Articles | Volume 12, issue 3
https://doi.org/10.5194/esd-12-857-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-12-857-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Climate change projections of terrestrial primary productivity over the Hindu Kush Himalayan forests
Halima Usman
Institute of Environmental Sciences & Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan
Thomas A. M. Pugh
Department of Physical Geography and Ecosystem Science, Lund University, Lund, 22362, Sweden
School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
Birmingham Institute of Forest Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
Anders Ahlström
Department of Physical Geography and Ecosystem Science, Lund University, Lund, 22362, Sweden
Institute of Environmental Sciences & Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan
Related authors
No articles found.
Lucia S. Layritz, Konstantin Gregor, Andreas Krause, Stefan Kruse, Benjamin F. Meyer, Thomas A. M. Pugh, and Anja Rammig
Biogeosciences, 22, 3635–3660, https://doi.org/10.5194/bg-22-3635-2025, https://doi.org/10.5194/bg-22-3635-2025, 2025
Short summary
Short summary
Disturbances, such as fire, can change which vegetation grows in a forest, affecting water and carbon flows and, thus, the climate. Disturbances are expected to increase with climate change, but it is uncertain by how much. Using a simulation model, we studied how future climate, disturbances, and their combined effect impact northern (high-latitude) forest ecosystems. Our findings highlight the importance of considering these factors and the need to better understand how disturbances will change in the future.
Jette Elena Stoebke, David Wårlind, Stefan Olin, Annemarie Eckes-Shephard, Bogdan Brzeziecki, Mikko Peltoniemi, and Thomas A. M. Pugh
EGUsphere, https://doi.org/10.5194/egusphere-2025-2995, https://doi.org/10.5194/egusphere-2025-2995, 2025
Short summary
Short summary
Forests are shaped by how trees compete for resources like sunlight. We improved a widely used vegetation model to better capture how light filters through the forest canopy, especially after tree death or harvesting. By assigning trees explicit positions, the model captures forest structure and change more realistically. This advances our understanding of tree competition and forest responses to management, providing a better tool to predict future forest dynamics.
Fredrik Lagergren, Anna Maria Jönsson, Mats Lindeskog, and Thomas A. M. Pugh
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-239, https://doi.org/10.5194/gmd-2024-239, 2025
Preprint under review for GMD
Short summary
Short summary
The European spruce bark beetle (SBB) has, in recent years, been the most important disturbance agent in many European forests. We implemented a SBB module in a dynamic vegetation model and calibrated it against observations from Sweden, Switzerland, Austria and France. The start and duration of outbreaks triggered by storm damage and the increased damage driven by recent warm and dry periods were reasonably well simulated, although the spread was reflected in uncertain parameter estimates.
Lukas Rimondini, Thomas Gumbricht, Anders Ahlström, and Gustaf Hugelius
Earth Syst. Sci. Data, 15, 3473–3482, https://doi.org/10.5194/essd-15-3473-2023, https://doi.org/10.5194/essd-15-3473-2023, 2023
Short summary
Short summary
Peatlands have historically sequestrated large amounts of carbon and contributed to atmospheric cooling. However, human activities and climate change may instead turn them into considerable carbon emitters. In this study, we produced high-quality maps showing the extent of peatlands in the forests of Sweden, one of the most peatland-dense countries in the world. The maps are publicly available and may be used to support work promoting sustainable peatland management and combat their degradation.
Bruno Ringeval, Christoph Müller, Thomas A. M. Pugh, Nathaniel D. Mueller, Philippe Ciais, Christian Folberth, Wenfeng Liu, Philippe Debaeke, and Sylvain Pellerin
Geosci. Model Dev., 14, 1639–1656, https://doi.org/10.5194/gmd-14-1639-2021, https://doi.org/10.5194/gmd-14-1639-2021, 2021
Short summary
Short summary
We assess how and why global gridded crop models (GGCMs) differ in their simulation of potential yield. We build a GCCM emulator based on generic formalism and fit its parameters against aboveground biomass and yield at harvest simulated by eight GGCMs. Despite huge differences between GGCMs, we show that the calibration of a few key parameters allows the emulator to reproduce the GGCM simulations. Our simple but mechanistic model could help to improve the global simulation of potential yield.
James A. Franke, Christoph Müller, Joshua Elliott, Alex C. Ruane, Jonas Jägermeyr, Abigail Snyder, Marie Dury, Pete D. Falloon, Christian Folberth, Louis François, Tobias Hank, R. Cesar Izaurralde, Ingrid Jacquemin, Curtis Jones, Michelle Li, Wenfeng Liu, Stefan Olin, Meridel Phillips, Thomas A. M. Pugh, Ashwan Reddy, Karina Williams, Ziwei Wang, Florian Zabel, and Elisabeth J. Moyer
Geosci. Model Dev., 13, 3995–4018, https://doi.org/10.5194/gmd-13-3995-2020, https://doi.org/10.5194/gmd-13-3995-2020, 2020
Short summary
Short summary
Improving our understanding of the impacts of climate change on crop yields will be critical for global food security in the next century. The models often used to study the how climate change may impact agriculture are complex and costly to run. In this work, we describe a set of global crop model emulators (simplified models) developed under the Agricultural Model Intercomparison Project. Crop model emulators make agricultural simulations more accessible to policy or decision makers.
Cited articles
Ahlström, A., Schurgers, G., Arneth, A., and Smith, B.:
Robustness and uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change projections, Environ. Res. Lett.,
7, 044008, https://doi.org/10.1088/1748-9326/7/4/044008, 2012.
Anav, A., Friedlingstein, P., Kidston, M., Bopp, L., Ciais, P., Cox, P., Jones, C., Jung, M., Myneni, R., and Zhu, Z.:
Evaluating the land and ocean components of the global carbon cycle in the CMIP5 earth system models,
J. Climate,
26, 6801–6843, https://doi.org/10.1175/JCLI-D-12-00417.1, 2013.
Anderson-Teixeira, K. J., Miller, A. D., Mohan, J. E., Hudiburg, T. W., Duval, B. D., and DeLucia, E. H.:
Altered dynamics of forest recovery under a changing climate,
Glob. Change Biol.,
19, 2001–2021, https://doi.org/10.1111/gcb.12194, 2013.
Ardö, J.:
Comparison between remote sensing and a dynamic vegetation model for estimating terrestrial primary production of Africa,
Carbon Balance and Management,
10, 8, https://doi.org/10.1186/s13021-015-0018-5, 2015.
Azhdari, Z., Rafeie Sardooi, E., Bazrafshan, O., Zamani, H., Singh, V. P., Mohseni Saravi, M., and Ramezani, M.:
Impact of climate change on net primary production (NPP) in south Iran,
Environ. Monit. Assess.,
192, 1–16, https://doi.org/10.1007/s10661-020-08389-w, 2020.
Behera, M. D., Murthy, M. S. R., Das, P., and Sharma, E.:
Modelling forest resilience in Hindu Kush Himalaya using geoinformation,
J. Earth Syst. Sci.,
127, 95, https://doi.org/10.1007/s12040-018-1000-x, 2018.
Brandt, J. S., Allendorf, T., Radeloff, V., and Brooks, J.:
Effects of national forest-management regimes on unprotected forests of the Himalaya,
Conserv. Biol.,
31, 1271–1282, https://doi.org/10.1111/cobi.12927, 2017.
Burton, A. J., Melillo, J. M., and Frey, S. D.:
Adjustment of Forest Ecosystem Root Respiration as Temperature Warms,
J. Integr. Plant Biol.,
50, 1467–1483, 2008.
Calle, L., Canadell, J. G., Patra, P., Ciais, P., Ichii, K., Tian, H., Kondo, M., Piao, S., Arneth, A., Harper, A. B., Ito, A., Kato, E., Koven, C., Sitch, S., Stocker, B. D., Vivoy, N., Wiltshire, A., Zaehle, S., and Poulter, B.:
Regional carbon fluxes from land use and land cover change in Asia, 1980–2009,
Environ. Res. Lett.,
11, 1–12, https://doi.org/10.1088/1748-9326/11/7/074011, 2016.
Cao, R., Shen, M., Zhou, J., and Chen, J.:
Modeling vegetation green-up dates across the Tibetan Plateau by including both seasonal and daily temperature and precipitation,
Agr. Forest Meteorol.,
249, 176–186, https://doi.org/10.1016/j.agrformet.2017.11.032, 2018.
Carey, J. C., Tang, J., Templer, P. H., Kroeger, K. D., Crowther, T. W., Burton, A. J., Dukes, J. S., Emmett, B., Frey, S. D., Heskel, M. A., Jiang, L., Machmuller, M. B., Mohan, J., Panetta, A. M., Reich, P. B., Reinschj, S., Wang, X., Allison, S. D., Bamminger, C., Bridgham, S., Collins, S. L., De Dato, G., Eddy, W. C., Enquist, B. J., Estiarte, M., Harte, J., Henderson, A., Johnson, B. R., Larsen, K. S., Luo, Y., Marhan, S., Melillo, J. M., Peñuelas, J., Pfeifer-Meister, L., Poll, C., Rastetter, E., Reinmann, A. B., Reynolds, L. L., Schmidt, I. K., Shaver, G. R., Strong, A. L., Suseela, V., and Tietema, A.:
Temperature response of soil respiration largely unaltered with experimental warming,
P. Natl. Acad. Sci. USA,
113, 13797–13802, https://doi.org/10.1073/pnas.1605365113, 2016.
Chen, H., Zhu, Q., Peng, C., Wu, N., Wang, Y., Fang, X., Gao, Y., Zhu, D., Yang, G., Tian, J., Kang, X., Piao, S., Ouyang, H., Xiang, W., Luo, Z., Jiang, H., Song, X., Zhang, Y., Yu, G., Zhao, X., Gong, P., Yao, T., and Wu, J.:
The impacts of climate change and human activities on biogeochemical cycles on the Qinghai–Tibetan Plateau,
Glob. Change Biol.,
19, 2940–2955, https://doi.org/10.1111/gcb.12277, 2013.
Cramer, W., Bondeau, A., Woodward, F. I., Prentice, I. C., Betts, R. A., Brovkin, V., Cox, P. M., Fisher, V., Foley, J. A., Friend, A. D., Kucharik, C., Lomas, M. R., Ramankutty, N., Sitch, S., Smith, B., White, A., and Young-Molling, C.:
Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models,
Glob. Change Biol.,
7, 357–373, https://doi.org/10.1046/j.1365-2486.2001.00383.x, 2001.
de Almeida, C. T., Delgado, R. C., Galvão, L. S., Aragão, L. E. de O. C. e. and Ramos, M. C.:
Improvements of the MODIS Gross Primary Productivity model based on a comprehensive uncertainty assessment over the Brazilian Amazonia, ISPRS J. Photogramm. Remote Sens., 145, 268–283, https://doi.org/10.1016/j.isprsjprs.2018.07.016, 2018.
Delpierre, N., Soudani, K., François, C., Köstner, B., Pontailler, J. Y., Nikinmaa, E., Misson, L., Aubinet, M., Bernhofer, C., Granier, A., Grünwald, T., Heinesch, B., Longdoz, B., Ourcival, J. M., Rambal, S., Vesala, T., and Dufrêne, E.:
Exceptional carbon uptake in European forests during the warm spring of 2007: A data-model analysis,
Glob. Change Biol.,
15, 1455–1474, https://doi.org/10.1111/j.1365-2486.2008.01835.x, 2009.
Fleischer, K., Wårlind, D., Van Der Molen, M. K., Rebel, K. T., Arneth, A., Erisman, J. W., Wassen, M. J., Smith, B., Gough, C. M., Margolis, H. A., Cescatti, A., Montagnani, L., Arain, A., and Dolman, A. J.:
Low historical nitrogen deposition effect on carbon sequestration in the boreal zone,
J. Geophys. Res.-Biogeo.,
120, 2542–2561, https://doi.org/10.1002/2015JG002988, 2015.
Friedl, M. A., McIver, D. K., Hodges, J. C. F., Zhang, X. Y., Muchoney, D., Strahler, A. H., Woodcock, C. E., Gopal, S., Schneider, A., Cooper, A., Baccini, A., Gao, F., and Schaaf, C.:
Global land cover mapping from MODIS: Algorithms and early results,
Remote Sens. Environ.,
83, 287–302, https://doi.org/10.1016/S0034-4257(02)00078-0, 2002.
Garrigues, S., Lacaze, R., Baret, F., Morisette, J. T., Weiss, M., Nickeson, J. E., Fernandes, R., Plummer, S., Shabanov, N. V., Myneni, R. B., Knyazikhin, Y., and Yang, W.:
Validation and intercomparison of global Leaf Area Index products derived from remote sensing data,
J. Geophys. Res.-Biogeo.,
113, G02028, https://doi.org/10.1029/2007JG000635, 2008.
Houghton, R. A., Boone, R. D., Fruci, J. R., Hobbi, J. E., Melillo, J. M., Palm, C. A., Peterson, B. J., Shaver, G. R., Woodwell, G. M., Moore, B., Skole, D. L., and Myers, N.:
The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use: geographic distribution of the global flux,
Tellus B,
39, 122–139, https://doi.org/10.1111/j.1600-0889.1987.tb00277.x, 1987.
Jones, C., Robertson, E., Arora, V., Friedlingstein, P., Shevliakova, E., Bopp, L., Brovkin, V., Hajima, T., Kato, E., Kawamiya, M., Liddicoat, S., Lindsay, K., Reick, C. H., Roelandt, C., Segschneider, J., and Tjiputra, J.:
Twenty-first-century compatible co2 emissions and airborne fraction simulated by CMIP5 earth system models under four representative concentration pathways,
J. Climate,
26, 4398–4413, https://doi.org/10.1175/JCLI-D-12-00554.1, 2013.
Joshi, L., Shrestha, R. M., Jasra, A. W., Joshi, S., Gilani, H., and Ismail, M.: Rangeland Ecosystem Services in the Hindu Kush Himalayan Region,
in: High-altitude rangelands and their interfaces in the Hindu Kush Himalayas, edited by: Ning, W., Rawat, G. S., Joshi, S., Ismail, M., and Sharma, E.,
ICIMOD, Kathmandu, 2013.
Konings, A. G., Williams, A. P., and Gentine, P.: Sensitivity of grassland productivity to aridity controlled by stomatal and xylem regulation, Nat. Geosci., 10, 284–288, https://doi.org/10.1038/ngeo2903, 2017.
Kondo, M., Ichii, K., Patra, P. K., Poulter, B., Calle, L., Koven, C., Pugh, T. A. M., Kato, E., Harper, A., Zaehle, S., and Wiltshire, A.:
Plant Regrowth as a Driver of Recent Enhancement of Terrestrial CO2 Uptake,
Geophys. Res. Lett.,
45, 4820–4830, https://doi.org/10.1029/2018GL077633, 2018.
Krishnan, R., Shrestha, A. B., Ren, G., Rajbhandari, R., Saeed, S., Sanjay, J., Syed, M. A., Vellore, R., Xu, Y., You, Q., and Ren, Y.:
Unravelling Climate Change in the Hindu Kush Himalaya: Rapid Warming in the Mountains and Increasing Extremes,
in: The Hindu Kush Himalaya Assessment – Mountains, Climate Change, Sustainability and People, Springer Nature Switzerland, Cham, Switzerland, 57–97, 2019.
Li, X., Zhu, Z., Zeng, H., and Piao, S.:
Estimation of gross primary production in China (1982–2010) with multiple ecosystem models Legacy effects of drought on gross primary productivity of temperate grassland in China View project Estimation of gross primary production in China (1982–2010) with multiple ecosystem models,
Ecol. Model.,
324, 33–44, https://doi.org/10.1016/j.ecolmodel.2015.12.019, 2016.
Li, W., Ciais, P., Peng, S., Yue, C., Wang, Y., Thurner, M., Saatchi, S. S., Arneth, A., Avitabile, V., Carvalhais, N., Harper, A. B., Kato, E., Koven, C., Liu, Y. Y., Nabel, J. E. M. S., Pan, Y., Pongratz, J., Poulter, B., Pugh, T. A. M., Santoro, M., Sitch, S., Stocker, B. D., Viovy, N., Wiltshire, A., Yousefpour, R., and Zaehle, S.: Land-use and land-cover change carbon emissions between 1901 and 2012 constrained by biomass observations, Biogeosciences, 14, 5053–5067, https://doi.org/10.5194/bg-14-5053-2017, 2017.
Liu, L., Peng, S., AghaKouchak, A., Huang, Y., Li, Y., Qin, D., Xie, A., and Li, S.:
Broad Consistency Between Satellite and Vegetation Model Estimates of Net Primary Productivity Across Global and Regional Scales,
J. Geophys. Res.-Biogeo.,
123, 3603–3616, https://doi.org/10.1029/2018JG004760, 2018.
Mitchell, T. D. and Jones, P. D.:
An improved method of constructing a database of monthly climate observations and associated high-resolution grids,
Int. J. Climatol.,
25, 693–712, https://doi.org/10.1002/joc.1181, 2005.
Numerical Terradynamic Simulation Group:
https://www.ntsg.umt.edu/default.php, last access: 21 January 2020.
Ondier, J. O., Okach, D. O., Onyango, J. C., and Otieno, D. O.: Ecosystem productivity and CO2 exchange response to the interaction of livestock grazing and rainfall manipulation in a Kenyan savanna, Environ. Sustain. Indic., 9, 100095, https://doi.org/10.1016/j.indic.2020.100095, 2021.
Phillips, O. L. and Lewis, S. L.:
Evaluating the tropical forest carbon sink,
Glob. Change Biol.,
20, 2039–2041, https://doi.org/10.1111/gcb.12423, 2014.
Pugh, T. A. M., Jones, C. D., Huntingford, C., Burton, C., Arneth, A., Brovkin, V., Ciais, P., Lomas, M., Robertson, E., Piao, S. L., and Sitch, S.:
A Large Committed Long-Term Sink of Carbon due to Vegetation Dynamics,
Earths Future,
6, 1413–1432, https://doi.org/10.1029/2018EF000935, 2018.
Pugh, T. A. M., Lindeskog, M., Smith, B., Poulter, B., Arneth, A., Haverd, V., and Calle, L.:
Role of forest regrowth in global carbon sink dynamics,
P. Natl. Acad. Sci. USA,
116, 4382–4387, https://doi.org/10.1073/pnas.1810512116, 2019.
Pulakesh, D., Mukunda Dev, B. and Manchiraju Sri Ramachandra, M.:
Forest fragmentation and human population varies logarithmically along elevation gradient in Hindu Kush Himalaya-utility of geospatial tools and free data set,
J. Mt. Sci,
14, 2432–2447, https://doi.org/10.1007/s11629-016-4159-0, 2017.
Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G., Nakicenovic, N., and Rafaj, P.:
RCP 8.5-A scenario of comparatively high greenhouse gas emissions,
Climatic Change,
109, 33–57, https://doi.org/10.1007/s10584-011-0149-y, 2011.
Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T. A., Salas, W., Zutta, B. R., Buermann, W., Lewis, S. L., Hagen, S., Petrova, S., White, L., Silman, M., and Morel, A.:
Benchmark map of forest carbon stocks in tropical regions across three continents,
P. Natl. Acad. Sci. USA,
108, 9899–9904, https://doi.org/10.1073/pnas.1019576108, 2011.
Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G., Ahlström, A., Doney, S. C., Graven, H., Heinze, C., Huntingford, C., Levis, S., Levy, P. E., Lomas, M., Poulter, B., Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan, G., Bopp, L., Canadell, J. G., Chevallier, F., Ciais, P., Ellis, R., Gloor, M., Peylin, P., Piao, S. L., Le Quéré, C., Smith, B., Zhu, Z., and Myneni, R.: Recent trends and drivers of regional sources and sinks of carbon dioxide, Biogeosciences, 12, 653–679, https://doi.org/10.5194/bg-12-653-2015, 2015.
Smith, B., Prentice, I. C., and Sykes, M. T.:
Representation of vegetation dynamics in modelling of European ecosystems: comparison of two contrasting approaches,
Global Ecol. Biogeogr.,
10, 621–637, https://doi.org/10.1046/j.1466-822X.2001.t01-1-00256.x, 2001.
Sullivan, P. F., Arens, S. J. T., Chimner, R. A., and Welker, J. M.:
Temperature and microtopography interact to control carbon cycling in a high arctic fen,
Ecosystems,
11, 61–76, https://doi.org/10.1007/s10021-007-9107-y, 2008.
Thompson, S. L., Govindasamy, B., Mirin, A., Caldeira, K., Delire, C., Milovich, J., Wickett, M., and Erickson, D.:
Quantifying the effects of CO2-fertilized vegetation on future global climate and carbon dynamics,
Geophys. Res. Lett.,
31, 1–4, https://doi.org/10.1029/2004GL021239, 2004.
Trenberth, K. E., Dai, A., Schrier, G. van der, Jones, P. D., Barichivich, J., Briffa, K. R., and Sheffield, J.:
Global warming and changes in drought,
Nat. Clim. Change,
4, 17–22, https://doi.org/10.1038/nclimate2067, 2013.
Urban, J., Ingwers, M. W., McGuire, M. A., and Teskey, R. O.:
Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra,
J. Exp. Bot.,
68, 1757–1767, https://doi.org/10.1093/jxb/erx052, 2017.
USGS: LP DAAC – AppEEARS, available at: https://lpdaac.usgs.gov/tools/appeears/, last access: 21 January 2020.
Usman, H., Pugh, T., Ahlström, A., and Baig, S.: Simulations underlying the analysis in the publication: Climate Change Projections of Terrestrial Primary Productivity over the Hindu Kush Himalayan Forests, 4TU.ResearchData [dataset], https://doi.org/10.4121/15097500.v1, 2021.
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen, T. T.: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10, 11707–11735, https://doi.org/10.5194/acp-10-11707-2010, 2010.
Van Vuuren, D. P., Den Elzen, M. G. J., Lucas, P. L., Eickhout, B., Strengers, B. J., Van Ruijven, B., Wonink, S., and Van Houdt, R.:
Stabilizing greenhouse gas concentrations at low levels: An assessment of reduction strategies and costs,
Climatic Change,
81, 119–159, https://doi.org/10.1007/s10584-006-9172-9, 2007.
Wang, H., Zhou, X., Wan, C., Fu, H., Zhang, F., and Ren, J.:
Eco-environmental degradation in the northeastern margin of the Qinghai–Tibetan Plateau and comprehensive ecological protection planning,
Environ. Geol.,
55, 1135–1147, https://doi.org/10.1007/s00254-007-1061-7, 2008.
Wårlind, D., Smith, B., Hickler, T., and Arneth, A.: Nitrogen feedbacks increase future terrestrial ecosystem carbon uptake in an individual-based dynamic vegetation model, Biogeosciences, 11, 6131–6146, https://doi.org/10.5194/bg-11-6131-2014, 2014.
Williams, A. P., Allen, C. D., Macalady, A. K., Griffin, D., Woodhouse, C. A., Meko, D. M., Swetnam, T. W., Rauscher, S. A., Seager, R., Grissino-Mayer, H. D., Dean, J. S., Cook, E. R., Gangodagamage, C., Cai, M., and Mcdowell, N. G.:
Temperature as a potent driver of regional forest drought stress and tree mortality,
Nat. Clim. Change,
3, 292–297, https://doi.org/10.1038/nclimate1693, 2013.
Wu, Z., Dijkstra, P., Koch, G. W., Peñuelas, J., and Hungate, B. A.:
Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation,
Glob. Change Biol.,
17, 927–942, https://doi.org/10.1111/j.1365-2486.2010.02302.x, 2011.
Wu, Z., Ahlström, A., Smith, B., Ardö, J., Eklundh, L., Fensholt, R., and Lehsten, V.:
Climate data induced uncertainty in model-based estimations of terrestrial primary productivity,
Environ. Res. Lett.,
12, 064013, https://doi.org/10.1088/1748-9326/aa6fd8, 2017.
Zhao, M. and Running, S. W.:
Drought-induced reduction in global terrestrial net primary production from 2000 through 2009,
Science,
329, 940–943, https://doi.org/10.1126/science.1192666, 2010.
Short summary
The study assesses the impacts of climate change on forest productivity in the Hindu Kush Himalayan region. LPJ-GUESS was simulated from 1851 to 2100. In first approach, the model was compared with observational estimates. The comparison showed a moderate agreement. In the second approach, the model was assessed for the temporal and spatial trends of net biome productivity and its components along with carbon pool. Increases in both variables were predicted in 2100.
The study assesses the impacts of climate change on forest productivity in the Hindu Kush...
Altmetrics
Final-revised paper
Preprint