-12-401-2021, https://doi.org/10.5194/esd-12-401-2021, 2021
Sebastian Milinski, Nicola Maher, and Dirk Olonscheck
Earth Syst. Dynam., 11, 885–901, https://doi.org/10.5194/esd-11-885-2020, https://doi.org/10.5194/esd-11-885-2020, 2020
Short summary
Short summary
Initial-condition large ensembles with ensemble sizes ranging from 30 to 100 members have become a commonly used tool to quantify the forced response and internal variability in various components of the climate system, but there is no established method to determine the required ensemble size for a given problem. We propose a new framework that can be used to estimate the required ensemble size from a model's control run or an existing large ensemble.
Francisco J. Doblas-Reyes, Jenni Kontkanen, Irina Sandu, Mario Acosta, Mohammed Hussam Al Turjmam, Ivan Alsina-Ferrer, Miguel Andrés-Martínez, Leo Arriola, Marvin Axness, Marc Batlle Martín, Peter Bauer, Tobias Becker, Daniel Beltrán, Sebastian Beyer, Hendryk Bockelmann, Pierre-Antoine Bretonnière, Sebastien Cabaniols, Silvia Caprioli, Miguel Castrillo, Aparna Chandrasekar, Suvarchal Cheedela, Victor Correal, Emanuele Danovaro, Paolo Davini, Jussi Enkovaara, Claudia Frauen, Barbara Früh, Aina Gaya Àvila, Paolo Ghinassi, Rohit Ghosh, Supriyo Ghosh, Iker González, Katherine Grayson, Matthew Griffith, Ioan Hadade, Christopher Haine, Carl Hartick, Utz-Uwe Haus, Shane Hearne, Heikki Järvinen, Bernat Jiménez, Amal John, Marlin Juchem, Thomas Jung, Jessica Kegel, Matthias Kelbling, Kai Keller, Bruno Kinoshita, Theresa Kiszler, Daniel Klocke, Lukas Kluft, Nikolay Koldunov, Tobias Kölling, Joonas Kolstela, Luis Kornblueh, Sergey Kosukhin, Aleksander Lacima-Nadolnik, Jeisson Javier Leal Rojas, Jonni Lehtiranta, Tuomas Lunttila, Anna Luoma, Pekka Manninen, Alexey Medvedev, Sebastian Milinski, Ali Omar Abdelazim Mohammed, Sebastian Müller, Devaraju Naryanappa, Natalia Nazarova, Sami Niemelä, Bimochan Niraula, Henrik Nortamo, Aleksi Nummelin, Matteo Nurisso, Pablo Ortega, Stella Paronuzzi, Xabier Pedruzo Bagazgoitia, Charles Pelletier, Carlos Peña, Suraj Polade, Himansu Pradhan, Rommel Quintanilla, Tiago Quintino, Thomas Rackow, Jouni Räisänen, Maqsood Mubarak Rajput, René Redler, Balthasar Reuter, Nuno Rocha Monteiro, Francesc Roura-Adserias, Silva Ruppert, Susan Sayed, Reiner Schnur, Tanvi Sharma, Dmitry Sidorenko, Outi Sievi-Korte, Albert Soret, Christian Steger, Bjorn Stevens, Jan Streffing, Jaleena Sunny, Luiggi Tenorio, Stephan Thober, Ulf Tigerstedt, Oriol Tinto, Juha Tonttila, Heikki Tuomenvirta, Lauri Tuppi, Ginka Van Thielen, Emanuele Vitali, Jost von Hardenberg, Ingo Wagner, Nils Wedi, Jan Wehner, Sven Willner, Xavier Yepes-Arbós, Florian Ziemen, and Janos Zimmermann
EGUsphere, https://doi.org/10.5194/egusphere-2025-2198, https://doi.org/10.5194/egusphere-2025-2198, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Climate Change Adaptation Digital Twin (Climate DT) pioneers the operationalisation of climate projections. The system produces global simulations with local granularity for adaptation decision-making. Applications are embedded to generate tailored indicators. A unified workflow orchestrates all components in several supercomputers. Data management ensures consistency and streaming enables real-time use. It is a complementary innovation to initiatives like CMIP, CORDEX, and climate services.
Ming Cheng, Nicola Maher, and Michael J. Ellwood
EGUsphere, https://doi.org/10.5194/egusphere-2025-2633, https://doi.org/10.5194/egusphere-2025-2633, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The Southern Ocean helps regulate Earth’s climate by cycling nutrients and carbon. We studied how well 14 modern climate models represent key ocean properties, such as plant growth, nutrients, and carbon particles. By comparing model results with real-world observations, we found large differences in model performance. Some models captured certain features better than others. Our findings can guide future improvements in ocean and climate predictions.
Hans Segura, Xabier Pedruzo-Bagazgoitia, Philipp Weiss, Sebastian K. Müller, Thomas Rackow, Junhong Lee, Edgar Dolores-Tesillos, Imme Benedict, Matthias Aengenheyster, Razvan Aguridan, Gabriele Arduini, Alexander J. Baker, Jiawei Bao, Swantje Bastin, Eulàlia Baulenas, Tobias Becker, Sebastian Beyer, Hendryk Bockelmann, Nils Brüggemann, Lukas Brunner, Suvarchal K. Cheedela, Sushant Das, Jasper Denissen, Ian Dragaud, Piotr Dziekan, Madeleine Ekblom, Jan Frederik Engels, Monika Esch, Richard Forbes, Claudia Frauen, Lilli Freischem, Diego García-Maroto, Philipp Geier, Paul Gierz, Álvaro González-Cervera, Katherine Grayson, Matthew Griffith, Oliver Gutjahr, Helmuth Haak, Ioan Hadade, Kerstin Haslehner, Shabeh ul Hasson, Jan Hegewald, Lukas Kluft, Aleksei Koldunov, Nikolay Koldunov, Tobias Kölling, Shunya Koseki, Sergey Kosukhin, Josh Kousal, Peter Kuma, Arjun U. Kumar, Rumeng Li, Nicolas Maury, Maximilian Meindl, Sebastian Milinski, Kristian Mogensen, Bimochan Niraula, Jakub Nowak, Divya Sri Praturi, Ulrike Proske, Dian Putrasahan, René Redler, David Santuy, Domokos Sármány, Reiner Schnur, Patrick Scholz, Dmitry Sidorenko, Dorian Spät, Birgit Sützl, Daisuke Takasuka, Adrian Tompkins, Alejandro Uribe, Mirco Valentini, Menno Veerman, Aiko Voigt, Sarah Warnau, Fabian Wachsmann, Marta Wacławczyk, Nils Wedi, Karl-Hermann Wieners, Jonathan Wille, Marius Winkler, Yuting Wu, Florian Ziemen, Janos Zimmermann, Frida A.-M. Bender, Dragana Bojovic, Sandrine Bony, Simona Bordoni, Patrice Brehmer, Marcus Dengler, Emanuel Dutra, Saliou Faye, Erich Fischer, Chiel van Heerwaarden, Cathy Hohenegger, Heikki Järvinen, Markus Jochum, Thomas Jung, Johann H. Jungclaus, Noel S. Keenlyside, Daniel Klocke, Heike Konow, Martina Klose, Szymon Malinowski, Olivia Martius, Thorsten Mauritsen, Juan Pedro Mellado, Theresa Mieslinger, Elsa Mohino, Hanna Pawłowska, Karsten Peters-von Gehlen, Abdoulaye Sarré, Pajam Sobhani, Philip Stier, Lauri Tuppi, Pier Luigi Vidale, Irina Sandu, and Bjorn Stevens
EGUsphere, https://doi.org/10.5194/egusphere-2025-509, https://doi.org/10.5194/egusphere-2025-509, 2025
Short summary
Short summary
The nextGEMS project developed two Earth system models that resolve processes of the order of 10 km, giving more fidelity to the representation of local phenomena, globally. In its fourth cycle, nextGEMS performed simulations with coupled ocean, land, and atmosphere over the 2020–2049 period under the SSP3-7.0 scenario. Here, we provide an overview of nextGEMS, insights into the model development, and the realism of multi-decadal, kilometer-scale simulations.
Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Willem Deconinck, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Rohit Ghosh, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Thomas Jung, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Aleksei Koldunov, Tobias Kölling, Josh Kousal, Christian Kühnlein, Pedro Maciel, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Balthasar Reuter, Domokos Sármány, Patrick Scholz, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen
Geosci. Model Dev., 18, 33–69, https://doi.org/10.5194/gmd-18-33-2025, https://doi.org/10.5194/gmd-18-33-2025, 2025
Short summary
Short summary
Detailed global climate model simulations have been created based on a numerical weather prediction model, offering more accurate spatial detail down to the scale of individual cities ("kilometre-scale") and a better understanding of climate phenomena such as atmospheric storms, whirls in the ocean, and cracks in sea ice. The new model aims to provide globally consistent information on local climate change with greater precision, benefiting environmental planning and local impact modelling.
Nicola Maher, Adam S. Phillips, Clara Deser, Robert C. Jnglin Wills, Flavio Lehner, John Fasullo, Julie M. Caron, Lukas Brunner, and Urs Beyerle
EGUsphere, https://doi.org/10.5194/egusphere-2024-3684, https://doi.org/10.5194/egusphere-2024-3684, 2024
Short summary
Short summary
We present a new multi-model large ensemble archive (MMLEAv2) and introduce the newly updated Climate Variability Diagnostics Package version 6 (CVDPv6), which is designed specifically for use with large ensembles. For highly variable quantities, we demonstrate that a model might evaluate poorly or favourably compared to the single realisation of the world that the observations represent, highlighting the need for large ensembles for model evaluation.
Andrew D. King, Tilo Ziehn, Matthew Chamberlain, Alexander R. Borowiak, Josephine R. Brown, Liam Cassidy, Andrea J. Dittus, Michael Grose, Nicola Maher, Seungmok Paik, Sarah E. Perkins-Kirkpatrick, and Aditya Sengupta
Earth Syst. Dynam., 15, 1353–1383, https://doi.org/10.5194/esd-15-1353-2024, https://doi.org/10.5194/esd-15-1353-2024, 2024
Short summary
Short summary
Governments are targeting net-zero emissions later this century with the aim of limiting global warming in line with the Paris Agreement. However, few studies explore the long-term consequences of reaching net-zero emissions and the effects of a delay in reaching net-zero. We use the Australian Earth system model to examine climate evolution under net-zero emissions. We find substantial changes which differ regionally, including continued Southern Ocean warming and Antarctic sea ice reduction.
Víctor Malagón-Santos, Aimée B. A. Slangen, Tim H. J. Hermans, Sönke Dangendorf, Marta Marcos, and Nicola Maher
Ocean Sci., 19, 499–515, https://doi.org/10.5194/os-19-499-2023, https://doi.org/10.5194/os-19-499-2023, 2023
Short summary
Short summary
Climate change will alter heat and freshwater fluxes as well as ocean circulation, driving local changes in sea level. This sea-level change component is known as ocean dynamic sea level (DSL), and it is usually projected using computationally expensive global climate models. Statistical models are a cheaper alternative for projecting DSL but may contain significant errors. Here, we partly remove those errors (driven by internal climate variability) by using pattern recognition techniques.
Nicola Maher, Robert C. Jnglin Wills, Pedro DiNezio, Jeremy Klavans, Sebastian Milinski, Sara C. Sanchez, Samantha Stevenson, Malte F. Stuecker, and Xian Wu
Earth Syst. Dynam., 14, 413–431, https://doi.org/10.5194/esd-14-413-2023, https://doi.org/10.5194/esd-14-413-2023, 2023
Short summary
Short summary
Understanding whether the El Niño–Southern Oscillation (ENSO) is likely to change in the future is important due to its widespread impacts. By using large ensembles, we can robustly isolate the time-evolving response of ENSO variability in 14 climate models. We find that ENSO variability evolves in a nonlinear fashion in many models and that there are large differences between models. These nonlinear changes imply that ENSO impacts may vary dramatically throughout the 21st century.
Benjamin Ward, Francesco S. R. Pausata, and Nicola Maher
Earth Syst. Dynam., 12, 975–996, https://doi.org/10.5194/esd-12-975-2021, https://doi.org/10.5194/esd-12-975-2021, 2021
Short summary
Short summary
Using the largest ensemble of a climate model currently available, the Max Planck Institute Grand Ensemble (MPI-GE), we investigated the impact of the spatial distribution of volcanic aerosols on the El Niño–Southern Oscillation (ENSO) response. By selecting three eruptions with different aerosol distributions, we found that the shift of the Intertropical Convergence Zone (ITCZ) is the main driver of the ENSO response, while other mechanisms commonly invoked seem less important in our model.
Nicola Maher, Sebastian Milinski, and Ralf Ludwig
Earth Syst. Dynam., 12, 401–418, https://doi.org/10.5194/esd-12-401-2021, https://doi.org/10.5194/esd-12-401-2021, 2021
Sebastian Milinski, Nicola Maher, and Dirk Olonscheck
Earth Syst. Dynam., 11, 885–901, https://doi.org/10.5194/esd-11-885-2020, https://doi.org/10.5194/esd-11-885-2020, 2020
Short summary
Short summary
Initial-condition large ensembles with ensemble sizes ranging from 30 to 100 members have become a commonly used tool to quantify the forced response and internal variability in various components of the climate system, but there is no established method to determine the required ensemble size for a given problem. We propose a new framework that can be used to estimate the required ensemble size from a model's control run or an existing large ensemble.
Cited articles
An, S.-I. and Wang, B.: Interdecadal Change of the Structure of the ENSO Mode
and Its Impact on the ENSO Frequency, J. Climate, 13, 2044–2055,
https://doi.org/10.1175/1520-0442(2000)013<2044:ICOTSO>2.0.CO;2, 2000. a, b
Ashok, K., Behera, S. K., Rao, S. A., Weng, H., and Yamagata, T.: El Niño
Modoki and its possible teleconnection, J. Geophys. Res.-Oceans, 112, C11007, https://doi.org/10.1029/2006JC003798, 2007. a
Barnes, E. A., Hurrell, J. W., Ebert-Uphoff, I., Anderson, C., and Anderson,
D.: Viewing Forced Climate Patterns Through an AI Lens, Geophys. Res.
Lett., 46, 13389–13398, https://doi.org/10.1029/2019GL084944,
2019. a
Barnes, E. A., Toms, B., Hurrell, J. W., Ebert-Uphoff, I., Anderson, C., and
Anderson, D.: Indicator Patterns of Forced Change Learned by an Artificial
Neural Network, J. Adv. Model. Earth Sy., 12, e2020MS002195,
https://doi.org/10.1029/2020MS002195, 2020. a
Bellenger, H., Guilyardi, E., Leloup, J., Lengaigne, M., and Vialard, J.: ENSO
representation in climate models: from CMIP3 to CMIP5, Clim. Dynam., 42,
1999–2018, https://doi.org/10.1007/s00382-013-1783-z, 2014. a
Beobide-Arsuaga, G., Bayr, T., Reintges, A., and Latif, M.: Uncertainty of
ENSO-amplitude projections in CMIP5 and CMIP6 models, Clim. Dynam.,
56, 3875–3888, https://doi.org/10.1007/s00382-021-05673-4, 2021. a, b
Cai, W., Borlace, S., Lengaigne, M., van Rensch, P., Collins, M., Vecchi, G.,
Timmermann, A., Santoso, A., McPhaden, M. J., Wu, L., England, M. H., Wang,
G., Guilyardi, E., and Jin, F.-F.: Increasing frequency of extreme El Niño
events due to greenhouse warming, Nat. Clim. Change, 4, 111–116,
https://doi.org/10.1038/nclimate2100, 2014. a
Cai, W., Wang, G., Dewitte, B., Wu, L., Santoso, A., Takahashi, K., Yang, Y.,
Carréric, A., and McPhaden, M. J.: Increased variability of eastern Pacific
El Niño under greenhouse warming, Nature, 564, 201–206,
https://doi.org/10.1038/s41586-018-0776-9, 2018. a, b, c, d
Cai, W., Santoso, A., Collins, M., Dewitte, B., Karamperidou, C., Kug, J.-S.,
Lengaigne, M., McPhaden, M. J., Stuecker, M. F., Taschetto, A. S.,
Timmermann, A., Wu, L., Yeh, S.-W., Wang, G., Ng, B., Jia, F., Yang, Y.,
Ying, J., Zheng, X.-T., Bayr, T., Brown, J. R., Capotondi, A., Cobb, K. M.,
Gan, B., Geng, T., Ham, Y.-G., Jin, F.-F., Jo, H.-S., Li, X., Lin, X.,
McGregor, S., Park, J.-H., Stein, K., Yang, K., Zhang, L., and Zhong, W.:
Changing El Niño-Southern Oscillation in a warming climate, Nature Reviews
Earth & Environment, 2, 628–644, https://doi.org/10.1038/s43017-021-00199-z, 2021. a, b, c
Capotondi, A., Wittenberg, A. T., Newman, M., Lorenzo, E. D., Yu, J.-Y.,
Braconnot, P., Cole, J., Dewitte, B., Giese, B., Guilyardi, E., Jin, F.-F.,
Karnauskas, K., Kirtman, B., Lee, T., Schneider, N., Xue, Y., and Yeh, S.-W.:
Understanding ENSO Diversity, B. Am. Meteorol.
Soc., 96, 921–938, https://doi.org/10.1175/BAMS-D-13-00117.1, 2015. a, b
Capotondi, A., Wittenberg, A. T., Kug, J.-S., Takahashi, K., and McPhaden,
M. J.: ENSO Diversity, in: El Niño Southern Oscillation in a Changing Climate, edited by:
McPhaden, M. J., Santoso, A., and Cai, W., https://doi.org/10.1002/9781119548164.ch4, 2020. a, b, c, d
Chen, C., Cane, M. A., Wittenberg, A. T., and Chen, D.: ENSO in the CMIP5
Simulations: Life Cycles, Diversity, and Responses to Climate Change,
J. Climate, 30, 775–801, https://doi.org/10.1175/JCLI-D-15-0901.1, 2017a. a
Chen, L., Li, T., Yu, Y., and Behera, S. K.: A possible explanation for the
divergent projection of ENSO amplitude change under global warming, Clim.
Dynam., 49, 3799–3811, https://doi.org/10.1007/s00382-017-3544-x,
2017b. a
Chung, C. T. Y., Power, S. B., Arblaster, J. M., Rashid, H. A., and Roff,
G. L.: Nonlinear precipitation response to El Niño and global warming in the
Indo-Pacific, Clim. Dynam., 42, 1837–1856,
https://doi.org/10.1007/s00382-013-1892-8, 2014. a
Deser, C., Phillips, A. S., and Alexander, M. A.: Twentieth century tropical
sea surface temperature trends revisited, Geophys. Res. Lett., 37, L10701,
https://doi.org/10.1029/2010GL043321, 2010. a
Dieppois, B., Capotondi, A., Pohl, B., Chun, K. P., Monerie, P.-A., and Eden,
J.: ENSO diversity shows robust decadal variations that must be captured for
accurate future projections, Communications Earth & Environment, 2, 212,
https://doi.org/10.1038/s43247-021-00285-6, 2021. a, b, c
Fang, S.-W. and Yu, J.-Y.: Contrasting Transition Complexity Between El Niño
and La Niña: Observations and CMIP5/6 Models, Geophys. Res. Lett.,
47, 2020GL088926, https://doi.org/10.1029/2020GL088926, 2020. a
Feng, J., Lian, T., Ying, J., Li, J., and Li, G.: Do CMIP5 Models Show El Niño
Diversity?, J. Climate, 33, 1619–1641,
https://doi.org/10.1175/JCLI-D-18-0854.1, 2020. a
Fredriksen, H.-B., Berner, J., Subramanian, A. C., and Capotondi, A.: How Does
El Niño–Southern Oscillation Change Under Global Warming – A First Look at
CMIP6, Geophys. Res. Lett., 47, e2020GL090640,
https://doi.org/10.1029/2020GL090640, 2020. a, b
Freund, M. B., Henley, B. J., Karoly, D. J., McGregor, H. V., Abram, N. J., and
Dommenget, D.: Higher frequency of Central Pacific El Niño events in recent
decades relative to past centuries, Nat. Geosci., 12, 450–455,
https://doi.org/10.1038/s41561-019-0353-3, 2019. a, b, c
Giese, B. S. and Ray, S.: El Niño variability in simple ocean data
assimilation (SODA), 1871–2008, J. Geophys. Res.-Oceans,
116, C02024, https://doi.org/10.1029/2010JC006695, 2011. a
Gil, Y., Pierce, S. A., Babaie, H., Banerjee, A., Borne, K., Bust, G.,
Cheatham, M., Ebert-Uphoff, I., Gomes, C., Hill, M., Horel, J., Hsu, L.,
Kinter, J., Knoblock, C., Krum, D., Kumar, V., Lermusiaux, P., Liu, Y.,
North, C., Pankratius, V., Peters, S., Plale, B., Pope, A., Ravela, S.,
Restrepo, J., Ridley, A., Samet, H., Shekhar, S., Skinner, K., Smyth, P.,
Tikoff, B., Yarmey, L., and Zhang, J.: Intelligent Systems for Geosciences:
An Essential Research Agenda, Commun. ACM, 62, 76–84,
https://doi.org/10.1145/3192335, 2018. a
Guo, Y., Cao, X., Liu, B., and Peng, K.: El Niño Index Prediction Using Deep
Learning with Ensemble Empirical Mode Decomposition, Symmetry, 12, 893,
https://doi.org/10.3390/sym12060893, 2020. a
Ham, Y.-G., Jeong, Y., and Kug, J.-S.: Changes in Independency between Two
Types of El Niño Events under a Greenhouse Warming Scenario in CMIP5 Models,
J. Climate, 28, 7561–7575, https://doi.org/10.1175/JCLI-D-14-00721.1, 2015. a
Ham, Y.-G., Kim, J.-H., and Luo, J.-J.: Deep learning for multi-year ENSO
forecasts, Nature, 573, 568–572, https://doi.org/10.1038/s41586-019-1559-7, 2019. a
Haszpra, T., Herein, M., and Bódai, T.: Investigating ENSO and its teleconnections under climate change in an ensemble view – a new perspective, Earth Syst. Dynam., 11, 267–280, https://doi.org/10.5194/esd-11-267-2020, 2020. a
Hendon, H. H., Lim, E., Wang, G., Alves, O., and Hudson, D.: Prospects for
predicting two flavors of El Niño, Geophys. Res. Lett., 36, L19713,
https://doi.org/10.1029/2009GL040100, 2009. a
Hu, Z.-Z., Kumar, A., Ren, H.-L., Wang, H., L’Heureux, M., and Jin, F.-F.:
Weakened Interannual Variability in the Tropical Pacific Ocean since 2000,
J. Climate, 26, 2601–2613, https://doi.org/10.1175/JCLI-D-12-00265.1, 2013. a, b
Huang, B., Angel, W., Boyer, T., Cheng, L., Chepurin, G., Freeman, E., Liu, C.,
and Zhang, H.-M.: Evaluating SST Analyses with Independent Ocean Profile
Observations, J. Climate, 31, 5015–5030,
https://doi.org/10.1175/JCLI-D-17-0824.1, 2018. a
Huang, P. and Xie, S.-P.: Mechanisms of change in ENSO-induced tropical Pacific
rainfall variability in a warming climate, Nat. Geosci., 8, 922–926,
https://doi.org/10.1038/ngeo2571, 2015. a
Johnson, N. C.: How Many ENSO Flavors Can We Distinguish?, J. Climate,
26, 4816–4827, https://doi.org/10.1175/JCLI-D-12-00649.1, 2013. a
Kao, H.-Y. and Yu, J.-Y.: Contrasting Eastern-Pacific and Central-Pacific Types
of ENSO, J. Climate, 22, 615–632, https://doi.org/10.1175/2008JCLI2309.1,
2009. a, b, c
Karamperidou, C., Jin, F.-F., and Conroy, J. L.: The importance of ENSO
nonlinearities in tropical pacific response to external forcing, Clim.
Dynam., 49, 2695–2704, https://doi.org/10.1007/s00382-016-3475-y, 2017. a
Karpatne, A., Ebert-Uphoff, I., Ravela, S., Babaie, H. A., and Kumar,
V.: Machine Learning for the Geosciences: Challenges and Opportunities, IEEE
T. Knowl. Data En., 31, 1544–1554,
https://doi.org/10.1109/TKDE.2018.2861006, 2019. a
Kim, H.-M., webster, J., and J.A., C.: Impact of Shifting Patterns of Pacific
Ocean Warming on North Atlantic Tropical Cyclones, Science, 325, 77–80,
https://doi.org/10.1126/science.1174062, 2009. a
Kim, S. T., Cai, W., Jin, F.-F., Santoso, A., Wu, L., Guilyardi, E., and An,
S.-I.: Response of El Niño sea surface temperature variability to greenhouse
warming, Nat. Clim. Change, 4, 786–790, https://doi.org/10.1038/nclimate2326,
2014. a
Knutson, T. R., Manabe, S., and Gu, D.: Simulated ENSO in a Global Coupled
Ocean–Atmosphere Model: Multidecadal Amplitude Modulation and CO2
Sensitivity, J. Climate, 10, 138–161,
https://doi.org/10.1175/1520-0442(1997)010<0138:SEIAGC>2.0.CO;2, 1997. a
Kohyama, T., Hartmann, D. L., and Battisti, D. S.: La Niña–like Mean-State
Response to Global Warming and Potential Oceanic Roles, J. Climate,
30, 4207–4225, https://doi.org/10.1175/JCLI-D-16-0441.1, 2017. a, b, c
Kug, J.-S., Jin, F.-F., and An, S.-I.: Two Types of El Niño Events: Cold
Tongue El Niño and Warm Pool El Niño, J. Climate, 22, 1499–1515,
https://doi.org/10.1175/2008JCLI2624.1, 2009. a
Lemmon, D. E. and Karnauskas, K. B.: A metric for quantifying El Niño pattern
diversity with implications for ENSO-mean state interaction, Clim.
Dynam., 52, 7511–7523, https://doi.org/10.1007/s00382-018-4194-3, 2019. a
Liu, Y., Cobb, K. M., Song, H., Li, Q., Li, C.-Y., Nakatsuka, T., An, Z., Zhou,
W., Cai, Q., Li, J., Leavitt, S. W., Sun, C., Mei, R., Shen, C.-C., Chan,
M.-H., Sun, J., Yan, L., Lei, Y., Ma, Y., Li, X., Chen, D., and Linderholm,
H. W.: Recent enhancement of central Pacific El Niño variability relative to
last eight centuries, Nat. Commun., 8, 15386,
https://doi.org/10.1038/ncomms15386, 2017. a
Maher, N.: nicolamaher/classification: ENSO ML Classification – Maher, Tabarin, Milinski 2022 (v1.1.0), Zenodo [code], https://doi.org/10.5281/zenodo.7032576, 2022a. a
Maher, N.: Combining machine learning and SMILEs to classify, better understand, and project changes in ENSO events, MPG [code], https://pure.mpg.de/, last access: 29 August 2022b. a
Maher, N., Power, S., and Marotzke, J.: More accurate quantification of
model-to-model agreement in externally forced climatic responses over the
coming century, Nat. Commun., 12, 788, https://doi.org/10.1038/s41467-020-20635-w,
2021. a
Max-Planck-Institut für Meteorologie: MPI
Grand Ensemble, https://esgf-data.dkrz.de/projects/mpi-ge/, last access: 25 August 2022. a
McPhaden, M. J., Lee, T., and McClurg, D.: El Niño and its relationship to
changing background conditions in the tropical Pacific Ocean, Geophys. Res. Lett., 38, L15709, https://doi.org/10.1029/2011GL048275, 2011. a, b
Milinski, S., Maher, N., and Olonscheck, D.: How large does a large ensemble need to be?, Earth Syst. Dynam., 11, 885–901, https://doi.org/10.5194/esd-11-885-2020, 2020. a, b
NCAR/UCAR: Multi-Model Large Ensemble Archive, https://www.cesm.ucar.edu/projects/community-projects/MMLEA/, last access: 25 August 2022. a
Newman, M., Shin, S.-I., and Alexander, M. A.: Natural variation in ENSO
flavors, Geophys. Res. Lett., 38, L14705,
https://doi.org/10.1029/2011GL047658, 2011. a
NOAA Physical Sciences Laboratory: Gridded Climate Data, https://www.psl.noaa.gov/data/gridded/, last access: 25 August 2022. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.:
Scikit-learn: Machine Learning in Python, J. Mach. Learn.
Res., 12, 2825–2830, 2011. a, b, c
Planton, Y. Y., Guilyardi, E., Wittenberg, A. T., Lee, J., Gleckler, P. J.,
Bayr, T., McGregor, S., McPhaden, M. J., Power, S., Roehrig, R., Vialard, J.,
and Voldoire, A.: Evaluating Climate Models with the CLIVAR 2020 ENSO Metrics
Package, B. Am. Meteorol. Soc., 102, E193–E217,
https://doi.org/10.1175/BAMS-D-19-0337.1, 2021. a
Power, S., Delage, F., Chung, C., Kociuba, G., and Keay, K.: Robust
twenty-first-century projections of El Niño and related precipitation
variability, Nature, 502, 541–545, https://doi.org/10.1038/nature12580, 2013. a, b
Rasmusson, E. M. and Carpenter, T. H.: Variations in Tropical Sea Surface
Temperature and Surface Wind Fields Associated with the Southern
Oscillation/El Niño, Mon. Weather Rev., 110, 354–384,
https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2, 1982. a
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J.,
Carvalhais, N., and Prabhat: Deep learning and process understanding for
data-driven Earth system science, Nature, 566, 195–204,
https://doi.org/10.1038/s41586-019-0912-1, 2019. a, b
Ren, H.-L. and Jin, F.-F.: Niño indices for two types of ENSO, Geophys. Res. Lett., 38, L04704, https://doi.org/10.1029/2010GL046031, 2011. a
Takahashi, K., Montecinos, A., Goubanova, K., and Dewitte, B.: ENSO regimes:
Reinterpreting the canonical and Modoki El Niño, Geophys. Res. Lett., 38, L10704, https://doi.org/10.1029/2011GL047364, 2011. a, b
Timmermann, A., An, S.-I., Kug, J.-S., Jin, F.-F., Cai, W., Capotondi, A.,
Cobb, K. M., Lengaigne, M., McPhaden, M. J., Stuecker, M. F., Stein, K.,
Wittenberg, A. T., Yun, K.-S., Bayr, T., Chen, H.-C., Chikamoto, Y., Dewitte,
B., Dommenget, D., Grothe, P., Guilyardi, E., Ham, Y.-G., Hayashi, M.,
Ineson, S., Kang, D., Kim, S., Kim, W., Lee, J.-Y., Li, T., Luo, J.-J.,
McGregor, S., Planton, Y., Power, S., Rashid, H., Ren, H.-L., Santoso, A.,
Takahashi, K., Todd, A., Wang, G., Wang, G., Xie, R., Yang, W.-H., Yeh,
S.-W., Yoon, J., Zeller, E., and Zhang, X.: El Niño-Southern Oscillation
complexity, Nature, 559, 535–545, https://doi.org/10.1038/s41586-018-0252-6, 2018. a
Toms, B. A., Barnes, E. A., and Ebert-Uphoff, I.: Physically Interpretable
Neural Networks for the Geosciences: Applications to Earth System
Variability, J. Adv. Model. Earth Sy., 12,
e2019MS002002, https://doi.org/10.1029/2019MS002002, 2020. a
Tseng, Y.-h., Huang, J.-H., and Chen, H.-C.: Improving the Predictability of
Two Types of ENSO by the Characteristics of Extratropical Precursors,
Geophys. Res. Lett., 49, e2021GL097190,
https://doi.org/10.1029/2021GL097190, 2022. a
Wang, B., Luo, X., Yang, Y.-M., Sun, W., Cane, M. A., Cai, W., Yeh, S.-W., and
Liu, J.: Historical change of El Niño properties sheds light on future
changes of extreme El Niño, P. Natl. Acad.
Sci. USA, 116, 22512–22517, https://doi.org/10.1073/pnas.1911130116, 2019. a, b, c, d
Watanabe, M., Kamae, Y., and Kimoto, M.: Robust increase of the equatorial
Pacific rainfall and its variability in a warmed climate, Geophys. Res.
Lett., 41, 3227–3232, https://doi.org/10.1002/2014GL059692, 2014. a
Wittenberg, A. T.: Are historical records sufficient to constrain ENSO
simulations?, Geophys. Res. Lett., 36, L12702, https://doi.org/10.1029/2009GL038710,
2009. a, b, c
World Climate Research ProgrammeWCRP Coupled Model Intercomparison Project (Phase 6), https://esgf-data.dkrz.de/projects/cmip6-dkrz/, last access: 25 August 2022. a
Yeh, S.-W., Kug, J.-S., Dewitte, B., Kwon, M.-H., and Kirtman, B. P. Jin,
F.-F.: El Niño in a changing climate, Nature, 461, 511–514,
https://doi.org/10.1038/nature08316, 2009. a, b, c
Yeh, S.-W., Kirtman, B. P., Kug, J.-S., Park, W., and Latif, M.: Natural
variability of the central Pacific El Niño event on multi-centennial
timescales, Geophys. Res. Lett., 38, L02704,
https://doi.org/10.1029/2010GL045886, 2011. a
Yeh, S.-W., Kug, J.-S., and S-I., A.: Recent progress on two types of El
Niño: Observations, dynamics, and future changes, Asia-Pac. J.
Atmos. Sci., 50, 69–81, https://doi.org/10.1007/s13143-014-0028-3, 2014. a
Yu, J.-Y. and Fang, S.-W.: The Distinct Contributions of the Seasonal
Footprinting and Charged-Discharged Mechanisms to ENSO Complexity,
Geophys. Res. Lett., 45, 6611–6618,
https://doi.org/10.1029/2018GL077664, 2018. a
Yu, J.-Y. and Kim, S. T.: Identification of Central-Pacific and Eastern-Pacific
types of ENSO in CMIP3 models, Geophys. Res. Lett., 37, L15705,
https://doi.org/10.1029/2010GL044082, 2010. a
Yun, K.-S., Lee, J.-Y., Timmermann, A., Stein, K., Stuecker, M. F., Fyfe,
J. C., and Chung, E.-S.: Increasing ENSO-rainfall variability due to changes
in future tropical temperature-rainfall relationship, Communications Earth &
Environment, 2, 43, https://doi.org/10.1038/s43247-021-00108-8, 2021. a
Zheng, X.-T., Hui, C., and Yeh, S.-W.: Response of ENSO amplitude to global
warming in CESM large ensemble: uncertainty due to internal variability,
Clim. Dynam., 50, 4019–4035, https://doi.org/10.1007/s00382-017-3859-7, 2017. a
Short summary
El Niño events occur as two broad types: eastern Pacific (EP) and central Pacific (CP). EP and CP events differ in strength, evolution, and in their impacts. In this study we create a new machine learning classifier to identify the two types of El Niño events using observed sea surface temperature data. We apply our new classifier to climate models and show that CP events are unlikely to change in frequency or strength under a warming climate, with model disagreement for EP events.
El Niño events occur as two broad types: eastern Pacific (EP) and central Pacific (CP). EP and...
Altmetrics
Final-revised paper
Preprint