Articles | Volume 12, issue 2
https://doi.org/10.5194/esd-12-621-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-12-621-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Space–time dependence of compound hot–dry events in the United States: assessment using a multi-site multi-variable weather generator
Manuela I. Brunner
CORRESPONDING AUTHOR
Research Applications Laboratory, National Center for Atmospheric Research, 3450 Mitchell Ln, Boulder, CO 80301, USA
Research Applications Laboratory, National Center for Atmospheric Research, 3450 Mitchell Ln, Boulder, CO 80301, USA
Andrew W. Wood
Research Applications Laboratory, National Center for Atmospheric Research, 3450 Mitchell Ln, Boulder, CO 80301, USA
Related authors
Raul R. Wood, Joren Janzing, Amber van Hamel, Jonas Götte, Dominik L. Schumacher, and Manuela I. Brunner
Hydrol. Earth Syst. Sci., 29, 4153–4178, https://doi.org/10.5194/hess-29-4153-2025, https://doi.org/10.5194/hess-29-4153-2025, 2025
Short summary
Short summary
Continuous and high-quality meteorological datasets are crucial to study extreme hydro-climatic events. We here conduct a comprehensive spatio-temporal evaluation of precipitation and temperature for four climate reanalysis datasets, focusing on mean and extreme metrics, variability, trends, and the representation of droughts and floods over Switzerland. Our analysis shows that all datasets have some merit when limitations are considered, and that one dataset performs better than the others.
Amber van Hamel, Peter Molnar, Joren Janzing, and Manuela Irene Brunner
Hydrol. Earth Syst. Sci., 29, 2975–2995, https://doi.org/10.5194/hess-29-2975-2025, https://doi.org/10.5194/hess-29-2975-2025, 2025
Short summary
Short summary
Suspended sediment is a natural component of rivers, but extreme suspended sediment concentrations (SSCs) can have negative impacts on water use and aquatic ecosystems. We identify the main factors influencing the spatial and temporal variability of annual SSC regimes and extreme SSC events. Our analysis shows that different processes are more important for annual SSC regimes than for extreme events and that compound events driven by glacial melt and high-intensity rainfall led to the highest SSCs.
Alessia Matanó, Raed Hamed, Manuela I. Brunner, Marlies H. Barendrecht, and Anne F. Van Loon
Hydrol. Earth Syst. Sci., 29, 2749–2764, https://doi.org/10.5194/hess-29-2749-2025, https://doi.org/10.5194/hess-29-2749-2025, 2025
Short summary
Short summary
Persistent droughts change how rivers respond to rainfall. Our study of over 5000 catchments worldwide found that hydrological and soil moisture droughts decrease river-flow response to rain, especially in arid regions, while vegetation decline slightly increases it. Snow-covered areas are more resilient due to stored water buffering changes. Droughts can also cause long-lasting changes, with short and intense droughts reducing river response to rainfall and prolonged droughts increasing it.
Emma Ford, Manuela I. Brunner, Hannah Christensen, and Louise Slater
EGUsphere, https://doi.org/10.5194/egusphere-2025-1493, https://doi.org/10.5194/egusphere-2025-1493, 2025
Short summary
Short summary
This study aims to improve prediction and understanding of extreme flood events in UK near-natural catchments. We develop a machine learning framework to assess the contribution of different features to flood magnitude estimation. We find weather patterns are weak predictors and stress the importance of evaluating model performance across and within catchments.
Bailey J. Anderson, Eduardo Muñoz-Castro, Lena M. Tallaksen, Alessia Matano, Jonas Götte, Rachael Armitage, Eugene Magee, and Manuela I. Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2025-1391, https://doi.org/10.5194/egusphere-2025-1391, 2025
Short summary
Short summary
When flood happen during, or shortly after, droughts, the impacts of can be magnified. In hydrological research, defining these events can be challenging. Here we have tried to address some of the challenges defining these events using real-world examples. We show how different methodological approaches differ in their results, make suggestions on when to use which approach, and outline some pitfalls of which researchers should be aware.
Eduardo Muñoz-Castro, Bailey J. Anderson, Paul C. Astagneau, Daniel L. Swain, Pablo A. Mendoza, and Manuela I. Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2025-781, https://doi.org/10.5194/egusphere-2025-781, 2025
Short summary
Short summary
Flood impacts can be enhanced when they occur after droughts, yet the effectiveness of hydrological models in simulating these events remains unclear. Here, we calibrated four conceptual hydrological models across 63 catchments in Chile and Switzerland to assess their ability to detect streamflow extremes and their transitions. We show that drought-to-flood transitions are more difficult to capture in semi-arid high-mountain catchments than in humid low-elevation catchments.
Paul C. Astagneau, Raul R. Wood, Mathieu Vrac, Sven Kotlarski, Pradeebane Vaittinada Ayar, Bastien François, and Manuela I. Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2024-3966, https://doi.org/10.5194/egusphere-2024-3966, 2025
Short summary
Short summary
To study floods and droughts are likely to change in the future, we use climate projections from climate models. However, we first need to adjust the systematic biases of these projections at the catchment scale before using them in hydrological models. Our study compares statistical methods that can adjust these biases, but specifically for climate projections that enable a quantification of internal climate variability. We provide recommendations on the most appropriate methods.
Joren Janzing, Niko Wanders, Marit van Tiel, Barry van Jaarsveld, Dirk Nikolaus Karger, and Manuela Irene Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2024-3072, https://doi.org/10.5194/egusphere-2024-3072, 2024
Short summary
Short summary
Process representation in hyper-resolution large-scale hydrological models (LHM) limits model performance, particularly in mountain regions. Here, we update mountain process representation in an LHM and compare different meteorological forcing products. Structural and parametric changes in snow, glacier and soil processes improve discharge simulations, while meteorological forcing remains a major control on model performance. Our work can guide future development of LHMs.
Bailey J. Anderson, Manuela I. Brunner, Louise J. Slater, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 28, 1567–1583, https://doi.org/10.5194/hess-28-1567-2024, https://doi.org/10.5194/hess-28-1567-2024, 2024
Short summary
Short summary
Elasticityrefers to how much the amount of water in a river changes with precipitation. We usually calculate this using average streamflow values; however, the amount of water within rivers is also dependent on stored water sources. Here, we look at how elasticity varies across the streamflow distribution and show that not only do low and high streamflows respond differently to precipitation change, but also these differences vary with water storage availability.
Julia Miller, Andrea Böhnisch, Ralf Ludwig, and Manuela I. Brunner
Nat. Hazards Earth Syst. Sci., 24, 411–428, https://doi.org/10.5194/nhess-24-411-2024, https://doi.org/10.5194/nhess-24-411-2024, 2024
Short summary
Short summary
We assess the impacts of climate change on fire danger for 1980–2099 in different landscapes of central Europe, using the Canadian Forest Fire Weather Index (FWI) as a fire danger indicator. We find that today's 100-year FWI event will occur every 30 years by 2050 and every 10 years by 2099. High fire danger (FWI > 21.3) becomes the mean condition by 2099 under an RCP8.5 scenario. This study highlights the potential for severe fire events in central Europe from a meteorological perspective.
Marvin Höge, Martina Kauzlaric, Rosi Siber, Ursula Schönenberger, Pascal Horton, Jan Schwanbeck, Marius Günter Floriancic, Daniel Viviroli, Sibylle Wilhelm, Anna E. Sikorska-Senoner, Nans Addor, Manuela Brunner, Sandra Pool, Massimiliano Zappa, and Fabrizio Fenicia
Earth Syst. Sci. Data, 15, 5755–5784, https://doi.org/10.5194/essd-15-5755-2023, https://doi.org/10.5194/essd-15-5755-2023, 2023
Short summary
Short summary
CAMELS-CH is an open large-sample hydro-meteorological data set that covers 331 catchments in hydrologic Switzerland from 1 January 1981 to 31 December 2020. It comprises (a) daily data of river discharge and water level as well as meteorologic variables like precipitation and temperature; (b) yearly glacier and land cover data; (c) static attributes of, e.g, topography or human impact; and (d) catchment delineations. CAMELS-CH enables water and climate research and modeling at catchment level.
Manuela Irene Brunner
Hydrol. Earth Syst. Sci., 27, 2479–2497, https://doi.org/10.5194/hess-27-2479-2023, https://doi.org/10.5194/hess-27-2479-2023, 2023
Short summary
Short summary
I discuss different types of multivariate hydrological extremes and their dependencies, including regional extremes affecting multiple locations, such as spatially connected flood events; consecutive extremes occurring in close temporal succession, such as successive droughts; extremes characterized by multiple characteristics, such as floods with jointly high peak discharge and flood volume; and transitions between different types of extremes, such as drought-to-flood transitions.
Manuela Irene Brunner and Philippe Naveau
Hydrol. Earth Syst. Sci., 27, 673–687, https://doi.org/10.5194/hess-27-673-2023, https://doi.org/10.5194/hess-27-673-2023, 2023
Short summary
Short summary
Reservoir regulation affects various streamflow characteristics. Still, information on when water is stored in and released from reservoirs is hardly available. We develop a statistical model to reconstruct reservoir operation signals from observed streamflow time series. By applying this approach to 74 catchments in the Alps, we find that reservoir management varies by catchment elevation and that seasonal redistribution from summer to winter is strongest in high-elevation catchments.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Manuela I. Brunner and Louise J. Slater
Hydrol. Earth Syst. Sci., 26, 469–482, https://doi.org/10.5194/hess-26-469-2022, https://doi.org/10.5194/hess-26-469-2022, 2022
Short summary
Short summary
Assessing the rarity and magnitude of very extreme flood events occurring less than twice a century is challenging due to the lack of observations of such rare events. Here we develop a new approach, pooling reforecast ensemble members from the European Flood Awareness System to increase the sample size available to estimate the frequency of extreme flood events. We demonstrate that such ensemble pooling produces more robust estimates than observation-based estimates.
Álvaro Ossandón, Manuela I. Brunner, Balaji Rajagopalan, and William Kleiber
Hydrol. Earth Syst. Sci., 26, 149–166, https://doi.org/10.5194/hess-26-149-2022, https://doi.org/10.5194/hess-26-149-2022, 2022
Short summary
Short summary
Timely projections of seasonal streamflow extremes on a river network can be useful for flood risk mitigation, but this is challenging, particularly under space–time nonstationarity. We develop a space–time Bayesian hierarchical model (BHM) using temporal climate covariates and copulas to project seasonal streamflow extremes and the attendant uncertainties. We demonstrate this on the Upper Colorado River basin to project spring flow extremes using the preceding winter’s climate teleconnections.
Manuela I. Brunner, Lieke A. Melsen, Andrew W. Wood, Oldrich Rakovec, Naoki Mizukami, Wouter J. M. Knoben, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 25, 105–119, https://doi.org/10.5194/hess-25-105-2021, https://doi.org/10.5194/hess-25-105-2021, 2021
Short summary
Short summary
Assessments of current, local, and regional flood hazards and their future changes often involve the use of hydrologic models. A reliable model ideally reproduces both local flood characteristics and regional aspects of flooding. In this paper we investigate how such characteristics are represented by hydrologic models. Our results show that both the modeling of local and regional flood characteristics are challenging, especially under changing climate conditions.
Raul R. Wood, Joren Janzing, Amber van Hamel, Jonas Götte, Dominik L. Schumacher, and Manuela I. Brunner
Hydrol. Earth Syst. Sci., 29, 4153–4178, https://doi.org/10.5194/hess-29-4153-2025, https://doi.org/10.5194/hess-29-4153-2025, 2025
Short summary
Short summary
Continuous and high-quality meteorological datasets are crucial to study extreme hydro-climatic events. We here conduct a comprehensive spatio-temporal evaluation of precipitation and temperature for four climate reanalysis datasets, focusing on mean and extreme metrics, variability, trends, and the representation of droughts and floods over Switzerland. Our analysis shows that all datasets have some merit when limitations are considered, and that one dataset performs better than the others.
Amber van Hamel, Peter Molnar, Joren Janzing, and Manuela Irene Brunner
Hydrol. Earth Syst. Sci., 29, 2975–2995, https://doi.org/10.5194/hess-29-2975-2025, https://doi.org/10.5194/hess-29-2975-2025, 2025
Short summary
Short summary
Suspended sediment is a natural component of rivers, but extreme suspended sediment concentrations (SSCs) can have negative impacts on water use and aquatic ecosystems. We identify the main factors influencing the spatial and temporal variability of annual SSC regimes and extreme SSC events. Our analysis shows that different processes are more important for annual SSC regimes than for extreme events and that compound events driven by glacial melt and high-intensity rainfall led to the highest SSCs.
Alessia Matanó, Raed Hamed, Manuela I. Brunner, Marlies H. Barendrecht, and Anne F. Van Loon
Hydrol. Earth Syst. Sci., 29, 2749–2764, https://doi.org/10.5194/hess-29-2749-2025, https://doi.org/10.5194/hess-29-2749-2025, 2025
Short summary
Short summary
Persistent droughts change how rivers respond to rainfall. Our study of over 5000 catchments worldwide found that hydrological and soil moisture droughts decrease river-flow response to rain, especially in arid regions, while vegetation decline slightly increases it. Snow-covered areas are more resilient due to stored water buffering changes. Droughts can also cause long-lasting changes, with short and intense droughts reducing river response to rainfall and prolonged droughts increasing it.
Simon Moulds, Louise Slater, Louise Arnal, and Andrew W. Wood
Hydrol. Earth Syst. Sci., 29, 2393–2406, https://doi.org/10.5194/hess-29-2393-2025, https://doi.org/10.5194/hess-29-2393-2025, 2025
Short summary
Short summary
Seasonal streamflow forecasts are an important component of flood risk management. Here, we train and test a machine learning model to predict the monthly maximum daily streamflow up to 4 months ahead. We train the model on precipitation and temperature forecasts to produce probabilistic hindcasts for 579 stations across the UK for the period 2004–2016. We show skilful results up to 4 months ahead in many locations, although, in general, the skill declines with increasing lead time.
Wouter J. M. Knoben, Ashwin Raman, Gaby J. Gründemann, Mukesh Kumar, Alain Pietroniro, Chaopeng Shen, Yalan Song, Cyril Thébault, Katie van Werkhoven, Andrew W. Wood, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 29, 2361–2375, https://doi.org/10.5194/hess-29-2361-2025, https://doi.org/10.5194/hess-29-2361-2025, 2025
Short summary
Short summary
Hydrologic models are needed to provide simulations of water availability, floods, and droughts. The accuracy of these simulations is often quantified with so-called performance scores. A common thought is that different models are more or less applicable to different landscapes, depending on how the model works. We show that performance scores are not helpful in distinguishing between different models and thus cannot easily be used to select an appropriate model for a specific place.
Emma Ford, Manuela I. Brunner, Hannah Christensen, and Louise Slater
EGUsphere, https://doi.org/10.5194/egusphere-2025-1493, https://doi.org/10.5194/egusphere-2025-1493, 2025
Short summary
Short summary
This study aims to improve prediction and understanding of extreme flood events in UK near-natural catchments. We develop a machine learning framework to assess the contribution of different features to flood magnitude estimation. We find weather patterns are weak predictors and stress the importance of evaluating model performance across and within catchments.
Bailey J. Anderson, Eduardo Muñoz-Castro, Lena M. Tallaksen, Alessia Matano, Jonas Götte, Rachael Armitage, Eugene Magee, and Manuela I. Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2025-1391, https://doi.org/10.5194/egusphere-2025-1391, 2025
Short summary
Short summary
When flood happen during, or shortly after, droughts, the impacts of can be magnified. In hydrological research, defining these events can be challenging. Here we have tried to address some of the challenges defining these events using real-world examples. We show how different methodological approaches differ in their results, make suggestions on when to use which approach, and outline some pitfalls of which researchers should be aware.
Eduardo Muñoz-Castro, Bailey J. Anderson, Paul C. Astagneau, Daniel L. Swain, Pablo A. Mendoza, and Manuela I. Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2025-781, https://doi.org/10.5194/egusphere-2025-781, 2025
Short summary
Short summary
Flood impacts can be enhanced when they occur after droughts, yet the effectiveness of hydrological models in simulating these events remains unclear. Here, we calibrated four conceptual hydrological models across 63 catchments in Chile and Switzerland to assess their ability to detect streamflow extremes and their transitions. We show that drought-to-flood transitions are more difficult to capture in semi-arid high-mountain catchments than in humid low-elevation catchments.
Mozhgan A. Farahani, Andrew W. Wood, Guoqiang Tang, and Naoki Mizukami
EGUsphere, https://doi.org/10.5194/egusphere-2025-38, https://doi.org/10.5194/egusphere-2025-38, 2025
Short summary
Short summary
We present a new strategy to calibrate large-domain land/hydrology models over diverse and extensive regions. Using SUMMA and mizuRoute models, our approach integrates catchment attributes, model parameters, and performance metrics to optimize streamflow simulations. By leveraging recent innovations in machine learning methods and concepts for hydrology, we improve calibration outcomes and enable regionalization to ungauged basins, which is valuable for national-scale water security studies.
Paul C. Astagneau, Raul R. Wood, Mathieu Vrac, Sven Kotlarski, Pradeebane Vaittinada Ayar, Bastien François, and Manuela I. Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2024-3966, https://doi.org/10.5194/egusphere-2024-3966, 2025
Short summary
Short summary
To study floods and droughts are likely to change in the future, we use climate projections from climate models. However, we first need to adjust the systematic biases of these projections at the catchment scale before using them in hydrological models. Our study compares statistical methods that can adjust these biases, but specifically for climate projections that enable a quantification of internal climate variability. We provide recommendations on the most appropriate methods.
Mari R. Tye, Ming Ge, Jadwiga H. Richter, Ethan D. Gutmann, Allyson Rugg, Cindy L. Bruyère, Sue Ellen Haupt, Flavio Lehner, Rachel McCrary, Andrew J. Newman, and Andy Wood
Hydrol. Earth Syst. Sci., 29, 1117–1133, https://doi.org/10.5194/hess-29-1117-2025, https://doi.org/10.5194/hess-29-1117-2025, 2025
Short summary
Short summary
There is a perceived mismatch between the spatial scales on which global climate models can produce data and those needed for water management decisions. However, poor communication of specific metrics relevant to local decisions is also a problem. We assessed the credibility of a set of water management decision metrics in the Community Earth System Model v2 (CESM2). CESM2 shows potentially greater use of its output in long-range water management decisions.
Joren Janzing, Niko Wanders, Marit van Tiel, Barry van Jaarsveld, Dirk Nikolaus Karger, and Manuela Irene Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2024-3072, https://doi.org/10.5194/egusphere-2024-3072, 2024
Short summary
Short summary
Process representation in hyper-resolution large-scale hydrological models (LHM) limits model performance, particularly in mountain regions. Here, we update mountain process representation in an LHM and compare different meteorological forcing products. Structural and parametric changes in snow, glacier and soil processes improve discharge simulations, while meteorological forcing remains a major control on model performance. Our work can guide future development of LHMs.
Louise Arnal, Martyn P. Clark, Alain Pietroniro, Vincent Vionnet, David R. Casson, Paul H. Whitfield, Vincent Fortin, Andrew W. Wood, Wouter J. M. Knoben, Brandi W. Newton, and Colleen Walford
Hydrol. Earth Syst. Sci., 28, 4127–4155, https://doi.org/10.5194/hess-28-4127-2024, https://doi.org/10.5194/hess-28-4127-2024, 2024
Short summary
Short summary
Forecasting river flow months in advance is crucial for water sectors and society. In North America, snowmelt is a key driver of flow. This study presents a statistical workflow using snow data to forecast flow months ahead in North American snow-fed rivers. Variations in the river flow predictability across the continent are evident, raising concerns about future predictability in a changing (snow) climate. The reproducible workflow hosted on GitHub supports collaborative and open science.
Bailey J. Anderson, Manuela I. Brunner, Louise J. Slater, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 28, 1567–1583, https://doi.org/10.5194/hess-28-1567-2024, https://doi.org/10.5194/hess-28-1567-2024, 2024
Short summary
Short summary
Elasticityrefers to how much the amount of water in a river changes with precipitation. We usually calculate this using average streamflow values; however, the amount of water within rivers is also dependent on stored water sources. Here, we look at how elasticity varies across the streamflow distribution and show that not only do low and high streamflows respond differently to precipitation change, but also these differences vary with water storage availability.
Guoqiang Tang, Andrew W. Wood, Andrew J. Newman, Martyn P. Clark, and Simon Michael Papalexiou
Geosci. Model Dev., 17, 1153–1173, https://doi.org/10.5194/gmd-17-1153-2024, https://doi.org/10.5194/gmd-17-1153-2024, 2024
Short summary
Short summary
Ensemble geophysical datasets are crucial for understanding uncertainties and supporting probabilistic estimation/prediction. However, open-access tools for creating these datasets are limited. We have developed the Python-based Geospatial Probabilistic Estimation Package (GPEP). Through several experiments, we demonstrate GPEP's ability to estimate precipitation, temperature, and snow water equivalent. GPEP will be a useful tool to support uncertainty analysis in Earth science applications.
Julia Miller, Andrea Böhnisch, Ralf Ludwig, and Manuela I. Brunner
Nat. Hazards Earth Syst. Sci., 24, 411–428, https://doi.org/10.5194/nhess-24-411-2024, https://doi.org/10.5194/nhess-24-411-2024, 2024
Short summary
Short summary
We assess the impacts of climate change on fire danger for 1980–2099 in different landscapes of central Europe, using the Canadian Forest Fire Weather Index (FWI) as a fire danger indicator. We find that today's 100-year FWI event will occur every 30 years by 2050 and every 10 years by 2099. High fire danger (FWI > 21.3) becomes the mean condition by 2099 under an RCP8.5 scenario. This study highlights the potential for severe fire events in central Europe from a meteorological perspective.
Marvin Höge, Martina Kauzlaric, Rosi Siber, Ursula Schönenberger, Pascal Horton, Jan Schwanbeck, Marius Günter Floriancic, Daniel Viviroli, Sibylle Wilhelm, Anna E. Sikorska-Senoner, Nans Addor, Manuela Brunner, Sandra Pool, Massimiliano Zappa, and Fabrizio Fenicia
Earth Syst. Sci. Data, 15, 5755–5784, https://doi.org/10.5194/essd-15-5755-2023, https://doi.org/10.5194/essd-15-5755-2023, 2023
Short summary
Short summary
CAMELS-CH is an open large-sample hydro-meteorological data set that covers 331 catchments in hydrologic Switzerland from 1 January 1981 to 31 December 2020. It comprises (a) daily data of river discharge and water level as well as meteorologic variables like precipitation and temperature; (b) yearly glacier and land cover data; (c) static attributes of, e.g, topography or human impact; and (d) catchment delineations. CAMELS-CH enables water and climate research and modeling at catchment level.
Manuela Irene Brunner
Hydrol. Earth Syst. Sci., 27, 2479–2497, https://doi.org/10.5194/hess-27-2479-2023, https://doi.org/10.5194/hess-27-2479-2023, 2023
Short summary
Short summary
I discuss different types of multivariate hydrological extremes and their dependencies, including regional extremes affecting multiple locations, such as spatially connected flood events; consecutive extremes occurring in close temporal succession, such as successive droughts; extremes characterized by multiple characteristics, such as floods with jointly high peak discharge and flood volume; and transitions between different types of extremes, such as drought-to-flood transitions.
Louise J. Slater, Louise Arnal, Marie-Amélie Boucher, Annie Y.-Y. Chang, Simon Moulds, Conor Murphy, Grey Nearing, Guy Shalev, Chaopeng Shen, Linda Speight, Gabriele Villarini, Robert L. Wilby, Andrew Wood, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 27, 1865–1889, https://doi.org/10.5194/hess-27-1865-2023, https://doi.org/10.5194/hess-27-1865-2023, 2023
Short summary
Short summary
Hybrid forecasting systems combine data-driven methods with physics-based weather and climate models to improve the accuracy of predictions for meteorological and hydroclimatic events such as rainfall, temperature, streamflow, floods, droughts, tropical cyclones, or atmospheric rivers. We review recent developments in hybrid forecasting and outline key challenges and opportunities in the field.
Manuela Irene Brunner and Philippe Naveau
Hydrol. Earth Syst. Sci., 27, 673–687, https://doi.org/10.5194/hess-27-673-2023, https://doi.org/10.5194/hess-27-673-2023, 2023
Short summary
Short summary
Reservoir regulation affects various streamflow characteristics. Still, information on when water is stored in and released from reservoirs is hardly available. We develop a statistical model to reconstruct reservoir operation signals from observed streamflow time series. By applying this approach to 74 catchments in the Alps, we find that reservoir management varies by catchment elevation and that seasonal redistribution from summer to winter is strongest in high-elevation catchments.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Manuela I. Brunner and Louise J. Slater
Hydrol. Earth Syst. Sci., 26, 469–482, https://doi.org/10.5194/hess-26-469-2022, https://doi.org/10.5194/hess-26-469-2022, 2022
Short summary
Short summary
Assessing the rarity and magnitude of very extreme flood events occurring less than twice a century is challenging due to the lack of observations of such rare events. Here we develop a new approach, pooling reforecast ensemble members from the European Flood Awareness System to increase the sample size available to estimate the frequency of extreme flood events. We demonstrate that such ensemble pooling produces more robust estimates than observation-based estimates.
Álvaro Ossandón, Manuela I. Brunner, Balaji Rajagopalan, and William Kleiber
Hydrol. Earth Syst. Sci., 26, 149–166, https://doi.org/10.5194/hess-26-149-2022, https://doi.org/10.5194/hess-26-149-2022, 2022
Short summary
Short summary
Timely projections of seasonal streamflow extremes on a river network can be useful for flood risk mitigation, but this is challenging, particularly under space–time nonstationarity. We develop a space–time Bayesian hierarchical model (BHM) using temporal climate covariates and copulas to project seasonal streamflow extremes and the attendant uncertainties. We demonstrate this on the Upper Colorado River basin to project spring flow extremes using the preceding winter’s climate teleconnections.
Guoqiang Tang, Martyn P. Clark, Simon Michael Papalexiou, Andrew J. Newman, Andrew W. Wood, Dominique Brunet, and Paul H. Whitfield
Earth Syst. Sci. Data, 13, 3337–3362, https://doi.org/10.5194/essd-13-3337-2021, https://doi.org/10.5194/essd-13-3337-2021, 2021
Short summary
Short summary
Probabilistic estimates are useful to quantify the uncertainties in meteorological datasets. This study develops the Ensemble Meteorological Dataset for North America (EMDNA). EMDNA has 100 members with daily precipitation amount, mean daily temperature, and daily temperature range at 0.1° spatial resolution from 1979 to 2018. It is expected to be useful for hydrological and meteorological applications in North America.
Chiara Marsigli, Elizabeth Ebert, Raghavendra Ashrit, Barbara Casati, Jing Chen, Caio A. S. Coelho, Manfred Dorninger, Eric Gilleland, Thomas Haiden, Stephanie Landman, and Marion Mittermaier
Nat. Hazards Earth Syst. Sci., 21, 1297–1312, https://doi.org/10.5194/nhess-21-1297-2021, https://doi.org/10.5194/nhess-21-1297-2021, 2021
Short summary
Short summary
This paper reviews new observations for the verification of high-impact weather and provides advice for their usage in objective verification. New observations include remote sensing datasets, products developed for nowcasting, datasets derived from telecommunication systems, data collected from citizens, reports of impacts and reports from insurance companies. This work has been performed in the framework of the Joint Working Group on Forecast Verification Research (JWGFVR) of the WMO.
Eric Gilleland
Adv. Stat. Clim. Meteorol. Oceanogr., 7, 13–34, https://doi.org/10.5194/ascmo-7-13-2021, https://doi.org/10.5194/ascmo-7-13-2021, 2021
Short summary
Short summary
Verifying high-resolution weather forecasts has become increasingly complicated,
and simple, easy-to-understand summary measures are a good alternative. Recent work has demonstrated some common pitfalls with many such summaries. Here, new summary measures are introduced that do not suffer from these drawbacks, while still providing meaningful information.
Manuela I. Brunner, Lieke A. Melsen, Andrew W. Wood, Oldrich Rakovec, Naoki Mizukami, Wouter J. M. Knoben, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 25, 105–119, https://doi.org/10.5194/hess-25-105-2021, https://doi.org/10.5194/hess-25-105-2021, 2021
Short summary
Short summary
Assessments of current, local, and regional flood hazards and their future changes often involve the use of hydrologic models. A reliable model ideally reproduces both local flood characteristics and regional aspects of flooding. In this paper we investigate how such characteristics are represented by hydrologic models. Our results show that both the modeling of local and regional flood characteristics are challenging, especially under changing climate conditions.
Guoqiang Tang, Martyn P. Clark, Andrew J. Newman, Andrew W. Wood, Simon Michael Papalexiou, Vincent Vionnet, and Paul H. Whitfield
Earth Syst. Sci. Data, 12, 2381–2409, https://doi.org/10.5194/essd-12-2381-2020, https://doi.org/10.5194/essd-12-2381-2020, 2020
Short summary
Short summary
Station observations are critical for hydrological and meteorological studies, but they often contain missing values and have short measurement periods. This study developed a serially complete dataset for North America (SCDNA) from 1979 to 2018 for 27 276 precipitation and temperature stations. SCDNA is built on multiple data sources and infilling/reconstruction strategies to achieve high-quality estimates which can be used for a variety of applications.
Cited articles
Alizadeh, M. R., Adamowski, J., Nikoo, M. R., AghaKouchak, A., Dennison, P., and Sadegh, M.:
A century of observations reveals increasing likelihood of continental-scale compound dry-hot extremes,
Science Advances,
6, 1–12, https://doi.org/10.1126/sciadv.aaz4571, 2020. a, b, c, d
Andreadis, K. M., Clark, E. A., Wood, A. W., Hamlet, A. F., and Lettenmaier, D. P.:
Twentieth-century drought in the conterminous United States,
J. Hydrometeorol.,
6, 985–1001, https://doi.org/10.1175/JHM450.1, 2005. a
Asquith, W.:
lmomco: L-moments, censored L-moments, trimmed L-moments, L-comoments, and many distributions,
available at: https://cran.r-project.org/web/packages/lmomco/index.html (last access: 12 January 2021), 2020.
a
Asquith, W. H.:
Parameter estimation for the 4-parameter Asymmetric Exponential Power distribution by the method of L-moments using R,
Comput. Stat. Data An.,
71, 955–970, https://doi.org/10.1016/j.csda.2012.12.013, 2014. a
Belzile, L., Wadsworth, J. L., Northrop, P. J., Grimshaw, S. D., Zhang, J., Stephens, M. A., Owen, A. B., and Huser, R.:
R-package mev,
available at: https://cran.r-project.org/web/packages/mev/index.html (last access: 12 January 2021), 2020. a
Bevacqua, E., Shepherd, T. G., Watson, P. A. G., Sparrow, S., Wallom, D., and Mitchell, D.:
Larger spatial footprint of wintertime total precipitation extremes in a warmer climate,
Geophys. Res. Lett.,
48, e2020GL091990, https://doi.org/10.1029/2020GL091990, 2021. a
Bolós, V. J. and Benítez, R.:
R-package wavScalogram,
available at: https://cran.r-project.org/web/packages/wavScalogram/index.html (last access: 12 January 2021), 2020. a
Brunner, M. I. and Furrer, R.: PRSim: Stochastic Simulation of Streamflow Time Series using Phase Randomization, available at: https://cran.r-project.org/web/packages/PRSim/ (last access: 12 January 2021), 2019. a
Brunner, M. I. and Gilleland, E.: Stochastic simulation of streamflow and spatial extremes: a continuous, wavelet-based approach, Hydrol. Earth Syst. Sci., 24, 3967–3982, https://doi.org/10.5194/hess-24-3967-2020, 2020. a, b
Brunner, M. I., Bárdossy, A., and Furrer, R.: Technical note: Stochastic simulation of streamflow time series using phase randomization, Hydrol. Earth Syst. Sci., 23, 3175–3187, https://doi.org/10.5194/hess-23-3175-2019, 2019. a
Brunner, M. I., Swain, D. L., Gilleland, E., and Wood, A.:
Increasing importance of temperature as a driver of streamflow drought spatial extent,
Environ. Res. Lett.,
16, 024038, https://doi.org/10.1088/1748-9326/abd2f0, 2021. a
Bukovsky, M. S.:
Masks for the Bukovsky regionalization of North America,
available at: http://www.narccap.ucar.edu/contrib/bukovsky/ (last access: 8 May 2020), 2011. a
Christian, J. I., Basara, J. B., Hunt, E. D., Otkin, J. A., and Xiao, S.:
Flash drought development and cascading impacts associated with the 2010 Russian heatwave,
Environ. Res. Lett.,
15, 094078, https://doi.org/10.1088/1748-9326/ab9faf, 2020. a
Cressie, N. A. C.: Statistics for spatial data, Wiley series in probability and mathematical statistics, John Wiley & Sons, Inc., Iowa State University, New York, 1993. a
Deheuvels, P.:
La fonction de dépendance empirique et ses propriétés. Un test non paramétrique d'indépendance,
B. Cl. Sci. Ac. Roy. Belg.,
65, 274–292, https://doi.org/10.3406/barb.1979.58521, 1979. a
De Luca, P., Messori, G., Faranda, D., Ward, P. J., and Coumou, D.: Compound warm–dry and cold–wet events over the Mediterranean, Earth Syst. Dynam., 11, 793–805, https://doi.org/10.5194/esd-11-793-2020, 2020. a
Deser, C., Lehner, F., Rodgers, K. B., Ault, T., Delworth, T. L., DiNezio, P. N., Fiore, A., Frankignoul, C., Fyfe, J. C., Horton, D. E., Kay, J. E., Knutti, R., Lovenduski, N. S., Marotzke, J., McKinnon, K. A., Minobe, S., Randerson, J., Screen, J. A., Simpson, I. R., and Ting, M.:
Insights from Earth system model initial-condition large ensembles and future prospects,
Nat. Clim. Change,
10, 277–286, https://doi.org/10.1038/s41558-020-0731-2, 2020. a
Diederen, D., Liu, Y., Gouldby, B., Diermanse, F., and Vorogushyn, S.: Stochastic generation of spatially coherent river discharge peaks for continental event-based flood risk assessment, Nat. Hazards Earth Syst. Sci., 19, 1041–1053, https://doi.org/10.5194/nhess-19-1041-2019, 2019. a
ECMWF: ERA5-Land hourly data from 1981 to present, Reading, UK, https://doi.org/10.24381/cds.e2161bac, 2019. a, b
Evin, G., Favre, A.-C., and Hingray, B.: Stochastic generation of multi-site daily precipitation focusing on extreme events, Hydrol. Earth Syst. Sci., 22, 655–672, https://doi.org/10.5194/hess-22-655-2018, 2018. a
Evin, G., Favre, A. C., and Hingray, B.:
Stochastic generators of multi-site daily temperature: comparison of performances in various applications,
Theor. Appl. Climatol.,
135, 811–824, https://doi.org/10.1007/s00704-018-2404-x, 2019. a
Feng, S., Wu, X., Hao, Z., Hao, Y., Zhang, X., and Hao, F.:
A database for characteristics and variations of global compound dry and hot events,
Weather and Climate Extremes,
30, 100299, https://doi.org/10.1016/j.wace.2020.100299, 2020. a
Fernández, C. and Steel, M. F.:
On bayesian modeling of fat tails and skewness,
J. Am. Stat. Assoc.,
93, 359–371, https://doi.org/10.1080/01621459.1998.10474117, 1998. a
Finkelstein, P. L. and Truppi, L. E.:
Spatial distribution of precipitation seasonality in the United States,
J. Climate,
4, 373–385, 1991. a
Fuchs, B. A., Wood, D. A., and Ebbeka, D.:
From too much to too little. How the central U. S. drought of 2012 evolved out of one of the most devastating floods in record in 2011, Tech. rep.,
National Drought Mitigation Center, Lincoln,
available at: https://digitalcommons.unl.edu/ndmcpub/5/ (last access: 15 November 2020), 2012. a
Genest, C. and Favre, A.-C.:
Everything you always wanted to know about copula modeling but were afraid to ask,
J. Hydrol. Eng.,
12, 347–367, https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(347), 2007. a
Heffernan, J. E. and Tawn, J.:
A conditional approach to modelling multivariate extreme values,
J. R. Stat. Soc. B,
66, 497–546, https://doi.org/10.1111/j.1467-9868.2004.02050.x, 2004. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 Global Reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Keef, C., Tawn, J. A., and Lamb, R.:
Estimating the probability of widespread flood events,
Environmetrics,
24, 13–21, https://doi.org/10.1002/env.2190, 2013. a
Kunkel, K. E., Easterling, D. R., Kristovich, D. A. R., Gleason, B., Stoecker, L., and Smith, R.:
Meteorological causes of the secular variations in observed extreme precipitation events for the conterminous United States,
J. Hydrometeorol.,
13, 1131–1141, https://doi.org/10.1175/JHM-D-11-0108.1, 2012.
a
Lancaster, G., Iatsenko, D., Pidde, A., Ticcinelli, V., and Stefanovska, A.:
Surrogate data for hypothesis testing of physical systems,
Phys. Rep.,
748, 1–60, https://doi.org/10.1016/j.physrep.2018.06.001, 2018. a
Manning, C., Widmann, M., Bevacqua, E., Van Loon, A. F., Maraun, D., and Vrac, M.: Increased probability of compound long-duration dry and hot events in Europe during summer (1950-2013),
Environ. Res. Lett.,
14, 094006, https://doi.org/10.1088/1748-9326/ab23bf, 2019. a
Mazdiyasni, O. and AghaKouchak, A.:
Substantial increase in concurrent droughts and heatwaves in the United States,
P. Natl. Acad. Sci. USA,
112, 11484–11489, https://doi.org/10.1073/pnas.1422945112, 2015. a
McKee, T. B., Doesken, N. J., and Kleist, J.:
The relationship of drought frequency and duration to time scales,
in: Proceedings of the 8th Conference on Applied Climatology, American Meteorological Society, January, Anaheim, California, available at: https://www.droughtmanagement.info/literature/AMS_Relationship_Drought_Frequency_Duration_Time_Scales_1993.pdf (last access: 15 November 2020), 1993. a
Mo, K. C. and Lettenmaier, D. P.:
Heat wave flash droughts in decline,
Geophys. Res. Lett.,
42, 2823–2829, https://doi.org/10.1002/2015GL064018, 2015. a
Murgatroyd, A. and Hall, J. W.: The resilience of inter-basin transfers to severe droughts with changing spatial characteristics, Front. Environ. Sci.,
8, 571647, https://doi.org/10.3389/fenvs.2020.571647, 2020. a
Naveau, P., Huser, R., Ribereau, P., and Hannart, A.:
Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection,
Water Resour. Res.,
52, 2753–2769, https://doi.org/10.1002/2015WR018552, 2016. a
Papastathopoulos, I. and Tawn, J. A.:
Extended generalised Pareto models for tail estimation,
J. Stat. Plan. Infer.,
143, 131–143, https://doi.org/10.1016/j.jspi.2012.07.001, 2013. a
Peleg, N., Fatichi, S., Paschalis, A., Molnar, P., and Burlando, P.:
An advanced stochastic weather generator for simulating 2-D high-resolution climate variables,
J. Adv. Model. Earth Sy.,
9, 1595–1627, https://doi.org/10.1002/2013MS000282, 2017. a
Rajagopalan, B., Salas, J. D., and Lall, U.: Stochastic methods for modeling precipitation and streamflow, chap. 2, in: Advances in data-based approaches for hydrologic modeling and forecasting, edited by: Sivakumar, B. and Berndtsson, R., World Scientific, New Jersey, 17–52, 2010. a
Rutz, J. J., James Steenburgh, W., and Martin Ralph, F.:
The inland penetration of atmospheric rivers over western North America: A Lagrangian analysis,
Mon. Weather Rev.,
143, 1924–1944, https://doi.org/10.1175/MWR-D-14-00288.1, 2015. a
Sarhadi, A., Ausín, M. C., Wiper, M. P., Touma, D., and Diffenbaugh, N. S.:
Multidimensional risk in a nonstationary climate: Joint probability of increasingly severe warm and dry conditions,
Science Advances,
4, eaau3487, https://doi.org/10.1126/sciadv.aau3487, 2018. a
Schreiber, T. and Schmitz, A.:
Surrogate time series,
Physica D,
142, 346–382, https://doi.org/10.1016/S0167-2789(00)00043-9, 2000.
a
Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Orlowsky, B., and Teuling, A. J.:
Investigating soil moisture-climate interactions in a changing climate: A review,
Earth-Sci. Rev.,
99, 125–161, https://doi.org/10.1016/j.earscirev.2010.02.004, 2010. a
Smith, T. T., Zaitchik, B. F., and Gohlke, J. M.:
Heat waves in the United States: definitions, patterns and trends,
Climatic Change,
118, 811–825, https://doi.org/10.1007/s10584-012-0659-2, 2013. a
Stedinger, J. R. and Taylor, M. R.:
Synthetic streamflow generation. 1. Model verification and validation,
Water Resour. Res.,
18, 909–918, 1982. a
Tavakol, A., Rahmani, V., and Harrington, J.:
Temporal and spatial variations in the frequency of compound hot, dry, and windy events in the central United States,
Sci. Rep.-UK,
10, 1–13, https://doi.org/10.1038/s41598-020-72624-0, 2020. a, b
Vogel, M. M., Zscheischler, J., Wartenburger, R., Dee, D., and Seneviratne, S. I.:
Concurrent 2018 hot extremes across northern hemisphere due to human-induced climate change,
Earths Future,
7, 692–703, https://doi.org/10.1029/2019EF001189, 2019. a
Vogel, R. M. and Stedinger, J. R.:
The value of stochastic streamflow models in overyear reservoir design applications,
Water Resour. Res.,
24, 1483–1490, https://doi.org/10.1029/WR024i009p01483, 1988. a
Wegren, S.:
Food security and Russia's 2010 drought,
Eurasian Geogr. Econ.,
52, 140–156, https://doi.org/10.2747/1539-7216.52.1.140, 2011. a
Wu, J., Chen, X., Yu, Z., Yao, H., Li, W., and Zhang, D.: Assessing the impact of human regulations on hydrological drought development and recovery based on a 'simulated-observed' comparison of the SWAT model, J. Hydrol., 577, 123990, https://doi.org/10.1016/j.jhydrol.2019.123990, 2019. a
Wu, X., Hao, Z., Tang, Q., Singh, V. P., Zhang, X., and Hao, F.: Projected increase in compound dry and hot events over global land areas, Int. J. Climatol., 41, 393–403, https://doi.org/10.1002/joc.6626, 2021. a, b
Yu, R. and Zhai, P.:
More frequent and widespread persistent compound drought and heat event observed in China,
Sci. Rep.-UK,
10, 1–7, https://doi.org/10.1038/s41598-020-71312-3, 2020. a
Zhang, H., Wu, C., Yeh, P. J., and Hu, B. X.:
Global pattern of short-term concurrent hot and dry extremes and its relationship to large-scale climate indices,
Int. J. Climatol.,
40, 5906–5924, https://doi.org/10.1002/joc.6555, 2020. a, b
Zhou, P. and Liu, Z.:
Likelihood of concurrent climate extremes and variations over China,
Environ. Res. Lett.,
13, 094 023, https://doi.org/10.1088/1748-9326/aade9e, 2018. a, b
Zscheischler, J. and Seneviratne, S. I.:
Dependence of drivers affects risks associated with compound events,
Science Advances,
3, 1–11, https://doi.org/10.1126/sciadv.1700263, 2017. a
Zscheischler, J., Michalak, A. M., Schwalm, C., Mahecha, M. D., Huntzinger, D. N., Reichstein, M., Berthier, G., Ciais, P., Cook, R. B., El-Masri, B., Huang, M., Ito, A., Jain, A., King, A., Lei, H., Lu, C., Mao, J., Peng, S., Poulter, B., Ricciuto, D., Shi, X., Tao, B., Tian, H., Viovy, N., Wang, W., Wei, Y., Yang, J., and Zeng, N.:
Impact of large-scale climate extremes on biospheric carbon fluxes: An intercomparison based on MsTMIP data,
Global Biogeochem. Cy.,
28, 585–600, https://doi.org/10.1002/2014GB004826, 2014. a
Zscheischler, J., Westra, S., Hurk, B. J. J. M. V. D., Seneviratne, S. I., Ward, P. J., Pitman, A., Aghakouchak, A., Bresch, D. N., and Leonard, M.:
Future climate risk from compound events,
Nat. Clim. Change,
8, 469–477, https://doi.org/10.1038/s41558-018-0156-3, 2018.
a
Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C., Horton, R. M., Hurk, B. v. d., AghaKouchak, A., Jezequel, A., Mahecha, M. D., Maraun, D., Ramos, A. M., Ridder, N. N., Thiery, W., and Vignotto, E.:
A typology of compound weather and climate events,
Nature Reviews Earth & Environment,
1, 333–347, https://doi.org/10.1038/s43017-020-0060-z, 2020. a
Short summary
Compound hot and dry events can lead to severe impacts whose severity may depend on their timescale and spatial extent. Here, we show that the spatial extent and timescale of compound hot–dry events are strongly related, spatial compound event extents are largest at
sub-seasonal timescales, and short events are driven more by high temperatures, while longer events are more driven by low precipitation. Future climate impact studies should therefore be performed at different timescales.
Compound hot and dry events can lead to severe impacts whose severity may depend on their...
Altmetrics
Final-revised paper
Preprint