Articles | Volume 13, issue 3
https://doi.org/10.5194/esd-13-1157-2022
https://doi.org/10.5194/esd-13-1157-2022
Research article
 | 
23 Aug 2022
Research article |  | 23 Aug 2022

Improving the prediction of the Madden–Julian Oscillation of the ECMWF model by post-processing

Riccardo Silini, Sebastian Lerch, Nikolaos Mastrantonas, Holger Kantz, Marcelo Barreiro, and Cristina Masoller

Related authors

The EUPPBench postprocessing benchmark dataset v1.0
Jonathan Demaeyer, jonas Bhend, Sebastian Lerch, Cristina Primo, Bert Van Schaeybroeck, Aitor Atencia, Zied Ben Bouallègue, Jieyu Chen, Markus Dabernig, Gavin Evans, Jana Faganeli Pucer, Ben Hooper, Nina Horat, David Jobst, Janko Merše, Peter Mlakar, Annette Möller, Olivier Mestre, Maxime Taillardat, and Stéphane Vannitsem
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-465,https://doi.org/10.5194/essd-2022-465, 2023
Preprint under review for ESSD
Short summary
Global coarse-grained mesoscale eddy statistics based on integrated kinetic energy and enstrophy correlations
Imre M. Jánosi, Holger Kantz, Jason A. C. Gallas, and Miklós Vincze
Ocean Sci., 18, 1361–1375, https://doi.org/10.5194/os-18-1361-2022,https://doi.org/10.5194/os-18-1361-2022, 2022
Short summary
Prediction error growth in a more realistic atmospheric toy model with three spatiotemporal scales
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 15, 4147–4161, https://doi.org/10.5194/gmd-15-4147-2022,https://doi.org/10.5194/gmd-15-4147-2022, 2022
Short summary
Passive tracer advection in the equatorial Pacific region: statistics, correlations and a model of fractional Brownian motion
Imre M. Jánosi, Amin Padash, Jason A. C. Gallas, and Holger Kantz
Ocean Sci., 18, 307–320, https://doi.org/10.5194/os-18-307-2022,https://doi.org/10.5194/os-18-307-2022, 2022
Short summary
Preface: Advances in post-processing and blending of deterministic and ensemble forecasts
Stephan Hemri, Sebastian Lerch, Maxime Taillardat, Stéphane Vannitsem, and Daniel S. Wilks
Nonlin. Processes Geophys., 27, 519–521, https://doi.org/10.5194/npg-27-519-2020,https://doi.org/10.5194/npg-27-519-2020, 2020

Related subject area

Dynamics of the Earth system: models
Regime-oriented causal model evaluation of Atlantic–Pacific teleconnections in CMIP6
Soufiane Karmouche, Evgenia Galytska, Jakob Runge, Gerald A. Meehl, Adam S. Phillips, Katja Weigel, and Veronika Eyring
Earth Syst. Dynam., 14, 309–344, https://doi.org/10.5194/esd-14-309-2023,https://doi.org/10.5194/esd-14-309-2023, 2023
Short summary
Seasonal forecasting skill for the High Mountain Asia region in the Goddard Earth Observing System
Elias C. Massoud, Lauren Andrews, Rolf Reichle, Andrea Molod, Jongmin Park, Sophie Ruehr, and Manuela Girotto
Earth Syst. Dynam., 14, 147–171, https://doi.org/10.5194/esd-14-147-2023,https://doi.org/10.5194/esd-14-147-2023, 2023
Short summary
Assessing sensitivities of climate model weighting to multiple methods, variables, and domains in the south-central United States
Adrienne M. Wootten, Elias C. Massoud, Duane E. Waliser, and Huikyo Lee
Earth Syst. Dynam., 14, 121–145, https://doi.org/10.5194/esd-14-121-2023,https://doi.org/10.5194/esd-14-121-2023, 2023
Short summary
Global and northern-high-latitude net ecosystem production in the 21st century from CMIP6 experiments
Han Qiu, Dalei Hao, Yelu Zeng, Xuesong Zhang, and Min Chen
Earth Syst. Dynam., 14, 1–16, https://doi.org/10.5194/esd-14-1-2023,https://doi.org/10.5194/esd-14-1-2023, 2023
Short summary
Potential for bias in effective climate sensitivity from state-dependent energetic imbalance
Benjamin M. Sanderson and Maria Rugenstein
Earth Syst. Dynam., 13, 1715–1736, https://doi.org/10.5194/esd-13-1715-2022,https://doi.org/10.5194/esd-13-1715-2022, 2022
Short summary

Cited articles

Alvarez, M. S., Vera, C. S., and Kiladis, G. N.: MJO Modulating the Activity of the Leading Mode of Intraseasonal Variability in South America, Atmosphere, 8, 232, https://doi.org/10.3390/atmos8120232, 2017. a
Barrett, B. S., Densmore, C. R., Ray, P., and Sanabia, E. R.: Active and weakening MJO events in the Maritime Continent, Clim. Dynam., 57, 157–172, https://doi.org/10.1007/s00382-021-05699-8, 2021. a
Bergman, J. W., Hendon, H. H., and Weickmann, K. M.: Intraseasonal Air–Sea Interactions at the Onset of El Niño, J. Climate, 14, 1702–1719, 2001. a
Camargo, S. J., Wheeler, M. C., and Sobel, A. H.: Diagnosis of the MJO Modulation of Tropical Cyclogenesis Using an Empirical Index, J. Atmos. Sci., 66, 3061–3074, https://doi.org/10.1175/2009JAS3101.1, 2009. a
Download
Short summary
The Madden–Julian Oscillation (MJO) has important socioeconomic impacts due to its influence on both tropical and extratropical weather extremes. In this study, we use machine learning (ML) to correct the predictions of the weather model holding the best performance, developed by the European Centre for Medium-Range Weather Forecasts (ECMWF). We show that the ML post-processing leads to an improved prediction of the MJO geographical location and intensity.
Altmetrics
Final-revised paper
Preprint