Articles | Volume 12, issue 1
Earth Syst. Dynam., 12, 69–81, 2021
https://doi.org/10.5194/esd-12-69-2021
Earth Syst. Dynam., 12, 69–81, 2021
https://doi.org/10.5194/esd-12-69-2021

Research article 18 Jan 2021

Research article | 18 Jan 2021

Characterisation of Atlantic meridional overturning hysteresis using Langevin dynamics

Jelle van den Berk et al.

Related authors

Open weather and climate science in the digital era
Martine G. de Vos, Wilco Hazeleger, Driss Bari, Jörg Behrens, Sofiane Bendoukha, Irene Garcia-Marti, Ronald van Haren, Sue Ellen Haupt, Rolf Hut, Fredrik Jansson, Andreas Mueller, Peter Neilley, Gijs van den Oord, Inti Pelupessy, Paolo Ruti, Martin G. Schultz, and Jeremy Walton
Geosci. Commun., 3, 191–201, https://doi.org/10.5194/gc-3-191-2020,https://doi.org/10.5194/gc-3-191-2020, 2020
Short summary
The role of atmospheric rivers in compound events consisting of heavy precipitation and high storm surges along the Dutch coast
Nina Ridder, Hylke de Vries, and Sybren Drijfhout
Nat. Hazards Earth Syst. Sci., 18, 3311–3326, https://doi.org/10.5194/nhess-18-3311-2018,https://doi.org/10.5194/nhess-18-3311-2018, 2018
Short summary
Reconciling the north–south density difference scaling for the Meridional Overturning Circulation strength with geostrophy
A. A. Cimatoribus, S. Drijfhout, and H. A. Dijkstra
Ocean Sci. Discuss., https://doi.org/10.5194/osd-10-2461-2013,https://doi.org/10.5194/osd-10-2461-2013, 2013
Preprint withdrawn
Historical and idealized climate model experiments: an intercomparison of Earth system models of intermediate complexity
M. Eby, A. J. Weaver, K. Alexander, K. Zickfeld, A. Abe-Ouchi, A. A. Cimatoribus, E. Crespin, S. S. Drijfhout, N. R. Edwards, A. V. Eliseev, G. Feulner, T. Fichefet, C. E. Forest, H. Goosse, P. B. Holden, F. Joos, M. Kawamiya, D. Kicklighter, H. Kienert, K. Matsumoto, I. I. Mokhov, E. Monier, S. M. Olsen, J. O. P. Pedersen, M. Perrette, G. Philippon-Berthier, A. Ridgwell, A. Schlosser, T. Schneider von Deimling, G. Shaffer, R. S. Smith, R. Spahni, A. P. Sokolov, M. Steinacher, K. Tachiiri, K. Tokos, M. Yoshimori, N. Zeng, and F. Zhao
Clim. Past, 9, 1111–1140, https://doi.org/10.5194/cp-9-1111-2013,https://doi.org/10.5194/cp-9-1111-2013, 2013
Dansgaard–Oeschger events: bifurcation points in the climate system
A. A. Cimatoribus, S. S. Drijfhout, V. Livina, and G. van der Schrier
Clim. Past, 9, 323–333, https://doi.org/10.5194/cp-9-323-2013,https://doi.org/10.5194/cp-9-323-2013, 2013

Related subject area

Dynamics of the Earth system: models
Evaluating the dependence structure of compound precipitation and wind speed extremes
Jakob Zscheischler, Philippe Naveau, Olivia Martius, Sebastian Engelke, and Christoph C. Raible
Earth Syst. Dynam., 12, 1–16, https://doi.org/10.5194/esd-12-1-2021,https://doi.org/10.5194/esd-12-1-2021, 2021
Short summary
Future sea level contribution from Antarctica inferred from CMIP5 model forcing and its dependence on precipitation ansatz
Christian B. Rodehacke, Madlene Pfeiffer, Tido Semmler, Özgür Gurses, and Thomas Kleiner
Earth Syst. Dynam., 11, 1153–1194, https://doi.org/10.5194/esd-11-1153-2020,https://doi.org/10.5194/esd-11-1153-2020, 2020
Short summary
The extremely warm summer of 2018 in Sweden – set in a historical context
Renate Anna Irma Wilcke, Erik Kjellström, Changgui Lin, Daniela Matei, Anders Moberg, and Evangelos Tyrlis
Earth Syst. Dynam., 11, 1107–1121, https://doi.org/10.5194/esd-11-1107-2020,https://doi.org/10.5194/esd-11-1107-2020, 2020
Short summary
Effect of changing ocean circulation on deep ocean temperature in the last millennium
Jeemijn Scheen and Thomas F. Stocker
Earth Syst. Dynam., 11, 925–951, https://doi.org/10.5194/esd-11-925-2020,https://doi.org/10.5194/esd-11-925-2020, 2020
Short summary
How large does a large ensemble need to be?
Sebastian Milinski, Nicola Maher, and Dirk Olonscheck
Earth Syst. Dynam., 11, 885–901, https://doi.org/10.5194/esd-11-885-2020,https://doi.org/10.5194/esd-11-885-2020, 2020
Short summary

Cited articles

Ackermann, L., Danek, C., Gierz, P., and Lohmann, G.: AMOC Recovery in a Multicentennial Scenario Using a Coupled Atmosphere-Ocean-Ice Sheet Model, Geophys. Res. Lett., 47, e2019GL086810, https://doi.org/10.1029/2019GL086810, 2020. a
Berglund, N. and Gentz, B.: Metastability in simple climate models: pathwise analysis of slowly driven Langevin equations, Stoch. Dynam., 2, 327–356, 2002. a, b
Bernardo, J. and Smith, A.: Bayesian Theory, Wiley, Chichester, England, 2009. a
Birkhoff, G. and Mac Lane, S.: A survey of modern algebra, Macmillan, New York, USA, 1970. a
Bolstad, W. M.: Understanding computational Bayesian statistics, John Wiley and Sons, Hoboken, US, 2010. a, b
Download
Short summary
A collapse of the Atlantic Meridional Overturning Circulation can be described by six parameters and Langevin dynamics. These parameters can be determined from collapses seen in climate models of intermediate complexity. With this parameterisation, it might be possible to estimate how much fresh water is needed to observe a collapse in more complicated models and reality.
Altmetrics
Final-revised paper
Preprint