Articles | Volume 13, issue 3
https://doi.org/10.5194/esd-13-1157-2022
https://doi.org/10.5194/esd-13-1157-2022
Research article
 | 
23 Aug 2022
Research article |  | 23 Aug 2022

Improving the prediction of the Madden–Julian Oscillation of the ECMWF model by post-processing

Riccardo Silini, Sebastian Lerch, Nikolaos Mastrantonas, Holger Kantz, Marcelo Barreiro, and Cristina Masoller

Related authors

Analysis of spatio temporal geophysical data using spatial entropy: application to comparison of SST datasets
Juan Gancio, Giulio Tirabassi, Cristina Masoller, and Marcelo Barreiro
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2024-37,https://doi.org/10.5194/esd-2024-37, 2024
Preprint under review for ESD
Short summary
The Role of Weather Regimes for Subseasonal Forecast Skill of Cold-Wave Days in Central Europe
Selina M. Kiefer, Patrick Ludwig, Sebastian Lerch, Peter Knippertz, and Joaquim G. Pinto
EGUsphere, https://doi.org/10.5194/egusphere-2024-2955,https://doi.org/10.5194/egusphere-2024-2955, 2024
Preprint withdrawn
Short summary
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024,https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
The EUPPBench postprocessing benchmark dataset v1.0
Jonathan Demaeyer, Jonas Bhend, Sebastian Lerch, Cristina Primo, Bert Van Schaeybroeck, Aitor Atencia, Zied Ben Bouallègue, Jieyu Chen, Markus Dabernig, Gavin Evans, Jana Faganeli Pucer, Ben Hooper, Nina Horat, David Jobst, Janko Merše, Peter Mlakar, Annette Möller, Olivier Mestre, Maxime Taillardat, and Stéphane Vannitsem
Earth Syst. Sci. Data, 15, 2635–2653, https://doi.org/10.5194/essd-15-2635-2023,https://doi.org/10.5194/essd-15-2635-2023, 2023
Short summary
Global coarse-grained mesoscale eddy statistics based on integrated kinetic energy and enstrophy correlations
Imre M. Jánosi, Holger Kantz, Jason A. C. Gallas, and Miklós Vincze
Ocean Sci., 18, 1361–1375, https://doi.org/10.5194/os-18-1361-2022,https://doi.org/10.5194/os-18-1361-2022, 2022
Short summary

Related subject area

Dynamics of the Earth system: models
Stable stadial and interstadial states of the last glacial's climate identified in a combined stable water isotope and dust record from Greenland
Keno Riechers, Leonardo Rydin Gorjão, Forough Hassanibesheli, Pedro G. Lind, Dirk Witthaut, and Niklas Boers
Earth Syst. Dynam., 14, 593–607, https://doi.org/10.5194/esd-14-593-2023,https://doi.org/10.5194/esd-14-593-2023, 2023
Short summary
The modelled climatic response to the 18.6-year lunar nodal cycle and its role in decadal temperature trends
Manoj Joshi, Robert A. Hall, David P. Stevens, and Ed Hawkins
Earth Syst. Dynam., 14, 443–455, https://doi.org/10.5194/esd-14-443-2023,https://doi.org/10.5194/esd-14-443-2023, 2023
Short summary
The future of the El Niño–Southern Oscillation: using large ensembles to illuminate time-varying responses and inter-model differences
Nicola Maher, Robert C. Jnglin Wills, Pedro DiNezio, Jeremy Klavans, Sebastian Milinski, Sara C. Sanchez, Samantha Stevenson, Malte F. Stuecker, and Xian Wu
Earth Syst. Dynam., 14, 413–431, https://doi.org/10.5194/esd-14-413-2023,https://doi.org/10.5194/esd-14-413-2023, 2023
Short summary
Regime-oriented causal model evaluation of Atlantic–Pacific teleconnections in CMIP6
Soufiane Karmouche, Evgenia Galytska, Jakob Runge, Gerald A. Meehl, Adam S. Phillips, Katja Weigel, and Veronika Eyring
Earth Syst. Dynam., 14, 309–344, https://doi.org/10.5194/esd-14-309-2023,https://doi.org/10.5194/esd-14-309-2023, 2023
Short summary
Seasonal forecasting skill for the High Mountain Asia region in the Goddard Earth Observing System
Elias C. Massoud, Lauren Andrews, Rolf Reichle, Andrea Molod, Jongmin Park, Sophie Ruehr, and Manuela Girotto
Earth Syst. Dynam., 14, 147–171, https://doi.org/10.5194/esd-14-147-2023,https://doi.org/10.5194/esd-14-147-2023, 2023
Short summary

Cited articles

Alvarez, M. S., Vera, C. S., and Kiladis, G. N.: MJO Modulating the Activity of the Leading Mode of Intraseasonal Variability in South America, Atmosphere, 8, 232, https://doi.org/10.3390/atmos8120232, 2017. a
Barrett, B. S., Densmore, C. R., Ray, P., and Sanabia, E. R.: Active and weakening MJO events in the Maritime Continent, Clim. Dynam., 57, 157–172, https://doi.org/10.1007/s00382-021-05699-8, 2021. a
Bergman, J. W., Hendon, H. H., and Weickmann, K. M.: Intraseasonal Air–Sea Interactions at the Onset of El Niño, J. Climate, 14, 1702–1719, 2001. a
Camargo, S. J., Wheeler, M. C., and Sobel, A. H.: Diagnosis of the MJO Modulation of Tropical Cyclogenesis Using an Empirical Index, J. Atmos. Sci., 66, 3061–3074, https://doi.org/10.1175/2009JAS3101.1, 2009. a
Download
Short summary
The Madden–Julian Oscillation (MJO) has important socioeconomic impacts due to its influence on both tropical and extratropical weather extremes. In this study, we use machine learning (ML) to correct the predictions of the weather model holding the best performance, developed by the European Centre for Medium-Range Weather Forecasts (ECMWF). We show that the ML post-processing leads to an improved prediction of the MJO geographical location and intensity.
Altmetrics
Final-revised paper
Preprint