Articles | Volume 13, issue 3
https://doi.org/10.5194/esd-13-1157-2022
https://doi.org/10.5194/esd-13-1157-2022
Research article
 | 
23 Aug 2022
Research article |  | 23 Aug 2022

Improving the prediction of the Madden–Julian Oscillation of the ECMWF model by post-processing

Riccardo Silini, Sebastian Lerch, Nikolaos Mastrantonas, Holger Kantz, Marcelo Barreiro, and Cristina Masoller

Model code and software

MJO post-processing artificial neural networks R. Silini https://doi.org/10.5281/zenodo.5801453

Video supplement

Wheeler-Hendon phase diagrams R. Silini https://doi.org/10.5281/zenodo.5801415

Download
Short summary
The Madden–Julian Oscillation (MJO) has important socioeconomic impacts due to its influence on both tropical and extratropical weather extremes. In this study, we use machine learning (ML) to correct the predictions of the weather model holding the best performance, developed by the European Centre for Medium-Range Weather Forecasts (ECMWF). We show that the ML post-processing leads to an improved prediction of the MJO geographical location and intensity.
Altmetrics
Final-revised paper
Preprint