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Abstract. The El Niño–Southern Oscillation (ENSO) occurs in three phases: neutral, warm (El Niño), and
cool (La Niña). While classifying El Niño and La Niña is relatively straightforward, El Niño events can be
broadly classified into two types: central Pacific (CP) and eastern Pacific (EP). Differentiating between CP
and EP events is currently dependent on both the method and observational dataset used. In this study, we
create a new classification scheme using supervised machine learning trained on 18 observational and re-analysis
products. This builds on previous work by identifying classes of events using the temporal evolution of sea
surface temperature in multiple regions across the tropical Pacific. By applying this new classifier to seven single
model initial-condition large ensembles (SMILEs) we investigate both the internal variability and forced changes
in each type of ENSO event, where events identified behave similarly to those observed. It is currently debated
whether the observed increase in the frequency of CP events after the late 1970s is due to climate change. We
found it to be within the range of internal variability in the SMILEs for trends after 1950, but not for the full
observed period (1896 onwards). When considering future changes, we do not project a change in CP frequency
or amplitude under a strong warming scenario (RCP8.5/SSP370) and we find model differences in EP El Niño
and La Niña frequency and amplitude projections. Finally, we find that models show differences in projected
precipitation and sea surface temperature (SST) pattern changes for each event type that do not seem to be linked
to the Pacific mean state SST change, although the SST and precipitation changes in individual SMILEs are
linked. Our work demonstrates the value of combining machine learning with climate models, and highlights
the need to use SMILEs when evaluating ENSO in climate models because of the large spread of results found
within a single model due to internal variability alone.

1 Introduction

Understanding El Niño–Southern Oscillation (ENSO) diver-
sity is important due to the differing teleconnections and im-
pacts of different types of events (e.g. Capotondi et al., 2020,
and refs therein). ENSO occurs in three phases: neutral, La
Niña, and El Niño. While El Niño events occur with a wide

range of spatial structures (Giese and Ray, 2011) they can
be broadly classified into two types, which differ in evo-
lution, strength, and spatial structure (e.g. Capotondi et al.,
2015, 2020). These are eastern Pacific (EP) El Niño and cen-
tral Pacific (CP) El Niño events. EP El Niño events have
warm sea surface temperature (SST) anomalies located in
the eastern equatorial Pacific, typically attached to the coast-
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line of South America, while for CP El Niño events SST,
wind, and subsurface anomalies are confined to the central
Pacific (Kao and Yu, 2009). EP events tend to appear in the
far east Pacific and move westward, with CP events generally
appearing in the eastern subtropics and central Pacific (Kao
and Yu, 2009; Yeh et al., 2014; Capotondi et al., 2015). EP
events occur from weak to extremely strong in amplitude,
while CP events tend to be on the weaker side (e.g. Capo-
tondi et al., 2020). In this study we use supervised machine
learning techniques to create a new classification scheme.

There is ongoing debate about the cause of an observed in-
crease in the frequency of CP events after the late 1970s (An
and Wang, 2000). This was initially attributed to increased
greenhouse gas forcing (Yeh et al., 2009). Other studies then
suggested that multi-decadal modulation of CP frequency
by internal variability can explain this increase (McPhaden
et al., 2011; Newman et al., 2011; Yeh et al., 2011; Pascolini-
Campbell et al., 2015). However, a recent study again sug-
gested that this observed increase can be linked to green-
house gas forcing (Liu et al., 2017). Additionally, palaeocli-
mate records have shown that the current ratio of CP to EP
El Niño events is unusual in a multi-century context (Freund
et al., 2019). Freund et al. (2019) use corals from 27 season-
ally resolved networks and find that compared to the last four
centuries the recent 30-year period includes fewer but more
extreme EP El Niño events and an unprecedented ratio of CP
to EP El Niño events compared to the rest of the record. It
is currently unresolved why these past changes seen in the
palaeoclimate record occurred.

Whether both the frequency and amplitude of EP and CP
events will change in the future is also strongly debated. Mul-
tiple studies agree that projections are inconsistent across
CMIP5 models (Ham et al., 2015; Chen et al., 2017b; Xu
et al., 2017; Lemmon and Karnauskas, 2019). These dif-
ferences are suggested to be related to the central Pacific
zonal SST gradient (Wang et al., 2019). When subsetting
for models that represent ENSO well, studies find an in-
crease in EP variability (Cai et al., 2018, 2021). However,
when using single model initial-condition large ensembles
(SMILEs), models are again found to differ in their projec-
tions (Ng et al., 2021). ENSO precipitation projections are
more robust across all models, with multiple studies project-
ing an increase in ENSO-related precipitation variability un-
der strong warming scenarios (Power et al., 2013; Cai et al.,
2014; Chung et al., 2014; Watanabe et al., 2014; Huang and
Xie, 2015; Yun et al., 2021).

While there is a wealth of literature investigating ENSO,
previous work has highlighted that due to its high variabil-
ity longer equilibrated runs or SMILEs are needed to truly
understand our observations of ENSO and to project fu-
ture changes (Wittenberg, 2009; Maher et al., 2018; Milin-
ski et al., 2020). Two separate studies show that two SMILEs
cover the spread of ENSO projections in CMIP5 models for
both traditional ENSO indices (Maher et al., 2018) and EP
and CP events (Ng et al., 2021). This indicates that inter-

nal variability can explain a large fraction of the inter-model
spread previously attributed to model differences. These re-
sults highlight the utility of SMILEs, which provide many
realisations of the earth system and allow scientists to inves-
tigate both the climate change signal as well as inherently
complex and noisy systems such as ENSO (Maher et al.,
2018).

Previous studies have used varying methods to classify El
Niño events into EP and CP events, but are limited by uncer-
tainty in both the observed data and the classification method.
Pascolini-Campbell et al. (2015) summarise nine classifica-
tion schemes (Ashok et al., 2007; Hendon et al., 2009; Kao
and Yu, 2009; Kim et al., 2009; Kug et al., 2009; Ren and
Jin, 2011; Takahashi et al., 2011; Yeh et al., 2009; Yu and
Kim, 2010) applied to five different SST products and show
that event classification is dependent on both the index and
dataset used. They identify events that appear with greatest
convergence across indices and datasets to provide the most
robust classification of observations to date. Such classifica-
tion using multiple SST products can now be automated us-
ing machine learning, which has the additional advantage of
using multiple parameters across many dimensions to iden-
tify events. This technique provides potential to create a more
complete classifier than previous studies, where classifica-
tion schemes have focused on single metrics with defined
thresholds or the comparison of multiple schemes and prod-
ucts by hand (Pascolini-Campbell et al., 2015).

Machine learning techniques such as classification are be-
coming more commonly utilised in the geosciences. The key
challenges in applying machine learning in this field come
from the difficulty in establishing ground truth data, inter-
preting physical results, auto-correlation at both spatial and
temporal scales, noisy data with gaps that are taken at mul-
tiple resolutions and scales, as well as data that are un-
certain, sparse, and intermittent (Gil et al., 2018; Karpatne
et al., 2019; Reichstein et al., 2019). Machine learning, how-
ever, also provides new opportunities in the geosciences par-
ticularly when using climate models where large coherent
datasets exist (Barnes et al., 2020, 2019; Toms et al., 2020).
Studies have begun to apply such techniques to ENSO re-
search, for example using unsupervised learning and clus-
tering algorithms to identify different types of ENSO events
(Wang et al., 2019; Johnson, 2013) and to more reliably pre-
dict ENSO (Ham et al., 2019; Guo et al., 2020). However,
no studies to date have used supervised learning combined
with observations to investigate ENSO. In this study, we use
supervised machine learning to build a new ENSO classifier.
We then apply this classifier to climate models in order to
identify events that resemble those found in the real world.
This is relevant as we wish to study events similar to those
that we observe.

The aims of this paper are twofold. First, we create a new
classifier using supervised machine learning combined with
18 observational and re-analysis products. This classifier has
the advantage that it can learn both the spatial and temporal
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evolution of different events, unlike previous studies that rely
on pre-defined metrics and compare multiple methods and
products by hand. Second, we apply the classifier to seven
SMILEs to answer three questions. (1) Can SMILEs cap-
ture the observed CP and EP El Niño events and La Niña
events? (2) Can the observed increase in frequency of CP
El Niño events be explained by internal variability and what
does this imply for future projections? (3) Do we project
forced changes in the amplitude, SST, and precipitation pat-
terns of each event type? By using this classifier combined
with SMILEs we can now better understand observations and
projections of ENSO in the context of internal variability.

2 Creating the classifier

The purpose of a classifier is to assign a class to an event.
In this paper our intent is to label each year with one of four
event types: central Pacific (CP) El Niño, eastern Pacific (EP)
El Niño , La Niña (LN), and neutral (NE). We use supervised
learning in this study. Supervised learning algorithms use a
labelled dataset to train a classifier (e.g. observations where a
class is already assigned to each individual year from previ-
ous studies). Then this classifier can be applied to unlabelled
data (e.g. climate model output where no class has yet been
assigned for each individual year).

There are seven steps to creating a machine learning clas-
sifier:

1. Data collection: the quality and quantity of the data
used dictate how well the classifier performs.

2. Data preparation: choosing which features (individual
variables) from the dataset will be given to the classifier,
preprocessing the data, as well as well as splitting the
data into training and evaluation sets, labelling the data.

3. Choosing a classifier: different algorithms are suited to
different purposes and data types.

4. Training the classifier: using the training set to train the
classification algorithm.

5. Evaluating the classifier: using the evaluation set to as-
sess how the classifier performs, one must define an ap-
propriate scoring metric fit for purpose.

6. Hyper-parameter tuning: tuning the classification algo-
rithm parameters for better performance.

7. Prediction: using the classifier to make predictions from
other datasets, at this point we have a tool that will allow
us to classify and investigate ENSO events in climate
model output.

The following sections provide a description of the steps
followed in this study. These steps are merged into sec-
tions as some steps are performed in unison and/or iterated
through.

Table 1. Years which are defined as central Pacific (CP) and east-
ern Pacific (EP) El Niño events, La Niña events (LE), and neu-
tral (NE) events in the observational data. These years are found
following Pascolini-Campbell et al. (2015) for CP years, https:
//www.psl.noaa.gov/enso/ (last access: 22 August 2022) for events
1896–2014 and https://origin.cpc.ncep.noaa.gov/products/analysis_
monitoring/ensostuff/ONI_v5.php (last access: 22 August 2022)
for events 2014–2019, and https://www.pmel.noaa.gov/tao/drupal/
disdel/ (last access: 22 August 2022) to determine whether the 2019
El Niño was a CP event.

Event type Years
(total no. events) (starting year)

CP (14) 1914, 1940, 1958, 1963, 1968, 1977,
1986, 1990, 1991, 1994, 2002, 2003,
2004, 2019

EP (20) 1896, 1899, 1902, 1905, 1918, 1925,
1930, 1941, 1957, 1965, 1972, 1979,
1982, 1987, 1997, 2006, 2009, 2014,
2015, 2018

LN (26) 1903, 1908, 1909, 1910, 1916, 1917,
1924, 1933, 1938, 1942, 1949, 1950,
1954, 1955, 1961, 1970, 1973, 1975,
1988, 1998, 1999, 2007, 2010, 2011,
2016, 2017

NE (64) All others between 1896 and 2019

2.1 Data collection and preparation

Steps 1 and 2 – data collection and data preparation – are
outlined in this section. In this study we use SST data due
to their good temporal and spatial coverage over the tropical
Pacific Ocean. We choose not to include other variables be-
cause of their shorter record lengths. Additionally, by using
SST alone we can independently assess the projected pre-
cipitation response in climate models during the prediction
phase. We label each year of the observational dataset as EP,
CP, LN, or NE using results from previous studies (Table 1).
Here, we use the most robust set of labels available for CP
from Pascolini-Campbell et al. (2015).

Machine learning classifiers work best with large amounts
of training and testing data. Unfortunately, although for an
observed climate variable SST has a relatively long record,
there are only 124 years of data, which include only 14 CP
events and 20 EP events (Table 1). This is an inherent prob-
lem when using climate data that has been highlighted in
much of the literature (e.g. Reichstein et al., 2019). As the
data are time-dependent we cannot easily acquire more data.
Due to the spatial correlations within the dataset, typical ma-
chine learning augmentation methods, which would be used
to artificially create additional data, are not appropriate. In-
stead in this study we use an unconventional augmentation
method where we opt to use 18 observational and re-analysis
products (Table S1 in the Supplement). Each product in-
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cludes the same events with the same labels; however, due
to observational uncertainty, infilling methods, and the use
of re-analysis models, the SST patterns are different (e.g.
Deser et al., 2010; Pascolini-Campbell et al., 2015; Huang
et al., 2018). This unconventional data augmentation takes
into account observational uncertainty in addition to effec-
tively augmenting the data we have to use in this study. Be-
fore training the classifier we create anomalies by detrending
the data (using a second-order polynomial) and removing the
seasonal cycle (mean of each month over the entire time se-
ries after detrending).

The next step in the data preparation process is to identify
which features to use in the study. While La Niña, neutral,
and El Niño events are fairly easy to define, separating El
Niño events into CP and EP classes can be difficult. Previous
studies have identified that the Pacific SST in the predefined
niño boxes, the north subtropical Pacific, and the evolution of
SST over the event are the most important features for sepa-
rating the two types of El Niño (e.g. Rasmusson and Carpen-
ter, 1982; Yu and Fang, 2018; Tseng et al., 2022). In this
study we use the regions niño3E (5◦ S–5◦ N, 120–90◦W),
niño3W (5◦ S–5◦ N, 120–150◦W), niño4E (5◦ S–5◦ N, 150–
170◦W), niño4W (5◦ S–5◦ N, 170–200◦W), and niño1.2 (0–
10◦ N, 80–90◦W) in each month from June to March as in-
dividual features to train the classifier (i.e. 5 regions× 10
months= 50 features). We note that we tested multiple fea-
ture sets including varying regions in the tropical and north
subtropical Pacific and different sets of months for perfor-
mance (see Sect. S2 in the Supplement), and chose this set
because of its high performance in the evaluation phase.

In machine learning, part of the dataset is used for train-
ing, while the rest of the data are kept aside for evaluation
of the classifier performance. In the following section, when
evaluating how the classifier performs we keep the HadISST
observational dataset aside and use all other data in the train-
ing phase. This choice was made due to the limited number
of events in the observed record, where splitting the data by
event rather than by dataset may result in the loss of events
that are important to the training phase of the classification
algorithm.

2.2 Choosing, training, evaluating, and tuning the
classifier

Steps 3, 4, 5 and 6 – choosing, training, evaluating, and
tuning the classifier – are outlined in this section. We out-
line these steps together as we iterate through the different
steps to find the best-performing classifier. A suite of algo-
rithms are typically used in supervised learning classifiers. It
is common practice to test all algorithms and see how they
perform on a particular dataset, given they all have differ-
ent strengths and weaknesses. The nine algorithms tested in
this study are: (1) nearest neighbours, (2) linear support vec-
tor machine, (3) radical basis function support vector ma-
chine, (4) decision tree, (5) neural network, (6) adaboost,

(7) naive Bayesian, (8) quadratic discriminant analysis, and
(9) random forest. We use the Python scikit-learn package
(Pedregosa et al., 2011) to train each of these algorithms on
our SST dataset. To evaluate each algorithm’s performance,
we use four different scores.

The first is an accuracy score, which defines the number of
correct predictions out of all predictions:

accuracy=
TP+TN

TP+TN+FP+FN
, (1)

where TP are true positives, TN are true negatives, FP are
false positives, and FN are false negatives.

The second is a precision score for each of the event types
(i) that we want to classify, which tells us the proportion of
positive predictions that are correctly predicted:

precisioni(P − i)=
TPi

TPi +FPi

. (2)

The third is a recall score for each of the event types (i)
that we want to classify, which tells us the ability to correctly
predict events compared to all positive predictions for that
event:

recalli(R− i)=
TPi

TPi +FNi

. (3)

In all cases a score of 1 is best, while a score of 0 is worst.
Accuracy, precision, and recall scores are calculated on the
evaluation dataset.

The fourth score is an accuracy cross-validation score
(CVS), which we use to test how robust our estimate is.
Here, to test the classifier, the algorithm breaks the training
data into n smaller datasets (in this study we use n= 5). For
n= 5 the algorithm retrains the classifier using four of the
five smaller datasets and tests on the fifth. We then obtain
five accuracy scores which are averaged to give an estimate
of the model performance. The CVS function in scikit-learn
uses a KFold stratification to split the data into these smaller
datasets (Pedregosa et al., 2011). This is designed to keep
the distribution of classes similar in each set and keep sets
the same size.

In this study we are particularly interested in correctly
identifying CP and EP events. This means that our algo-
rithm must have high precision and recall scores for these
two events. Based on the scores outlined above, we evalu-
ate all nine algorithms as well as ensemble classifiers that
use multiple algorithms (see Sect. S2 and Table 2). The best-
performing algorithm is an ensemble voting classifier, which
utilises the strengths of three algorithms. These three algo-
rithms are: a neural network, a random forest, and a near-
est neighbour. The hyper-parameters of all three algorithms
are tuned for optimal performance (step 6) by evaluating the
performance of the algorithm using the four scores listed
above at varying values of each parameter. The three algo-
rithms chosen, the hyper-parameters used after tuning, and
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the scores after tuning are shown in Table 2. The ensem-
ble voting classifier uses the wisdom of the crowd, where all
three algorithms vote to give the final outcome. We choose
to use soft voting as it performs better in the evaluation
stage (see Sect. S2). Soft voting predicts the class label based
on the maximum of the sums of the predicted probabilities.
Evaluation scores for the final classifier are found in Table 2.
The slightly higher scores of this final classifier compared to
each individual algorithm demonstrates the utility of combin-
ing three algorithms into a ensemble voting classifier. This fi-
nal classifier correctly identifies 12/13 CP (note the 2019 CP
event is not included in the test set), 20/20 EP, 22/26 LN, and
64/64 NE events. Those not classified correctly are identified
as NE.

Before using this classifier in step 7 to classify climate
model output, we perform one more set of tests based on the
following limitation. A limitation of the original evaluation
is the choice of training and evaluation sets. In our original
choice, where we reserve HadISST for evaluation, the same
ENSO events are effectively included in both the training and
evaluation sets. While this is the typical way to split the data
when using data augmentation techniques, we additionally
test the sensitivity to this choice. To do this we use the longer
datasets (ERSSTv3b, ERSSTv4, ERSSTv5, HadISST, Ka-
plan, and COBE), which all cover the years 1896–2016 and
separate the data so that each event is only included in the
training or evaluation set.

To decide on how to separate the data into training and
evaluation sets, we use the Python function train test split
(Pedregosa et al., 2011), which shuffles the data then splits
them into training and evaluation sets while preserving the
percentages of events in both the training and testing data.
We do this 10 separate times to get 10 sets of training and
evaluation data and then compute the scores shown in Ta-
ble 3. We additionally complete this split 100 times and man-
ually choose 10 data splits that take CP and EP (the classes
with the lowest numbers of events) from across the time se-
ries. This is done to ensure that not all events in the split
come from the same part of the observational record. Since
the observational data quality for SST is dependent on where
in the record it occurs (e.g. lower quality early in the record),
it is only appropriate to use data splits that include events
across the entire record. We additionally test the algorithms
with this split for HadISST alone to test the robustness of the
result to using a single dataset.

We find that for all three data splits, there is a range of ac-
curacy that depends on how the training and evaluation sets
are constructed. We find that while the precision and recall
scores can be quite low for some training and evaluation sets,
other sets show high precision and recall, suggesting that the
algorithm can perform reasonably well. This suggests that if
the training and evaluation sets are constructed in an ineffec-
tive way and the training set does not include specific events
vital for classification, then the testing result is poor. This is
a problem that occurs due to our small data size. Based on

these results when training the final classifier, we choose to
use all available data (including HadISST) so as not to lose
information by excluding events. This final classifier is used
in step 7 (prediction) to identify each type of ENSO event in
the climate model output.

2.3 Prediction

In machine learning, step 7 – prediction – refers to applying
the trained classifier to other datasets. We apply the classifier
trained on observed SST data to climate model output from
seven SMILEs. Besides having a large number of events to
classify, the advantage of using SMILEs is that we can assess
how internal climate variability can affect what we observe in
our single realisation of the world. In this study we use five
SMILEs with CMIP5 forcing (historical and RCP8.5) and
two SMILEs with CMIP6 forcing (historical and SSP370),
all of which have more than 20 members (Table S2). We
classify using the same features as in our training and eval-
uation data. We note that if large forced changes in the SST
in the tropical Pacific occur under the future scenario, the al-
gorithm will have difficulty classifying future states as it is
constrained by the information provided in the observational
record. We assess changes in the SST and precipitation pat-
terns, amplitude, and frequency of each event type. Ampli-
tude is calculated as the November, December, January mean
for the region 160◦ E to 80◦W between 5◦ N and 5◦ S after
the ensemble mean has been removed for each event in a sin-
gle ensemble member, taken as a running calculation along
the time series for 30-year periods. Frequency is calculated
as the number of events in a single ensemble member per
30 years, taken as a running calculation along the time series.
We discuss the SMILE classification results in the following
sections.

3 Application to SMILEs

3.1 Can SMILEs capture the observed CP and EP El
Niño events and La Niña events?

We find CP and EP El Niño events as well as La Niña events
in all models, and we identify known biases in their spatial
patterns (Fig. 1). The composite spatial patterns of SST in
the peak ENSO season (November, December, January) for
each different ENSO class in comparison with the HadISST
composites are shown in Fig. 1. CP events are visibly weaker
than EP events in both the SMILEs and observations. The
known bias of ENSO where SST anomalies extend too far
to the west is also clearly visible in all SMILEs, although it
is more prominent in some models than others. The CSIRO
model shows particularly strong SST biases, with a peak SST
anomaly too far into the western Pacific.

The time-evolution of the SST anomalies is found to be
different for each event type and appears to be important for
classification (Fig. 2). We find that the machine learning clas-
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Table 2. Scores for different algorithms tested. Scores are defined in Sect. 2.2. Details on the tuning of the hyper-parameters can be found at
https://github.com/nicolamaher/classification (last access: 22 August 2022).

Algorithm (Python name) Tuned hyper-parameters Accuracy CVS P -CP P -EP P -LN P -NE R-CP R-EP R-LN R-NE

(1) NearestNeighbours n neighbours= 1 0.96 0.94 1 1 1 0.93 0.92 1 0.85 1
(KNeighborsClassifier)

(5) NeuralNet Hidden layers= 500 0.96 0.93 1 1 1 0.93 1 0.95 0.84 1
(MLPClassifier) Max iterations= 1500

Alpha= 0.01

(9) RandomForest Max depth= 100 0.91 0.91 0.9 0.96 1 0.88 0.84 0.92 0.75 0.99
(RandomForestClassifier)

FINAL: Soft vote (1, 5, 9) 0.96 0.95 1 1 1 0.93 0.92 1 0.85 1
ensemble classifier
(VotingClassifier)

Table 3. Scores for the final ensemble classifier. Test 1 uses all available data, with HadISST kept aside for testing. Test 2 uses the longer
datasets, ERSST, COBE, Kaplan, and HadISST, for training and testing. The data are split so that the augmented events must all occur in
the same section of the data (i.e. training or testing). The data split is randomly completed 10 times on alternative splits of the training and
testing data. To complete this we use the Python function train test split. Test2 w/check again uses the same function, but 10 data splits are
manually chosen to ensure that they sample events from across the time dimension and have a reasonable amount of each type of event. Test2
w/check HadISST uses the same splits as Test2 w/check, but only uses HadISST for training and testing.

Test Min/max Accuracy CVS P -CP P -EP P -LN P -NE R-CP R-EP R-LN R-NE
score

Test 1 0.96 0.95 1 1 1 0.92 0.92 1 0.85 1

Test 2 random Min 0.65 0.96 0.32 0.36 0.6 0.68 0.14 0.79 0.66 0.74
Mean 0.77 0.97 0.78 0.62 0.8 0.82 0.53 0.89 0.78 0.81
Max 0.84 0.98 1 0.88 0.94 0.96 0.93 1 0.93 0.9

Test 2 w/check Min 0.66 0.97 0.52 0.57 0.44 0.65 0.43 0.63 0.6 0.66
Mean 0.76 0.97 0.75 0.74 0.79 0.76 0.64 0.8 0.72 0.8
Max 0.86 0.98 0.95 0.92 0.97 0.84 0.95 1 0.94 0.95

Test 2 w/check Min 0.58 0.66 0.25 0.45 0.5 0.54 0.25 0.57 0.5 0.58
HadISST only Mean 0.74 0.73 0.65 0.81 0.8 0.73 0.5 0.8 0.66 0.82

Max 0.9 0.77 1 1 1 0.84 1 1 0.86 1

sifier does not only learn the SST pattern shown in Fig. 1
and that CP events are weaker than EP events. It also cor-
rectly identifies the general pattern of how the SST anoma-
lies evolve over the event, with CP El Niño events initiated
in the central Pacific, while EP El Niño events begin in the
eastern Pacific off the South American coastline and evolve
into the central Pacific over the course of the event. This is
supported by the fact that the classifier performs better when
information about the time-evolution is included in the fea-
ture choice (see Sects. 2.1 and S2.1). The two CMIP6 mod-
els have smaller relative SST anomalies than observations,
with the relative SST anomalies in the CMIP5 models more
realistic in magnitude (assuming that the observed record is
long enough to sample these events). Overall, all models bar
CSIRO show both a realistic evolution of both EP and CP
events as well as the differences between the two.

Due to the relatively short observational record, which has
been shown to be insufficient to capture multi-decadal ENSO

variability (Wittenberg, 2009; Maher et al., 2018; Milinski
et al., 2020), we compare the range of frequencies found
across each ensemble with observations (Table 4). We find
that the observed frequencies of EP and CP El Niño events
and La Niña events are within the SMILE spread for most
models. Individually, CanESM5 does not realistically cap-
ture EP or CP El Niño frequency, CSIRO has too low fre-
quency of CP El Niño and La Niña events, and IPSL-CM6A
has too low frequency of CP El Niño events. We also con-
sider the pattern correlation between EP and CP events as
compared to the observed pattern correlation to see how sim-
ilar EP and CP Niño events can look due to internal vari-
ability (Table 4). We find that the observed pattern corre-
lation is always captured within the ensemble range of all
SMILEs. However, individual ensemble members can have
a large range of pattern correlations. This demonstrates that
when using single realisations, a model may appear to not
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Figure 1. SST pattern for composites of EP and CP El Niño events and La Niña events (left, middle, and right columns respectively);
shown for HadISST observations (top row) and each individual SMILE (in order of appearance: MPI-GE, CESM-LE, CanESM2, GFDL-
ESM2M, CSIRO, CanESM5, and IPSL-CM6A). The SST pattern is shown for the November, December, January average. SMILE data have
the forced response (ensemble mean) removed prior to calculation, HadISST is detrended using a second-order polynomial, and then each
month’s average is removed. The time period used is all of the historical period, which is shown for the observations in Table S1 and SMILEs
in Table S2.

represent well the distinct EP and CP patterns by chance
rather than due to model deficiencies.

Given climate models have known ENSO biases, particu-
larly in the location of SST anomalies along the Equator, we
additionally classify by shifting the longitudes of the niño
regions. This shift is defined as the difference in location be-
tween the maximum variability between 5◦ N and 5◦ S in the
Pacific Ocean in the observations and the maximum vari-
ability in each individual SMILE (Table S5). We find that

this does not significantly change the results in the previ-
ous paragraphs except for CSIRO frequency where EP Niño
events and La Niña events are now more realistically repre-
sented. This method additionally does not change the results
for climate projections presented in the following sections
(see Sect. S3).

When comparing these results with previous work, differ-
ent studies identify different models as more realistic or able
to represent different ENSO event types (e.g. Xu et al., 2017;
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Figure 2. Hovmöller diagram of relative SST along the Equator in the Pacific Ocean for composites of EP and CP El Niño events and EP
minus CP El Niño events (top, middle, and bottom row respectively); shown for HadISST observations (left column) and each individual
SMILE (in order of appearance: MPI-GE, CESM-LE, CanESM2, GFDL-ESM2M, CSIRO, CanESM5, and IPSL-CM6A). SST is averaged
between 5N and 5S and shown for August to April. SMILE data have the forced response (ensemble mean) removed before calculation,
HadISST is detrended using a second-order polynomial, and then each month’s average is removed. The time period used is all of the
historical period, which is shown for the observations in Table S1 and SMILEs in Table S2. Relative SST is calculated by removing the
average SST between 120 and 280◦ E individually for each month.

Table 4. Frequency of events (as a percentage) in the historical period for observations (HadISST) and the SMILEs, as well as the correlation
between EP and CP patterns. The mean frequency and correlation across each ensemble is shown with the minimum and maximum values
in brackets. The time period used is all of the historical period, which is shown for the observations in Table S1 and SMILEs in Table S2.

Model EP no ev CP no ev LN no ev EP/CP corr

HadISST 16.1 11.2 21.0 0.85
MPI-GE 16.6 (11.0/21.3) 5.3 (1.3/11.6) 19.0 (11.0/23.9) 0.72 (0.47/0.88)
CESM-LE 22.0 (14.1/29.4) 5.5 (1.2/11.8) 23.9 (18.8/32.9) 0.72 (0.24/0.87)
CanESM2 19.5 (11.4/27.1) 8.8 (2.9/18.6) 23.3 (14.3/30) 0.78 (0.38/0.90)
GFDL-ESM2M 18.6 (10.9/23.6) 14.5 (7.3/23.6) 26.9 (18.2/36.4) 0.71 (0.54/0.88)
CSIRO 12.1 (9.0/16.1) 5.4 (1.3/8.4) 14.1 (8.4/18.7) 0.79 (0.59/0.89)
CanESM5 9.4 (4.9/12.8) 5.8 (3.0/10.4) 16.6 (10.4/22.6) 0.80 (0.67/0.89)
IPSL-CM6A 18.9 (14.6/23.8) 4.2 (1.2/9.1) 21.3 (17.7/25.6) 0.70 (0.43/0.86)

Capotondi et al., 2020; Feng et al., 2020; Dieppois et al.,
2021). From our comparison with observations, we have as-
sessed that most models capture the observed frequency of
all event types and the correlation between the EP and CP
Niño patterns, and demonstrate that previous work could find
a variety of results for the same models due to the use of sin-
gle realisations. We show that all models exhibit some SST
bias, but that EP and CP events are differentiated in the mod-
els for physically interpretable reasons. In this case the clas-
sifier identifies the spatial pattern, evolution, and amplitude
of the different event types. However, just because some ob-

served quantities fall within the SMILE range, does not mean
each model does not have individual and differing biases
in other quantities, as presented by Bellenger et al. (2014);
Karamperidou et al. (2017); Kohyama et al. (2017); Cai et al.
(2018, 2021); Planton et al. (2021). ENSO complexity itself
includes not only diversity in the form of EP and CP El Niño
events, but other metrics such as the transition, propagation,
and duration of events (e.g. Chen et al., 2017a; Timmermann
et al., 2018; Fang and Yu, 2020). While the propagation of
events is to some extent accounted for in the classifier with
inclusion of the evolution over time, other metrics of ENSO
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complexity are also important in understanding ENSO events
and could be considered using SMILEs in future work. Given
the validation performed in this section, we choose to include
all models except CSIRO in the following analysis of pro-
jections. This is because CSIRO presents consistent strong
biases in the pattern, evolution, and frequency of events.

3.2 Can the observed increase in frequency of CP El
Niño events be explained by internal variability, and
what does this imply for future projections?

The frequency of CP events was observed to increase af-
ter the 1970s (An and Wang, 2000) leading to the ques-
tion of whether this was a forced change due to increas-
ing greenhouse gas emissions (Yeh et al., 2009). In Fig. 3
we show that the range of frequencies in CP (and EP and
La Niña) events across an individual SMILE for a 30-year
period is large. This implies that the observed increase in
CP events could be due to internal variability alone, simi-
lar to Pascolini-Campbell et al. (2015) and Dieppois et al.
(2021), who pointed out that CP frequency varies on multi-
decadal timescales. This is the case in the SMILEs, when
we consider a single ensemble member (Fig. 3; green lines)
there are periods where it sits higher and lower in the en-
semble spread, demonstrating this multi-decadal variability.
However, when we consider trends in individual ensemble
members we get a different result. Observations show an in-
creasing trend in frequency (defined as the number of events
per 30 years) of 7.78/100 year for the entire observed pe-
riod (1896–2019). The two models that cover the whole pe-
riod do not capture this trend (max trend MPI-GE= 5.0,
CanESM5= 5.0). When we consider the shorter, better ob-
served time period of 1950 onwards, the trend in observations
increases to 8.4. However, in this case all models that cover
the entire time period are able to capture this trend (max
trend MPI-GE= 15.1, CESM-LE= 13.3, CanESM2= 11.3,
GFDL-ESM2M= 19.7, CanESM5= 11.9). This suggests
that the observed increase in CP could be due to internal vari-
ability alone, as the models capture the increase in CP events
in the better observed period; however, the inconsistencies in
the earlier period also highlight potential model biases.

When assessing projected changes in frequency, we use a
signal-to-noise ratio to identify changes. When the signal at
any time point (ensemble mean at the time point minus the
ensemble mean at the beginning of the time-series) is greater
than the noise (standard deviation taken across the ensem-
ble) we identify a likely projected change. When the signal is
1.645 or 2 times the noise these thresholds correspond to the
very likely and extremely likely. CESM-LE and CanESM5
show very likely and extremely likely increases in EP El
Niño frequency respectively (Fig. 3). CESM-LE projects a
very likely increase in La Niña frequency with small likely
decreases found at the end of the century for CanESM2 and
GFDL-ESM2M. No model projects a significant change in
CP frequency before the end of the century, where CanESM2

and GFDL-ESM2M project a likely decrease in frequency.
We note that large changes could be observed due to the
considerable internal variability of these frequencies alone
as demonstrated by the maximum and minimum frequen-
cies, range of maximum and minimum trends across ensem-
ble members, and the multi-decadal changes seen in the in-
dividual ensemble members (e.g. green line in Fig. 3). These
results are interesting in the context of a palaeoclimate study
by Freund et al. (2019), who show that the current relative
frequency of EP / CP events is unprecedented in the palaeo-
climate record. There are two possible reasons for the differ-
ences between this study and our results. First, model biases
may mean that the models cannot capture this shift correctly.
Second, a shift in frequencies may have already occurred, af-
ter which we do not project further future shifts. This could
be investigated further in future studies by applying this clas-
sification method to the last millennium-long palaeoclimate
model simulations.

3.3 Do we project changes in the amplitude, SST, and
precipitation patterns of each event type?

When considering ENSO amplitude (November, December,
January mean for the region 160◦ E to 80◦W between 5◦ N
and 5◦ S after the ensemble mean has been removed for each
event), similar to frequency we find that the range of am-
plitudes across each SMILE at any given time is quite large
(0.5–1.5 ◦C) for each event type, with the difference between
the maximum and minimum trends ranging from 0.1–2.5 ◦C
per 100 years across models (Fig. 4). This agrees well with
previous work that shows that ENSO amplitude is very vari-
able in single realisations of climate models (e.g. Wittenberg,
2009; Maher et al., 2018; Ng et al., 2021; Dieppois et al.,
2021). When projecting future changes, we find model dis-
agreement on the forced change in EP El Niño and La Niña
amplitude (Fig. 4). We find model agreement of no change
in CP El Niño amplitude. We find a likely increase in the
amplitude of EP events in CESM-LE and CanESM5, with
likely and extremely likely decreases in GFDL-ESM2M and
CanESM2 respectively. For La Niña events there is a likely
decrease in CESM-LE and CanESM5, and very likely in-
creases in CanESM2 and GFDL-ESM2M.

These results compare well to previous work, where El
Niño amplitude was found to increase in CESM-LE, not
change in MPI-GE, and decrease in GFDL-ESM2M (Zheng
et al., 2017; Haszpra et al., 2020; Maher et al., 2018, 2021;
Ng et al., 2021). When partitioning amplitude changes into
EP and CP events using different criteria for classification,
Ng et al. (2021) found an increase in both EP and CP am-
plitude in CESM-LE and no change in MPI-GE. This agrees
well with our results, although we do not see the increase
in CP amplitude in CESM-LE, possibly due to the differ-
ent time periods used and the relatively small magnitude of
the change. Recently Cai et al. (2018) and Cai et al. (2021)
showed that for CMIP5 and CMIP6 models that represent
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Figure 3. ENSO frequency in each SMILE for EP and CP El Niño events and for La Niña events (left, middle, and right columns respec-
tively). Black line shows the ensemble mean for each year, red line shows the ensemble maximum, blue line shows the ensemble minimum,
purple line represents HadISST observations, and green line is the first ensemble member. Frequency is calculated as the number of events
in a single ensemble member per 30 years, taken as a running calculation along the time series. PDFs show the distribution of ensemble
members for the entire time series. Black dots on the x axis demonstrate when the signal (current ensemble mean minus the ensemble mean
at the beginning of the time series) is greater than the noise (standard deviation taken across the ensemble). Red dots show when the signal
is 1.645 times the noise, while magenta dots show the same when the signal is greater than 2 times the noise. These thresholds correspond to
the likely, very likely, and extremely likely ranges. Maximum (red), mean (black), and minimum (blue) trends across the individual ensemble
members are shown in text at the top right of each panel. We note that the trends are calculated over the entirety of the simulation length for
each SMILE. This means that due to the different time periods covered, trends are not directly comparable between different SMILEs.

some ENSO properties well, EP amplitude increases in most
models. However, only two of the models they identified
as able to represent ENSO well are included in our study
(CESM-LE and GFDL-ESM2M) and they differ in sign (in-
creasing amplitude in CESM-LE; decreasing amplitude in
GFDL-ESM2M). This is in agreement with Cai et al. (2018),
who also found decreasing amplitude in GFDL-ESM2M,
which was an outlier in their study that used single ensem-
ble members from CMIP5.

These model differences have been suggested to be related
to changes in the zonal gradient of mean SST. Wang et al.
(2019) suggest that an increase in the SST gradient results
in an increase in the amplitude of strong basin-wide El Niño
events, with a decrease leading to a decrease in amplitude.
Kohyama et al. (2017), however, suggest that a La Niña-like
warming pattern (i.e. the western Pacific warms more than
the eastern Pacific, resulting in an increased zonal SST gra-
dient) should result in a decrease in ENSO amplitude, as does
Fredriksen et al. (2020). This result is in agreement with an
observed decrease in tropical Pacific variability coupled with

an increase in the trade winds and increase in thermocline
tilt from 2000 to 2011 as compared to 1979–1999 (Hu et al.,
2013). Beobide-Arsuaga et al. (2021) also find a weak neg-
ative correlation between the two quantities in CMIP5 and
CMIP6 models. In our study, two of the five SMILEs ad-
ditionally show a weak negative relationship between these
quantities (MPI-GE and GFDL-ESM2M); however, three
models (CESM-LE, CanESM2, and CanESM5) show no re-
lationship (Fig. S2a in the Supplement). We find no relation-
ship between CP amplitude and the projected change in the
zonal mean SST gradient (Fig. S2b), consistent with Fredrik-
sen et al. (2020).

We next plot the change in SST pattern for each event
type for the period 2050–2099 as compared to 1950–1999
(Fig. 5). We use detrended data to look at the changes in
ENSO itself, outside of mean state changes. We find simi-
lar pattern changes for EP and CP events, with the opposite
change for La Niña events. The SST pattern change lacks
agreement across the models. Potentially this is related to the
mean state changes (Knutson et al., 1997; McPhaden et al.,
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Figure 4. ENSO amplitude in each SMILE for EP and CP El Niño events and for La Niña events (left, middle ,and right columns respec-
tively). Black line shows the ensemble mean for each year, red line shows the ensemble maximum, blue line shows the ensemble minimum,
purple line represents HadISST observations, and green line is the first ensemble member. Amplitude is calculated as the November, De-
cember, January mean for the region 160◦ E to 80◦W between 5◦ N and 5◦ S after the ensemble mean has been removed for each event in a
single ensemble member, taken as a running calculation along the time series for 30-year periods. PDFs show the distribution of ensemble
members for the entire time series. Black dots on the x axis demonstrate when the signal (current ensemble mean minus the ensemble mean
at the beginning of the time series) is greater than the noise (standard deviation taken across the ensemble). Red dots show when the signal
is 1.645 times the noise, while magenta dots show the same when the signal is greater than 2 times the noise. These thresholds correspond to
the likely, very likely, and extremely likely ranges. Maximum (red), mean (black), and minimum (blue) trends across the individual ensemble
members are shown in text at the top right of each panel. We note that the trends are calculated over the entirety of the simulation length for
each SMILE. This means that due to the different time periods covered, trends are not directly comparable between different SMILEs.

2011; Hu et al., 2013; Kim et al., 2014; Kohyama et al.,
2017; Wang et al., 2019; Beobide-Arsuaga et al., 2021); how-
ever, the SST pattern change is different for CESM-LE and
CanESM2, which have similar mean state changes suggest-
ing that the relationship is more complicated than one simple
metric.

Precipitation projections for each event type also show
large differences between SMILEs (Fig. 6). These projected
pattern differences are, however, found to be linked to the
projected SST patterns, with contours of increasing SST
found to closely correspond to wetting, and decreasing SST
to drying. This clarifies that ENSO changes in SST and pre-
cipitation are linked and that it is not possible to truly under-
stand one without the other.

We compare the multi-ensemble mean patterns (Fig. 6)
with previous work using CMIP models. Xu et al. (2017)
find similar strong cooling in RCP8.5 in the eastern Pacific
for EP events, and some similarities of cooling in the eastern

Pacific for CP events as well. For precipitation projections,
EP events look similar to Xu et al. (2017) and show a gen-
eral increase in precipitation, particularly in the central Pa-
cific; however, CP events look quite different. This is most
likely due to the definitions used by Xu et al. (2017) where
they define EP events as the first empirical orthogonal func-
tion (EOF1) in tropical Pacific, and CP as the second empir-
ical orthogonal function (EOF2). Other studies have, how-
ever, suggested that it is the combination of EOF1 and EOF2
that should be used to identify EP and CP events (Taka-
hashi et al., 2011). When comparing CMIP5 projections from
Power et al. (2013), who also look at EOF1, some similarities
are found for precipitation projections, but SST projections
look quite different. These results probably differ both due
to different definitions of event types as well as the differ-
ent set of models used and differences between single model
realisations and SMILEs. We note that we also consider ex-
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Figure 5. Change in SST pattern in each SMILE in the period 2050–2099 as compared to 1950–1999 for EP and CP El Niño events and for
La Niña events (left, centre left, and centre right columns respectively. The mean state change in SST is shown in the right column; shown for
each individual SMILE (in order of appearance: MPI-GE, CESM-LE, CanESM2, GFDL-ESM2M, CanESM5) and the multi-ensemble mean
(bottom row). The SST pattern is calculated as the November, December, January average and composited for each event type over each time
period. The relative mean state change is calculated as the ensemble mean SST over each time period, with the earlier period subtracted from
the latter relative to the total change in the region shown (0–360◦ E, 40◦ S–40◦ N). SMILE data have the forced response (ensemble mean)
removed prior to calculation for the SST change, but not the mean state change.

treme El Niño events, and discuss results for this event type
in Sect. S4.

4 Summary and conclusions

In this study we use supervised machine learning combined
with observed SST products to develop a new classifier for
ENSO events, which classifies events into La Niña, neutral,
eastern Pacific (EP) El Niño, and central Pacific (CP) El
Niño. This method uses differences in the pattern, amplitude,
and evolution of events to make the classification. Using su-
pervised machine learning has the advantage that it includes
spatial and temporal information from 18 SST products to
classify events without relying on pre-defined metrics, indi-
vidual parameters, or manual identification. We then apply
this classifier to seven SMILEs to identify ENSO events sim-
ilar to those observed. By using SMILEs we examine forced
changes in ENSO compared to the magnitude of internal
variability. We find that

1. All SMILEs bar CSIRO capture the observed pattern,
evolution, frequency, and pattern correlation of EP and
CP events, although known biases in the spatial pattern
(e.g. SST anomalies located too far west) are found.

2. The observed increase in the frequency of CP events is
within the range of the SMILEs internal variability for

the period 1950 onwards, but not for the entire observed
record.

3. CP El Niño frequency and amplitude are not projected
to change in the future. EP El Niño frequency is pro-
jected to either increase or not change.

4. The SMILEs do not agree on projections of EP El
Niño amplitude and La Niña frequency and amplitude.
EP event amplitude projections are found to be weakly
linked to changes in the zonal-mean gradient across the
Pacific in two out of five models.

5. Models show differences in projected patterns of ENSO
SST and precipitation that do not seem to be simply
linked to the tropical Pacific mean state changes. How-
ever, the precipitation and SST changes in individual
models are linked.

In conclusion, supervised machine learning has been used
to build a new ENSO classifier for climate models that takes
into account SST evolution along the tropical Pacific, and
can be used to identify events that behave similarly to those
observed. Future work running all classification schemes on
SMILEs and comparing this new supervised learning algo-
rithm with other methods would be informative for compar-
isons of the use of different classification schemes. We find
that the models do not project changes in CP El Niño fre-
quency or amplitude, project either no change or an increase
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Figure 6. Change in precipitation pattern in each SMILE in the period 2050–2099 as compared to 1950–1999 for EP and CP El Niño
events and for La Niña events (left, middle, and right columns respectively). The SST change from Fig. 5 is shown as contours for reference
(blue for cooling, red for warming); shown for each individual SMILE (in order of appearance: MPI-GE, CESM-LE, CanESM2, GFDL-
ESM2M, CanESM5) and the multi-ensemble mean (bottom row). The precipitation pattern is calculated as the November, December, January
average and composited for each event type over each time period. SMILE data have the forced response (ensemble mean) removed prior to
calculation.

in EP El Niño frequency, and demonstrate disparity in future
changes in other event types and in the projected spatial pat-
terns of SST and precipitation. The large ensemble spread
for frequency and amplitude highlights, similar to previous
work, that SMILEs are needed to evaluate ENSO and make
projections due to the large variability of ENSO characteris-
tics on decadal and longer timescales.

Code and data availability. The data that support the find-
ings of this study are openly available at the following lo-
cations: MPI-GE, https://esgf-data.dkrz.de/projects/mpi-ge/
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CMIP5 large ensembles (CanESM2, CESM-LE, CSIRO-
Mk3-6-0, GFDL-ESM2M); https://www.cesm.ucar.edu/projects/
community-projects/MMLEA/ (NCAR/UCAR, 2022) and CMIP6,
https://esgf-data.dkrz.de/projects/cmip6-dkrz/ (World Climate
Research Programme, 2022). Source code for the machine learning
classifier and the observed data which it is trained on can be found
on github at: https://github.com/nicolamaher/classification (last
access: 29 August 2022, https://doi.org/10.5281/zenodo.7032576,
Maher, 2022a). Derived data and post-processing scripts supporting
the findings of this study are available from https://pure.mpg.de/
(Maher, 2022b). References for the data used in this study can be
found for observations and re-analysis products in Table S1 and

SMILEs in Table S2. COBE, GODAS, KAPLAN, and OISST data
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