Articles | Volume 12, issue 1
https://doi.org/10.5194/esd-12-69-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-12-69-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Characterisation of Atlantic meridional overturning hysteresis using Langevin dynamics
Jelle van den Berk
CORRESPONDING AUTHOR
Research and Development of Weather and Climate Models, Royal Netherlands Meteorological Institute, De Bilt, The Netherlands
Sybren Drijfhout
Research and Development of Weather and Climate Models, Royal Netherlands Meteorological Institute, De Bilt, The Netherlands
Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
Wilco Hazeleger
Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
Related authors
No articles found.
Erwin Lambert, Dewi Le Bars, Eveline van der Linden, André Jüling, and Sybren Drijfhout
Earth Syst. Dynam., 16, 1303–1323, https://doi.org/10.5194/esd-16-1303-2025, https://doi.org/10.5194/esd-16-1303-2025, 2025
Short summary
Short summary
Ocean warming around Antarctica leads to ice melting and sea-level rise. The meltwater that flows into the surrounding ocean can lead to enhanced warming of the seawater, thereby again increasing melting and sea-level rise. This process, however, is not currently included in climate models. Through a simple mathematical approach, we find that this process can lead to more melting and greater sea-level rise, possibly increasing the Antarctic contribution to 21st century sea-level rise by 80 %.
Dewi Le Bars, Iris Keizer, and Sybren Drijfhout
Ocean Sci., 21, 1303–1314, https://doi.org/10.5194/os-21-1303-2025, https://doi.org/10.5194/os-21-1303-2025, 2025
Short summary
Short summary
While preparing a new set of sea level scenarios for the Netherlands, we found out that many climate models overestimate the changes in ocean circulation for the last 30 years. To quantify this effect, we defined three methods that rely on diverse and independent observations: tide gauges, satellite altimetry, temperature and salinity in the ocean, land ice melt, etc. Based on these observations, we define a few methods to select models and discuss their advantages and disadvantages.
Joran R. Angevaare and Sybren S. Drijfhout
EGUsphere, https://doi.org/10.5194/egusphere-2025-2039, https://doi.org/10.5194/egusphere-2025-2039, 2025
Short summary
Short summary
We presents a first overview of abrupt changes and state transitions in ocean, sea-ice, and atmospheric variables under future climate change scenarios in CMIP6 data. We find a surprisingly high number models that show Arctic Sea ice disappearance, northern North Atlantic winter mixed layer collapse and/or subsequent transition of the Atlantic Meridional Overturning Circulation to a very weak state. We find more abrupt changes than in previous work and often at lower global warming levels.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Harry Bryden, Jordi Beunk, Sybren Drijfhout, Wilco Hazeleger, and Jennifer Mecking
Ocean Sci., 20, 589–599, https://doi.org/10.5194/os-20-589-2024, https://doi.org/10.5194/os-20-589-2024, 2024
Short summary
Short summary
There is widespread interest in whether the Gulf Stream will decline under global warming. We analyse 19 coupled climate model projections of the AMOC over the 21st century. The model consensus is that the AMOC will decline by about 40 % due to reductions in northward Gulf Stream transport and southward deep western boundary current transport. Whilst the wind-driven Gulf Stream decreases by 4 Sv, most of the decrease in the Gulf Stream is due to a reduction of 7 Sv in its thermohaline component.
Iris Keizer, Dewi Le Bars, Cees de Valk, André Jüling, Roderik van de Wal, and Sybren Drijfhout
Ocean Sci., 19, 991–1007, https://doi.org/10.5194/os-19-991-2023, https://doi.org/10.5194/os-19-991-2023, 2023
Short summary
Short summary
Using tide gauge observations, we show that the acceleration of sea-level rise (SLR) along the coast of the Netherlands started in the 1960s but was masked by wind field and nodal-tide variations. This finding aligns with global SLR observations and expectations based on a physical understanding of SLR related to global warming.
Eveline C. van der Linden, Dewi Le Bars, Erwin Lambert, and Sybren Drijfhout
The Cryosphere, 17, 79–103, https://doi.org/10.5194/tc-17-79-2023, https://doi.org/10.5194/tc-17-79-2023, 2023
Short summary
Short summary
The Antarctic ice sheet (AIS) is the largest uncertainty in future sea level estimates. The AIS mainly loses mass through ice discharge, the transfer of land ice into the ocean. Ice discharge is triggered by warming ocean water (basal melt). New future estimates of AIS sea level contributions are presented in which basal melt is constrained with ice discharge observations. Despite the different methodology, the resulting projections are in line with previous multimodel assessments.
Cited articles
Ackermann, L., Danek, C., Gierz, P., and Lohmann, G.: AMOC Recovery in a
Multicentennial Scenario Using a Coupled Atmosphere-Ocean-Ice Sheet Model,
Geophys. Res. Lett., 47, e2019GL086810, https://doi.org/10.1029/2019GL086810, 2020. a
Bernardo, J. and Smith, A.: Bayesian Theory, Wiley, Chichester, England, 2009. a
Birkhoff, G. and Mac Lane, S.: A survey of modern algebra, Macmillan, New York, USA,
1970. a
Boulton, C. A., Allison, L. C., and Lenton, T. M.: Early warning signals of
Atlantic Meridional Overturning Circulation collapse in a fully coupled
climate model, Nat. Commun., 5, 1–9, 2014. a
Broecker, W. S., Peteet, D. M., and Rind, D.: Does the ocean-atmosphere system
have more than one stable mode of operation?, Nature, 315, 21–26, 1985. a
Broecker, W. S., Bond, G., Klas, M., Bonani, G., and Wolfli, W.: A salt
oscillator in the glacial Atlantic? 1. The concept, Paleoceanography, 5,
469–477, 1990. a
Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M.,
Brubaker, M., Guo, J., Li, P., and Riddell, A.: Stan: A Probabilistic
Programming Language, J. Stat. Softw., 76, 1–32,
https://doi.org/10.18637/jss.v076.i01, 2017. a
Castellana, D., Baars, S., Wubs, F. W., and Dijkstra, H. A.: Transition
probabilities of noise-induced transitions of the Atlantic ocean circulation,
Sci. Rep., 9, 1–7, 2019. a
Cobb, L.: Estimation theory for the cusp catastrophe model, Proceedings of the Section on Survey Research Methods, 772–776, American Statistical Association, Washington, DC, 1980. a
Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T.,
Friedlingstein, P., Gao, X., Gutowski, W. J., Johns, T., Krinner, G.,
Shongwe, M., Tebaldi, C., Weaver, A. J., and Wehner, M.: Long-term climate
change: Projections, commitments and irreversibility,
Cambridge University Press, Cambridge, UK,
https://doi.org/10.1017/CBO9781107415324.024, 2013. a
Dansgaard, W., Johnsen, S., Clausen, H., Dahl-Jensen, D., Gundestrup, N.,
Hammer, C., Hvidberg, C., Steffensen, J., Sveinbjörnsdottir, A., Jouzel,
J., and Bond, G.: Evidence for general instability of past climate from a 250-kyr
ice-core record, Nature, 364, 218, https://doi.org/10.1038/364218a0, 1993.
w. Dansgaard, S. J. Johnsen, H.B. Clausen, D. Dahl-Jensen, N. S.
Gundestrup, C. U. Hammer, C. S. Hvldberg, J.P. Steffensen, A. E.
Svelnbjomsdottlr , J. Jouzel, a
Das, M. and Kantz, H.: Stochastic resonance and hysteresis in climate with
state-dependent fluctuations, Phys. Rev. E, 101, 062145,
https://doi.org/10.1103/PhysRevE.101.062145, 2020. a
Ditlevsen, P. D. and Johnsen, S. J.: Tipping points: Early warning and wishful
thinking, Geophys. Res. Lett., 37, https://doi.org/10.1029/2010GL044486,
l19703, 2010. a, b, c, d
Edwards, N. R. and Marsh, R.: Uncertainties due to transport-parameter
sensitivity in an efficient 3-D ocean-climate model, Clim. Dynam., 24,
415–433, 2005. a
Ganachaud, A. and Wunsch, C.: Improved estimates of global ocean circulation,
heat transport and mixing from hydrographic data, Nature, 408, 453, https://doi.org/10.1038/35044048, 2000. a
Gent, P. R.: A commentary on the Atlantic meridional overturning circulation
stability in climate models, Ocean Model., 122, 57–66, 2018. a
Goosse, H., Selten, F., Haarsma, R., and Opsteegh, J.: Decadal variability in
high northern latitudes as simulated by an intermediate-complexity climate
model, Ann. Glaciol., 33, 525–532, 2001. a
Green, B., Marshall, J., and Campin, J.-M.: The `sticky' ITCZ: ocean-moderated
ITCZ shifts, Clim. Dynam., 53, 1–19, 2019. a
Hastings, W. K.: Monte Carlo sampling methods using Markov chains and their
applications, Biometrika, 57, 97–109, https://doi.org/10.1093/biomet/57.1.97, 1970. a
Held, H. and Kleinen, T.: Detection of climate system bifurcations by
degenerate fingerprinting, Geophys. Res. Lett., 31, https://doi.org/10.1029/2004GL020972, 2004. a
Heuzé, C.: North Atlantic deep water formation and AMOC in CMIP5 models, Ocean Sci., 13, 609–622, https://doi.org/10.5194/os-13-609-2017, 2017. a
Hofmann, M. and Rahmstorf, S.: On the stability of the Atlantic meridional
overturning circulation, P. Natl. Acad. Sci.,
106, 20584–20589, 2009. a
Jackson, L., Smith, R. S., and Wood, R.: Ocean and atmosphere feedbacks
affecting AMOC hysteresis in a GCM, Clim. Dynam., 49, 173–191, 2017. a
Kleinen, T., Held, H., and Petschel-Held, G.: The potential role of spectral
properties in detecting thresholds in the Earth system: application to the
thermohaline circulation, Ocean Dynam., 53, 53–63, 2003. a
Kwasniok, F. and Lohmann, G.: Deriving dynamical models from paleoclimatic
records: Application to glacial millennial-scale climate variability, Phys.
Rev. E, 80, 066104, https://doi.org/10.1103/PhysRevE.80.066104, 2009. a
Lemons, D., Gythiel, A., and Langevin's, P.: Sur la théorie du
mouvement brownien [On the theory of Brownian motion], CR Acad.
Sci. Paris, 146, 530–533, 1908. a
Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S.,
and Schellnhuber, H. J.: Tipping elements in the Earth's climate system,
P. Natl. Acad. Sci., 105, 1786–1793, 2008. a
Liu, W., Xie, S.-P., Liu, Z., and Zhu, J.: Overlooked possibility of a
collapsed Atlantic Meridional Overturning Circulation in warming climate,
Sci. Adv., 3, e1601666, https://doi.org/10.1126/sciadv.1601666, 2017. a
Livina, V. N., Kwasniok, F., and Lenton, T. M.: Potential analysis reveals changing number of climate states during the last 60 kyr, Clim. Past, 6, 77–82, https://doi.org/10.5194/cp-6-77-2010, 2010. a
Lohmann, G.: Atmospheric and oceanic freshwater transport during weak Atlantic
overturning circulation, Tellus A, 55,
438–449, 2003. a
Marshall, D. P. and Johnson, H. L.: Relative strength of the Antarctic
Circumpolar Current and Atlantic Meridional Overturning Circulation, Tellus
A, 69, 1338884,
https://doi.org/10.1080/16000870.2017.1338884, 2017. a
Mecking, J., Drijfhout, S., Jackson, L., and Graham, T.: Stable AMOC off state
in an eddy-permitting coupled climate model, Clim. Dynam., 47,
2455–2470, 2016. a
Mecking, J., Drijfhout, S., Jackson, L., and Andrews, M.: The effect of model
bias on Atlantic freshwater transport and implications for AMOC bi-stability,
Tellus A, 69, 1299910, https://doi.org/10.1080/16000870.2017.1299910, 2017. a
Piessens, R., de Doncker-Kapenga, E., Überhuber, C., and Kahaner, D.:
Quadpack: A Subroutine Package for Automatic Integration, Springer, Berlin and Heidelberg, Germany, 2012. a
Rahmstorf, S.: The thermohaline ocean circulation: A system with dangerous
thresholds?, Clim. Change, 46, 247–256, 2000. a
Rahmstorf, S. and Willebrand, J.: The role of temperature feedback in
stabilizing the thermohaline circulation, J. Phys. Oceanogr.,
25, 787–805, 1995. a
Rahmstorf, S., Crucifix, M., Ganopolski, A., Goosse, H., Kamenkovich, I.,
Knutti, R., Lohmann, G., Marsh, R., Mysak, L. A., Wang, Z., and Weaver, J.:
Thermohaline circulation hysteresis: A model intercomparison, Geophys.
Res. Lett., 32, https://doi.org/10.1029/2005GL023655, 2005.
Stefan Rahmstorf, Michel Crucifix, Andrey Ganopolski, Hugues Goosse, Igor Kamenkovich, Reto Knutti, Gerrit Lohmann, Robert Marsh, Lawrence A. Mysak, Zhaomin Wang, Andrew J. Weaver a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p
Robinson, A., Calov, R., and Ganopolski, A.: Multistability and critical
thresholds of the Greenland ice sheet, Nat. Clim. Change, 2, 429–432,
2012. a
Salvatier, J., Wiecki, T. V., and Fonnesbeck, C.: Probabilistic programming in
Python using PyMC3, PeerJ Computer Science, 2, e55, https://doi.org/10.7717/peerj-cs.55, 2016. a
Scheffer, M. and van Nes, E. H.:
Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size, Hydrobiologia, 584, 455–466, https://doi.org/10.1007/s10750-007-0616-7, 2007. a
Schiller, A., Mikolajewicz, U., and Voss, R.: The stability of the North
Atlantic thermohaline circulation in a coupled ocean-atmosphere general
circulation model, Clim. Dynam., 13, 325–347, 1997. a
Spall, M. A. and Pickart, R. S.: Where does dense water sink? A subpolar gyre
example, J. Phys. Oceanogr., 31, 810–826, 2001. a
Staal, A., Dekker, S. C., Xu, C., and van Nes, E. H.: Bistability, spatial
interaction, and the distribution of tropical forests and savannas,
Ecosystems, 19, 1080–1091, 2016. a
Stommel, H.: Thermohaline convection with two stable regimes of flow, Tellus,
13, 224, https://doi.org/10.1111/j.2153-3490.1961.tb00079.x, 1961. a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and
the Experiment Design, B. Am. Meteorol. Soc., 93,
485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012. a
Vellinga, M. and Wood, R. A.: Global climatic impacts of a collapse of the
Atlantic thermohaline circulation, Clim. Change, 54, 251–267, 2002. a
Weaver, A. J., Eby, M., Wiebe, E. C., Bitz, C. M., Duffy, P. B., Ewen, T. L.,
Fanning, A. F., Holland, M. M., MacFadyen, A., Matthews, H. D., Meissner, K. J., Saenko, O., Schmittner, A., Wang, H., and Yoshimori, M.: The
UVic Earth System Climate Model: Model description, climatology, and
applications to past, present and future climates, Atmos. Ocean, 39,
361–428, 2001. a
Weijer, W. and Dijkstra, H. A.: A bifurcation study of the three-dimensional
thermohaline ocean circulation: The double hemispheric case, J.
Mar. Res., 59, 599–631, 2001. a
Weijer, W., Cheng, W., Drijfhout, S. S., Fedorov, A. V., Hu, A., Jackson,
L. C., Liu, W., McDonagh, E. L., Mecking, J. V., and Zhang, J.: Stability of
the Atlantic Meridional Overturning Circulation: A review and synthesis,
J. Geophys. Res.-Oceans, 124, 5336–5375, 2019. a
Yin, J. and Stouffer, R. J.: Comparison of the Stability of the Atlantic
Thermohaline Circulation in Two Coupled Atmosphere – Ocean General Circulation
Models, J. Climate, 20, 4293–4315, https://doi.org/10.1175/JCLI4256.1, 2007. a, b, c, d
Zhang, X., Knorr, G., Lohmann, G., and Barker, S.: Abrupt North Atlantic
circulation changes in response to gradual CO2 forcing in a glacial climate
state, Nat. Geosci., 10, 518–523, 2017. a
Short summary
A collapse of the Atlantic Meridional Overturning Circulation can be described by six parameters and Langevin dynamics. These parameters can be determined from collapses seen in climate models of intermediate complexity. With this parameterisation, it might be possible to estimate how much fresh water is needed to observe a collapse in more complicated models and reality.
A collapse of the Atlantic Meridional Overturning Circulation can be described by six parameters...
Altmetrics
Final-revised paper
Preprint