
Earth Syst. Dynam., 12, 69–81, 2021
https://doi.org/10.5194/esd-12-69-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Characterisation of Atlantic meridional overturning
hysteresis using Langevin dynamics

Jelle van den Berk1, Sybren Drijfhout1,2, and Wilco Hazeleger2

1Research and Development of Weather and Climate Models, Royal Netherlands Meteorological Institute,
De Bilt, The Netherlands

2Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands

Correspondence: Jelle van den Berk (jellevandenberk@gmail.com)

Received: 25 June 2020 – Discussion started: 30 June 2020
Revised: 30 November 2020 – Accepted: 30 November 2020 – Published: 18 January 2021

Abstract. Hysteresis diagrams of the Atlantic meridional overturning circulation (AMOC) under freshwater
forcing from climate models of intermediate complexity are fitted to a simple model based on the Langevin
equation. A total of six parameters are sufficient to quantitatively describe the collapses seen in these simulations.
Reversing the freshwater forcing results in asymmetric behaviour that is less well captured and appears to require
a more complicated model. The Langevin model allows for comparison between models that display an AMOC
collapse. Differences between the climate models studied here are mainly due to the strength of the stable AMOC
and the strength of the response to a freshwater forcing.

1 Introduction

The Atlantic meridional overturning circulation (AMOC) is
an important circulation in the Atlantic Ocean. It is also an
important part of the climate system overall due to the heat
it transports from the South Atlantic to the North Atlantic
(Ganachaud and Wunsch, 2000; Vellinga and Wood, 2002).
The AMOC therefore has a substantial influence on the
(western) European climate, and a weakening of the AMOC
might cause changes in the European climate and weather.
The AMOC has also been identified as one of Earth’s “tip-
ping elements”, where a rapid change on markedly faster
timescales could take place in the (near) future (Lenton
et al., 2008). The AMOC is partly buoyancy-driven by the
deep water formations in the North Atlantic subpolar gyre,
which produces the North Atlantic Deep Water (NADW)
(e.g. Rahmstorf, 2000). The AMOC might be bistable in na-
ture, which means it admits an “off” state, with little or no
transport from north to south, as a counterpart to its current
“on” state (Broecker et al., 1985).

Palaeoclimate records of the last glacial period show a
rapid switching of temperature, which might be associated
with the presence or absence of a vigorous AMOC as it exists

today (Dansgaard et al., 1993). The possibility of a bistable
AMOC being the cause of these rapid changes has been noted
(Broecker et al., 1990). With the current climate warming
rapidly, the stability of the AMOC is of particular interest
(Collins et al., 2013), and climate modelling projections in-
dicate that AMOC strength will decrease under an increase of
CO2. Recent measurements show the AMOC has decreased
in strength (Smeed et al., 2018). An understanding of the pos-
sibly bistable nature of the AMOC is therefore relevant to
understand the consequences of climate change. See Weijer
et al. (2019) for a review on AMOC bistability.

The Langevin equation has been posited before as being
suitable to capture the essential dynamics of an AMOC col-
lapse (Ditlevsen and Johnsen, 2010; Berglund and Gentz,
2002). It has also been used elsewhere as the basis for de-
scribing the dynamics of climate subsystems (Kwasniok and
Lohmann, 2009; Livina et al., 2010) and the AMOC in partic-
ular (Kleinen et al., 2003; Held and Kleinen, 2004). A fourth-
order potential function is used in Ditlevsen and Johnsen
(2010); Berglund and Gentz (2002) because it is the min-
imum required for having three distinct solutions (double
wells). This potential function has two parameters, which are
presumed to be functions of the freshwater forcing. Varia-
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tion in the freshwater forcing is assumed to directly drive
changes in AMOC strength by changing the potential func-
tion in the Langevin equation. Although the hysteresis loops
of the AMOC include both a collapse and a resurgence point,
we will only attempt to model the collapse from the stable
“on” branch to the stable “off” branch.

Though the Langevin equation has played a role in the
conceptual picture of bistability and tipping points in the cli-
mate, it has not been used to actually fit the parameters to a
(simulated) AMOC collapse. Here, we attempt to construct
a simple model based on the Langevin equation and fit its
dynamics to salt-advection-driven collapse trajectories of the
AMOC seen in climate models (Rahmstorf et al., 2005). The
result is a set of parameters that quantitatively describe the
AMOC collapse process. This derived model defines a low-
dimensional manifold that captures the essential AMOC col-
lapse characteristics. To the extent that the low-dimensional
model is successful in capturing the more complex model,
this method could also be used to predict the parameter range
where in a model a collapse would occur. At present, how-
ever, it is intended to provide a characterisation of the col-
lapse that will allow comparison between climate models.

Section 2 sketches the theoretical background of the
Langevin equation and of the salt-advection mechanism. In
Sect. 3 we fit the proposed Langevin model to the AMOC
collapse trajectories seen in a set of climate models of in-
termediate complexity (EMICs) taken from Rahmstorf et al.
(2005). We end with a discussion and conclusions in Sect. 4.

2 The Langevin model

An increase in surface air temperatures or an increased sur-
face freshwater flux by changes in precipitation minus evap-
oration will decrease the buoyancy in the shallow layer of
the deep water formation regions in the North Atlantic sub-
polar gyre. The deep water formation is reduced, and the
southward meridional flow is also reduced. In principle, this
mechanism can reduce the AMOC to zero gradually if fully
buoyancy-driven. A salt-advection feedback mechanism that
leads to a bimodal AMOC was proposed by Stommel (1961).
In this mechanism, salinity anomalies in the North Atlantic
are amplified by the overturning flow, which in turn controls
the North Atlantic salinity. Positive anomalies are strength-
ened and negative anomalies weakened; this results in a pos-
itive feedback between the salinity anomalies and the over-
turning. Bistability, consisting of a strong and a weak AMOC
state, and possible abrupt transitions result from this process.

Figure 1 shows a conceptual picture of the two stable
AMOC (index) states. The AMOC is a scalar variable ob-
tained by integrating the overturning transport and selecting
its maximum value (typically located in the subtropical North
Atlantic). In red, the upper branch is drawn up to the col-
lapse point where a bifurcation occurs. The real AMOC in
the current climate moves along this branch from the left to

Figure 1. Example bifurcation diagram of the AMOC (9) in re-
sponse to a control variable µ. The red branch is the on state (up-
per), and blue is the off state (lower). The upper branch deforms
when closer to the bifurcation points that are connected though the
repeller (dashed line). The two bifurcations points are indicated as
µ+ (collapse point) and µ− (resurgence point). The top ± symbols
indicate a unimodal (+) or bimodal (−) regime.

the right, towards its (assumed) collapse point. The branch in
blue is the counterpart of the upper branch and represents the
off state of the AMOC and ends in another bifurcation point
to the left where the AMOC jumps back to full strength. The
dashed line (repeller) separates the two basins of attraction
associated with the two stable branches (attractors). At the
bifurcation point one of the two basins of attraction vanishes
and a qualitative change takes place in the potential function
(the number of solutions for a given value of the freshwater
forcing µ goes from 3 to 1).

Below we will derive a model based on the Langevin equa-
tion that captures the essential dynamics of a bimodal AMOC
under a freshwater forcing µ.

2.1 Multiple stable AMOC states

The conceptual picture of the AMOC being a zero-
dimensional variable that is driven by stochastic forces
trapped in a potential is similar to that of a particle’s motion
described by Langevin dynamics (Lemons et al., 1908). The
Langevin equation (Gardiner, 2004; Ditlevsen and Johnsen,
2010) is as follows:

ẋ =−∂xUµ(x)+ ση. (1)

It describes the position of a noise-driven particle (x) trapped
in a potential functionU . The stochastic term is a white noise
process (η) scaled with an intensity parameter σ . At first we
will ignore the stochastic nature of the AMOC collapse pro-
cess and focus on the deterministic behaviour.

The double well potential seen in Fig. 1 has been exten-
sively studied and applied in a quantitative way as well. How-
ever, to our knowledge it has not been quantitatively applied
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to AMOC hysteresis using the Langevin equation in complex
numerical climate models before.

AMOC bistability has, however, been studied quantita-
tively in, e.g. Boulton et al. (2014), using transient runs. In
Poston and Stewart (1978) an extensive treatment is given
why, in addition to a scaling and shifting, only two parame-
ters are sufficient to describe the bistability. More precisely,
the third-order term and the fourth-order coefficient can be
eliminated. The two remaining coefficients in the polynomial
describe the critical behaviour, not just locally near the crit-
ical points but also for the entire trajectory under a suitable
transformation. A direct consequence is that only partial in-
formation, in the form of a piece of the trajectory, should suf-
fice to describe the entire trajectory (the full hysteresis loop).

The potential function takes the following form (Gardiner,
2004; Ditlevsen and Johnsen, 2010):

−U (x)=−
1
4
x4
+
β

2
x2
+αx. (2)

The two parameters α and β are functions of the freshwa-
ter forcing µ. The AMOC state variable 9 requires an affine
transformation (Cobb, 1980),

α = α(µ)
β = β(µ)
x = (9 − λ)/ν.

To fit the model trajectories we need to find expressions
for α and β and suitable values for the transformation pa-
rameters λ and ν. In the literature α is referred to as the nor-
mal factor, and β is referred to as the splitting factor (Poston
and Stewart, 1978). In the bifurcation diagram the value of
ν is approximately the distance in 9 between the bifurca-
tion point on the top branch to the bifurcation point on the
lower branch. Similarly, the value of λ is approximately the
9 value between the bifurcation points at µ±. The transfor-
mation uses λ to shift the trajectory and ν to scale it. Be-
low we describe the potential visually and state additional
constraints that follow from the demand that the freshwater
forcing is the only variable that determines the dynamical be-
haviour.

2.2 Potential description

In Fig. 2 an overview of the qualitatively different forms
of potential are shown (−U (x), right column) together with
their derivative functions (−∂xU , left column). Dots indicate
the location of critical points and are related to the number
of wells in the potential. The top panels show the typical bi-
modal form (I ) with two stable states and one unstable state
in the middle. Below these are the three possible unimodal
states (E). These occur for forcing values to the left of µ−

Figure 2. Sample potentials (right) and their derivatives (left) for
(top to bottom) the three possible varieties of bimodal state (I ),
three types of unimodal state (E), the two pathological cases where
D = 0 (B1 and B2), and the cusp catastrophe point (P ). Dots indi-
cate the critical points. Scaling is not uniform between panels. Note
the choice of negative sign of the potential U .

and to the right of µ+. The panels B1 and B2 are the sub-
manifolds that separates the unimodal regime from the bi-
modal regime. These two meet in the cusp point P , as shown
in the bottom panels. See Poston and Stewart (1978) for fur-
ther details.

In Fig. 3 the stability diagram is shown where the areas in-
dicated are those with qualitatively different behaviour seen
in Fig. 2. See Poston and Stewart (1978) for similar diagrams.
The cusp point P is the singular point where no proper solu-
tion can exist because only the trivial solution (all parameters
are valued 0) is allowed here (both bifurcation points µ± and
AMOC strength are at zero). The two parameters are α and
β and are the two coefficients in the potential function. Their
values change because of their dependency on the forcing
value (µ).

Our aim is to arrive at a description that matches a series
of µ values across the stability diagram. The two parame-
ters α and β are independent but can be parameterised by
other variables that map them to observations. If parame-
terised by a single variable, the values of (α, β) across the
stability surface are a one-dimensional subset, as suggested
by the AMOC index. On one side of the cusp point, along
the splitting axis (β), only a unimodal regime exists, while
on the other side two regimes exist with the modes at relative
distances apart.
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Figure 3. Discriminant determining the stability and number of
critical points. The splitting factor β and normal factor α describe
the stability diagram. The bimodal regime (I ) is separated from the
unimodal regime (E) by two lines (B1,2) that meet at point P .

2.3 Constraints

With a varying α there exist an interval between two criti-
cal points (α±) in between which the distribution is bimodal
and unimodal outside that interval. Because the AMOC tra-
jectory is one-dimensional and µ is also one-dimensional,
there must be a relation between α and β that reduces di-
mensionality from two dimensions to one dimension. When
passing through the critical point α+, the number of poten-
tial wells goes from two to one. Similarly, moving through
α− changes the number of wells from one to two (for given
µ±). The two critical points of ∂xU and µ± can be found
analytically for µ± real and degenerate solutions. It can be
shown (Birkhoff and Mac Lane, 1970, p. 106) that the dis-
criminant D = 27α2

− 4β3
= 0 (i.e. real solutions) needs to

be solved for α to obtain the two critical solutions that relate
α and β. It is at these solutions that the number of critical
points changes at forcing values µ±. When D < 0, there are
three distinct real solutions, which correspond to the bimodal
regime; when D > 0, there is only one distinct real solution,
which corresponds to the unimodal regime. When any two
of the roots are the same, the number of extrema goes from
three to two (or one if all are the same) and the solutions
become degenerate (this occurs at B1, 2 in Fig. 3).

Solving for α gives two solutions that are the critical val-
ues as functions of β,

α± =±
2
√

3
9

(β)3/2 or α± =∓
2
√

3
9

(β)3/2,

with β ≥ 0 for real solutions. The points α± correspond to
where the lines B1, 2 in Fig. 3 are passed when moving across
the stability surface.

For α+ < 0 −U (1)< 0, this corresponds with the AMOC
undergoing a collapse at µ+ from an on state to an off state,
and the correct choice of sign is

α± =∓
2
√

3
9

(β±)3/2, (3)

with α± and β± being the values corresponding to µ±.
Changing µ in the bifurcation diagram corresponds to mov-
ing from curve B2 to curve B1, and Eq. (3) relates the two
stability parameters α and β at the two critical forcing values
µ±.

2.3.1 Linear functions α,β

The value of β does not need to be fixed (to α± and in general
there is a corresponding β± at the respective critical points.
We assume linear functions for α and β,

α(µ)= α0+µδα,

β(µ)= β0+µδβ,

reducing the dependency to these four parameters. Linear
functions are the simplest non-trivial dependencies, while
adding non-linear parameters introduces further unknowns,
making this the most parsimonious parameterisation that
captures the first-order behaviour. In addition, intuitively we
can understand the pair (δα, δβ) as the angle under which the
system moves to the bifurcation point (B1, 2) in Fig. 3), which
locally only requires the values of α and β up to first order.
From this parameterisation we can determine the offset α0
and rate δα in terms of β0 and δβ,

α+ = α0+µ+δα =−
2
√

3
9

(β+)3/2 and

α− = α0+µ−δα =+
2
√

3
9

(β−)3/2,

gives

δα =−
2
√

3
9

(β+)3/2
+ (β−)3/2

µ+−µ−
, (4)

α0 = α(µ= 0)=

√
3

9

[
−(β+)3/2

+ (β−)3/2
]

−
1
2
δα (µ++µ−) . (5)

This constrains the values of α, leaving only β as a free
variable, which is then parameterised by β0 and δβ. Note that
only solutions with β± > 0 are valid. In addition, values for
β0 and δβ0 that result in crossing B2 in another point besides
β− are unsuitable. The curves B1, 2 are each intersected by a
straight line in at most two points, and we require intersection
at a single point only.

Earth Syst. Dynam., 12, 69–81, 2021 https://doi.org/10.5194/esd-12-69-2021



J. van den Berk et al.: AMOC Langevin dynamics 73

Figure 4. Example trajectory with corresponding distribution. Pa-
rameterised by λ= 15, ν = 20, σ = 0.12ν, µ+ = 0.2, µ− = 0,
β0 = 0.2, and δβ = 0; α0 and δα follow the constraints in Eqs. (4)
and (5). The distribution of one of the attractor branches (red: on
state; blue: off state) deforms when closer to the bifurcation points
that are connected though the repeller that forms the trench of the
distribution (dashed line). Top ± symbols indicate a unimodal (+)
or bimodal (−) regime based on the discriminant value (D). The
value of σ is relatively large and is chosen for clarity. The purple
lines indicate the (fixed) positions of the bifurcation points.

2.4 Stochastic interpretation

With the deterministic framework in place, the stochastic na-
ture can be reintroduced. The potential function can be re-
placed by a distribution that is the stationary distribution in
the asymptotic limit (i.e. the long-term behaviour of repeated
sampling of the hysteresis loop). The potential (a fourth-
order polynomial) gives the following probability distribu-
tion (Cobb, 1978):

P (x,α,β)= Ce−2/σ 2 U (x)
= Ce2/σ 2(−1/4x4

+β/2x2
+αx). (6)

The factor C = C(α, β) does not have a (known) analyti-
cal expression for the general case but can be computed nu-
merically (and can therefore used as a factor in the likelihood
function in the next section). This can be done accurately
with an adaptive quadrature method (Piessens et al., 2012),
though it suffers from numerical limitations. The value of σ
is a measure of intrinsic variation in the AMOC. Note that σ
is a measure of additive noise (because we assume that σ is
not dependent on µ), and other choices, such as multiplica-
tive noise, can be made (Das and Kantz, 2020). See Gardiner
(2004) for a derivation of this distribution using the Fokker–
Planck equation, from which the Langevin equation can also
be derived. In addition, note that σ → σ/ν because of the
scaling with ν we introduced in Sect. 2.1.

An example bifurcation diagram with corresponding dis-
tribution is shown in Fig. 4. The purple lines indicate the
(fixed) positions of the bifurcation points. The dashed grey
line marks the positions of the unstable solution (repeller)

Figure 5. (a) Distributions from the exponential family (Eq. 6)
where the parameter β is kept at a fixed value and α is varied. The
distribution transforms from unimodal (back), to bimodal (middle),
to a different unimodal distribution (front). The bimodal states have
a larger and a smaller mode, depending on the position within the
bimodal regime. The relative strength between modes depends on
σ . (b) Distributions from the exponential family (Eq. 6) where the
parameter α is kept at a fixed value and β is varied. A broad uni-
modal state (at the back) splits into distinct bimodal states (to the
front). In the middle a critical point exists, called the cusp (point P
in Fig. 3), where the split occurs.

in between the two attractor branches that separates the two
basins of attraction. Note that the bifurcation points are ex-
tremal in the sense that no bimodality can exist beyond them.
With the trajectories being noisy and driven along the attrac-
tor, there is (always) some probability of a “noise-induced”
transition. The state shifts from one basin of attraction to the
other, crossing the repeller, and the AMOC rapidly moves
from one attractor to the other. For this reason, the bimodal-
ity region might be larger than is apparent from a particular
sample AMOC trajectory. A larger noise level (as seen in
AMOC observations Smeed et al., 2018) would increase the
likelihood of a collapse before the AMOC reaches the bifur-
cation point.

The distributions in Fig. 5 show that qualitatively distinct
behaviour occurs when α or β are varied. For both parame-
ters, a change from a unimodal to a bimodal distribution can
be seen. Each distinct shape of the distribution can be identi-
fied with one of the potential functions in Fig. 2. In principle,
a change in only one of the two structural parameters (α and
β) can move the distribution between unimodal and bimodal
forms.

We are now in a position to apply the above to collapse
trajectories from climate models.

3 AMOC collapse parameter estimation

We describe how to find an optimal solution under the frame-
work described in the previous section. Using a Bayesian op-
timisation procedure, estimated values of β0 and δβ can be
found, together with the scaling parameters ν and λ. We will
also estimate the values for µ±, resulting in a six-parameter
list that describes (the upper branch) of an AMOC collapse.

The parameters β0 and δβ are independent of each other
but need to cross the curves B1, 2 in Fig. 3) to match the cor-
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responding values for µ±. This constraint is satisfied by the
resulting values for α0 and δα. This can still lead to solu-
tion candidates that are not suitable for the collapse trajecto-
ries and are eliminated in the sampling process below. The
scaling parameters are not fully independent because λ < ν
(the offset cannot exceed the scaling) and knowing where the
upper and lower branches are located already gives a rough
estimate.

3.1 Parameter estimation

Cobb (1978) was able to fit the distribution in Eq. (6) using
optimisation techniques (which were numerically unstable
and not very flexible). Though the estimates for the scaling
parameters λ and ν can be quite good with this approach, es-
timating the trajectory parameters β0 and δβ requires a more
flexible method. Knowing which distribution to use, we can
estimate the posterior probability distribution of the parame-
ters given the data 9(µ),

P (ν,λ,β0,δβ,µ± | 9).

Bayes’ rule tells us the probability of a given observation
9 given the probability of the parameters (marginal on the
left or posterior) is proportional to the probability given the
parameters (marginal on the right or prior) and the full distri-
bution (likelihood),

P (ν,λ,β0,δβ,µ± | 9)∝ P (9 | ν,λ,β0,δβ,µ±)

·P (ν,λ,β0,δβ,µ±).

Sampling different values from the parameters’ prior dis-
tributions will give corresponding values for the posterior
distributions. A Bayesian sampler chooses successive values
that tend towards greater likelihood of the model, given the
observed trajectory, and will converge towards an optimal fit.
Conceptually, this is what an MCMC (Markov chain–Monte-
Carlo) optimiser does (Bolstad, 2010). A widely used sam-
pling algorithm is the Metropolis algorithm (Hastings, 1970;
Bernardo and Smith, 2009), which we also use here. This al-
gorithm has been implemented in many software packages
(e.g. Salvatier et al. (2016); Carpenter et al. (2017)).

The sampling process is time consuming because the eval-
uation of the potential (to calculate P (9 | ν,λ,β0,δβ,µ±))
requires numerical integration (using a quadrature method),
which is costly to evaluate (the exponential family of distri-
butions cannot, in general, be evaluated analytically).

3.1.1 Prior distributions

The prior distribution of a parameter represents all the in-
formation known about that parameter before confrontation
with the observed values (Bolstad, 2010). With ν and λ trans-
form the AMOC state variable (9) with a shift (λ) and a scal-
ing (ν). The shift λ cannot exceed the normalisation ν, giving

an upper bound on λ. In addition, we note the lower limit of
the lower branch, meaning λ must be larger than this mini-
mum value. Similarly, the scaling ν cannot be larger than the
maximum value of the AMOC on the upper branch. We ex-
pect the linear parameterisation of α and β introduced in the
previous section to be O(1).

We are nonetheless still faced with infinite support on the
coefficients of the expansion of the parameters (β0, δβ). We
therefore transform β0 and δβ, with support (−∞,∞), us-
ing the arctan function to map to (−π/2,π/2). After such a
transformation, we can sample from the flat prior distribution
on that interval with most of the probability mass on “reason-
able” values (i.e. O(1)). The following prior distributions are
used:

ν = U (min(AMOC),max(AMOC)),
λ= U (min(AMOC),ν),

µ+ = U (µS+,µUP),
µ− = U (µDN,µS-),

tan(β0)= U (−π/2,π/2),
tan(δβ)= U (−π/2,π/2),

where min(AMOC) and max(AMOC) are the minimum
and maximum values in an observed collapse trajectory. U
is the uniform distribution on indicated intervals. We stipu-
late the interval values of the collapse points µ± as being
bounded by where the trajectories merge (µUP and µDN) and
the inner values (µS- and µS+) observed in the trajectories
(within which bimodality is demanded; see Fig. 6). 1

3.2 Fitting EMIC collapse trajectories

An AMOC collapse was induced in models of intermediate
complexity in Rahmstorf et al. (2005) by applying a fresh-
water forcing to the North Atlantic subtropical gyre region
that reduced the salinity in the subpolar gyre to its north. Six
of these models have a 3D ocean components; in Fig. 6 the
trajectories of those collapses are reproduced (right column,
the freshwater flux is labelled µ) together with their numer-
ical derivatives (left columns in the panels). In Table 1 the
models are listed. The forcing values of µ are known and
are the same for each climate model. Each model was run to
equilibrium for each forcing value; there is therefore no ex-
plicit time dependence in the hysteresis loops shown. Both
the AMOC strength and the forcing value are given in units
of Sv (= 106 m s−1). Note that the bifurcation points (µ±)
must lie within the range where the trajectories appear bi-
modal.

1To exclude parameter values that lead to intersections of B1,2
more than once, we artificially decrease the likelihood of these val-
ues. The discriminant of the polynomial at each forcing value indi-
cates when this is needed.
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Table 1. Overview of models used. Each data point is independent of the others because each is the result of a quasi-steady-state run. The
number of data points for each model was regridded onto a uniform freshwater forcing range consisting of 300 points. The summary of the
type of model component and references are taken from Rahmstorf et al. (2005).

Model Ocean component Atmosphere component Reference

Bremen large-scale geostrophic energy balance Prange et al. (2003)
ECBilt-CLIO 3D primitive equations quasi-geostrophic Goosse et al. (2001)
C-GOLDSTEIN 3D simplified energy--moisture balance Edwards and Marsh (2005)
MOM hor 3D primitive equations (MOM) simple energy balance Rahmstorf and Willebrand (1995)
MOM iso as above, with isopycnal mixing simple energy balance
UVic 3D primitive equations (MOM) energy--moisture balance Weaver et al. (2001)

Table 2. Overview of models, the estimated standard deviation with the upper branch fitted to a linear function (note that the original
trajectories had already been smoothed), the ranges of µ±, the location of the present day in the models, and whether the present day value
is in the unimodal regime (+) or not (−). All values are given in units of Sv.

Model σ µ− µ+ Present day

Bremen 0.181 [−0.018, 0.010] [0.120, 0.220] ( 0.070, 18.8)−
ECBilt-CLIO 0.176 [−0.044, 0.030] [0.115, 0.210] (−0.110, 18.2)+
C-GOLDSTEIN 0.122 [−0.100, 0.035] [0.115, 0.190] (−0.100, 29.0)+
MOM hor 0.526 [−0.010, 0.010] [0.130, 0.200] ( 0.110, 20.0)−
MOM iso 0.216 [−0.010, 0.020] [0.150, 0.210] ( 0.050, 22.8)−
UVic 0.260 [−0.020, 0.010] [0.188, 0.225] ( 0.080, 25.0)−

The trajectories are from the numerical Earth System
Models (EMICs) Rahmstorf et al. (2005, Fig. 2, bottom
panel). The numerical derivatives show where the AMOC
changes quickest as a response to the change in freshwater
forcing. Each model has two peaks where the changes are
largest, one for each change between stable branches. These
peaks are located at the repeller in between the two attractors
(the stable branches). At the repeller only unstable solutions
exist and the AMOC is driven to a stable solution away from
these states.

If no other mechanisms apart from the salt advection are
important, we expect the bifurcation points to lie beyond the
observed transition points because a noise-induced transition
pushes the AMOC into the off state sooner. Note that al-
though the collapse points are expected to lie before these
peaks, low levels of noise will obscure this effect. The dashed
lines indicate the regions where we will search for the opti-
mum values of µ±. These differ from the fixed 0 and 0.2
values chosen by (Rahmstorf et al., 2005), who also shifted
the trajectories to align on these values.

Before fitting, the upper and lower branches were extended
to the left and right to fill the space of −0.2< µ< 0.4. A
linear fit was used to produce additional values of the cor-
responding branches (at the same density of those points al-
ready present). All models then occupy the same freshwater
forcing space. This is desirable because not all models have
a lower branch that is fully sampled (specifically, UVic). The
lower branch was extended with a negative rate of increase

if the lower branch was moving upwards with increasing µ
(MOM hor and MOM iso).

Our main goal is to model the transition from the on
branch to the off branch, i.e. the upper right half of the hys-
teresis curve, and not so much the dynamics that govern the
lower branch. In addition, because of this assumption, other
dynamics govern the lower branch, and our simple model has
to be extended to account for those dynamics. We ignore the
data on the lower branch before the collapse point so that
the fits would not be influenced by these points. We expect
the remaining points of the trajectory to be dominated by the
salt-advection mechanism.

We start by identifying some characteristic points in the
trajectories in Table 2. The σ (variance of the process) of the
models is not given in Rahmstorf et al. (2005) or elsewhere in
the literature but was estimated as the deviation with a fitted
function to the left most the top branch. Note that smooth-
ing was already applied in Rahmstorf et al. (2005), lowering
the variance of the trajectories. As we want to fit the collapse
trajectory as given, we use the variance as evident from the
data. In principle, σ could also be estimated as a parameter in
the Bayesian optimisation, but that would unnecessarily en-
large the search space. Note that the “off-state” of the AMOC
in these models is not 0, but ∼ 2 Sv of AMOC strength. If
the salt-advection mechanism were the only operative effect,
we expect this value to be ≤ 0. If a reverse advection cell
emerges as the lower hysteresis branch, this value is nega-
tive.
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Figure 6. Absolute values of numerical derivatives (left) from the trajectories of AMOC strength as function of freshwater forcing to the right
(taken from Rahmstorf et al., 2005, Fig. 2, bottom panel, reproduced with permission from the publisher: American Geophysical Union).
In red the upper branch is shown, and in blue the lower branch is shown. The left column shows data from Bremen, ECBilt-CLIO, and
C-GOLDSTEIN. The right column shows data from MOM hor, MOM iso, and UVic. Vertical solid lines mark µ= 0 (blue) and µ= 0.2
(red); vertical dashed lines mark the chosen boundary values for µ±. All values are given in units of Sv.

In Fig. 7 fitted distributions are shown (also tabulated in
Table 3). As best-fit parameters, we choose the mean values
of the marginal posterior distributions. The dashed grey line
marks the position of the unstable solution (repeller) in be-
tween the two attractor branches that separate the two basins
of attraction.

The fits with a linear series through the (α,β) parameter
space result in a mismatch between the behaviour seen on
lower branches and that on the upper branches. This is less
obvious for UVic and ECBilt-CLIO but is especially appar-
ent for the two MOM models.

4 Discussion and conclusion

We derived a simple model of AMOC collapse based on
Langevin dynamics (Eq. 1) with a changing freshwater forc-
ing (µ) and applied this to EMIC-simulated collapse trajecto-
ries taken from Rahmstorf et al. (2005). The collapse occurs
at a bifurcation point µ+ that appears smaller than given in
(Rahmstorf et al., 2005). A corresponding bifurcation point

µ− relates an abrupt transition back to the on state. The
AMOC also requires an offset and scaling parameter to be fit-
ted (λ and ν). These six parameters are sufficient to describe
the abrupt collapse of the AMOC as part of a hysteresis loop
under varying freshwater forcing.

Any process that allows two stable states with rapid transi-
tions between them and an asymmetric response to the forc-
ing could in principle be described by our method. Other
such geophysical processes can include ice sheet mass loss
(e.g. Robinson et al., 2012), forest dieback (e.g. Staal et al.,
2016), or lake turbidity (Scheffer and van Nes, 2007).

The resurgences of the AMOC seen in the hysteresis dia-
grams behave differently from the collapses. The Langevin
model is too simple to capture both processes. It is, however,
possible to fit the change in the upper branch of the AMOC
– the on state – as it moves towards a critical point and the
dominant salt-advection feedback mechanism breaks down.

We note that Rahmstorf et al. (2005) determine the AMOC
strength as the maximum of the meridional volume transport
in the North Atlantic, and this might explain the asymmetry
between the two branches. If for a reverse overturning cell
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Figure 7. Estimated distributions under changing µ: (a, b, c) Bremen, ECBilt-CLIO, and C-GOLDSTEIN; (d, e, f) MOM hor, MOM iso,
and UVic. Vertical dashed lines mark the chosen boundary values for µ±, with solid lines showing the fit values. The dashed grey line
indicates the local minimum in the distribution (trench). The top ± symbols indicate the sign of the discriminant D for the fitted distribution
(+ for unimodal, − for bimodal). Distribution spreads have been inflated with a factor ν/2 to make them visible. All values have are given
in units of Sv.

Table 3. Mean values and standard deviations of parameters corresponding to the fitted functions in Fig. 7. The root-mean-square deviation
(a goodness of fit measure) has been determined on the upper branch up to the fitted collapse point.

ν λ β0 δβ µ− [Sv] µ+ [Sv] rms deviation [Sv]

Bremen 21.2 8.44 0.28 −1.32 0.002 0.14 0.38
ECBilt-CLIO 13.8 8.45 0.26 −1.24 0.013 0.14 0.60
C-GOLDSTEIN 24.2 10.7 0.27 −1.39 0.033 0.13 0.48
MOM hor 28.4 11.7 0.26 −1.31 0.009 0.13 0.98
MOM iso 25.7 8.90 0.32 −1.37 0.019 0.16 0.83
UVic 23.5 10.9 0.35 −0.97 −0.002 0.22 0.81

the wrong metric has been used, then the lower branch loca-
tion is not correct. It is conceivable that the Langevin model
results in better fits if Rahmstorf et al. (2005) had sampled
max(|9|) instead of max(9), which would have resulted in a
better metric of the lower branch. With the metric used it is
not apparent whether a reversed overturning cell was present
or not because it was not sampled if the AMOC had taken
on a negative value. It is unclear to what extent the mod-

els discussed here develop a reversed overturning circulation,
which can arise in 3D models (Weijer and Dijkstra, 2001;
Yin and Stouffer, 2007) but can also be suppressed by at-
mospheric feedbacks (Yin and Stouffer, 2007; however, see
also Mecking et al., 2016) and strongly affected by gyre dy-
namics (Prange et al., 2003). These effects are not captured
by the simple Langevin model proposed here, but at present
it is still unclear to what extent these effects are essential in
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capturing the first-order stability properties of the AMOC. In
each case, there is no obvious way to model the asymmetry
between the two branches and obtain a full description. The
two branches could be separated by associating each with a
different overturning cell. The upper branch is identified with
the NADW-driven cell, while a reverse cell is responsible for
the lower branch. If a reverse overturning cell (as described
in e.g. Yin and Stouffer, 2007) indeed dominates the lower
AMOC branch, two separate overturning cells are responsi-
ble for the observed trajectories, and the two branches then
cannot be expected to fit with the same parameter set.

However, another possible explanation is that (two) sep-
arate mechanisms are responsible for the upper and lower
branch dependency on µ. Possible mechanisms include pos-
sible mechanisms include the influence of wind stress, North
Atlantic subpolar gyre convective instability (Hofmann and
Rahmstorf, 2009), or other pathways of deep water forma-
tion (Heuzé, 2017). In addition, changes in the ITCZ (inter-
tropical convergence zone) due to ocean-atmosphere feed-
backs are possible (Green et al., 2019); these can, in turn,
can affect the salinity of the North Atlantic subtropical gyre
region. However, Mecking et al. (2017) showed that for a
high-resolution model the salt-advection feedback was nev-
ertheless stronger than the ITCZ effects. Other wind coupling
can occur further south through a coupling with the ACC
(Antarctic Circumpolar Current) which is based on the ther-
mal wind relation (Marshall and Johnson, 2017).

A third explanation is that deep water formation is a local
process, and as a result an asymmetry is to be expected be-
tween the two branches. Local convection can, however, be
subject to global controls and be associated with a sinking
branch which occurs in conjunction with deep convection,
but is not directly driven by it, see Spall and Pickart (2001)
for a detailed discussion. The AMOC could develop a reverse
cell where the overturning is driven by Antarctic Intermedi-
ate Water (AAIW), which is not part of the conceptual picture
presented here (Yin and Stouffer, 2007; Jackson et al., 2017).
The reverse cell introduces an asymmetry in the collapse tra-
jectories because the driver of deep water formation is not in
the North Atlantic, and might break our assumption that both
the on and off branches are controlled by the same process. It
is therefore difficult to estimate the return path of the AMOC
if the lower branch has additional drivers from the dominant
salt-advection mechanism of the upper branch. Forcing val-
ues appropriate for the lower branch might be different than
those found for the upper branch.

Furthermore, the methodology used in this paper comes
with difficulties in the numerical implementation. The fit pro-
cedure requires the normalisation of each distribution in the
µ time series. Because no analytic solution exist a numerical
approach is needed. The numerical integration adds to the
computational costs of the fits. The Markov chain method is
also prone to find local optima. In addition, the cost of numer-
ical integration necessitates stopping the fits at shorter chains
than (perhaps) are needed, an analytic formulation of the in-

tegrand would alleviate this but none exists to our knowledge.
Modern sampling algorithms allow for gradient information
to be used, which is effective when sampling a higher di-
mensional parameter space (the Metropolis algorithm used in
this paper has greater difficulty as the dimensionality of the
parameter space increases). Tighter constraints on the prior
distributions could be beneficial here.

As stated in Rahmstorf et al. (2005), the EMIC trajectories
had already been smoothed, resulting in a smaller variance; a
smaller variance leads to distributions that are more sharply
peaked. This increases the computational cost of integrating
the distributions numerically. Smoothing can also add to the
inertia seen in the collapses, but might be due to other rea-
sons such as stopping the EMIC simulations before equilibra-
tion of the AMOC collapse, leaving the AMOC in a winding-
down state. In addition, the models in Rahmstorf et al. (2005)
were integrated for 1000 model years per freshwater forcing
value (which was changed in 0.05 Sv increments). If the in-
tegrations were done for an insufficient amount of time, the
AMOC collapse is incomplete, leaving the measured value
out of equilibrium. The intermediate points in the collapse
trajectories beyond the bifurcation points indicate that either
the sample points are inaccurate or other processes are in-
volved in the AMOC.

Finally, the fitted collapse trajectories were done on an en-
semble of EMICs, which arguably are not sufficiently repre-
sentative of the real climate. As noted by Gent (2018), the
hysteresis behaviour has not been investigated fully in mod-
els of greater complexity than EMICs; the computational cost
being prohibitive for models with high resolution (and short
time steps). The hysteresis behaviour in glacial state changes
has, however, been investigated in greater detail using mod-
els with simplified dynamics (e.g. Schiller et al., 1997; Zhang
et al., 2017). The question arises to what extent the proce-
dure outlined in this paper can be applied to more compli-
cated models such as those in the CMIP archives (Taylor
et al., 2012). These models do not show a full collapse tra-
jectory like those in Rahmstorf et al. (2005), which means
no sample points of the lower branch are available. Also,
CMIP provides times series of forced runs. To validate our
method, a transient run requires known equilibrium bifurca-
tion points under a slowly changing µ and include an AMOC
collapse. Using a simple box model, transition probabilities
for an AMOC collapse have been determined by Castellana
et al. (2019). From the CMIP ensemble a similar estimate
might be obtained, or at least the collapse characteristics of
various models can be compared. Provided the CMIP mod-
els accurately capture the behaviour of the real AMOC and
the freshwater forcing counterpart (our µ) can be identified,
an estimate can be made of the distance of the current cli-
mate state to the collapse point. Freshwater quantities such
as Mov have been posited (e.g. Drijfhout et al., 2011) as be-
ing suitable indicators of AMOC stability. It is possible that
Mov relates to µ and can be used to extend our method to
transient runs, but at present it is unknown whether this can
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be done. The inclusion of ice sheets can make a substantial
difference in AMOC recovery (Ackermann et al., 2020). In
addition, the atmospheric freshwater transport might have a
stabilising effect on the AMOC that is greater than the fresh-
water transports by the ocean (Lohmann, 2003). There is,
however, also evidence that coupled climate models suffer
from a salinity bias that favours an AMOC that is too stable
(Drijfhout et al., 2011; Liu et al., 2017). These matters are
outside the conceptual picture of Mov as a stability indicator.
It is therefore still an open question how probable an AMOC
collapse is in more realistic models and in reality. However,
using the method outlined in this paper, a first step could be
made towards answering this question.
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