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Abstract. Compound hot and dry events can lead to severe impacts whose severity may depend on their
timescale and spatial extent. Despite their potential importance, the climatological characteristics of these joint
events have received little attention regardless of growing interest in climate change impacts on compound events.
Here, we ask how event timescale relates to (1) spatial patterns of compound hot—dry events in the United States,
(2) the spatial extent of compound hot—dry events, and (3) the importance of temperature and precipitation as
drivers of compound events. To study such rare spatial and multivariate events, we introduce a multi-site multi-
variable weather generator (PRSim.weather), which enables generation of a large number of spatial multivariate
hot—dry events. We show that the stochastic model realistically simulates distributional and temporal autocorre-
lation characteristics of temperature and precipitation at single sites, dependencies between the two variables,
spatial correlation patterns, and spatial heat and meteorological drought indicators and their co-occurrence prob-
abilities. The results of our compound event analysis demonstrate that (1) the northwestern and southeastern
United States are most susceptible to compound hot—dry events independent of timescale, and susceptibility de-
creases with increasing timescale; (2) the spatial extent and timescale of compound events are strongly related
to sub-seasonal events (1-3 months) showing the largest spatial extents; and (3) the importance of temperature
and precipitation as drivers of compound events varies with timescale, with temperature being most important
at short and precipitation at seasonal timescales. We conclude that timescale is an important factor to be con-
sidered in compound event assessments and suggest that climate change impact assessments should consider
several timescales instead of a single timescale when looking at future changes in compound event characteris-
tics. The largest future changes may be expected for short compound events because of their strong relation to
temperature.

Fuchs et al., 2012). The US has been shown to be affected

Compound hot and dry events, i.e., events that are extreme
with respect to both temperature and precipitation, can lead
to severe impacts on agriculture and other sectors as il-
lustrated by the 2010 heatwave—drought in Russia and the
2012 heatwave—drought in the central United States (US;
Mo and Lettenmaier, 2015), which led to substantial reduc-
tions in crop yields (Wegren, 2011; Christian et al., 2020;

by concurrent hot and dry events at different timescales in-
cluding short and long events effective at weekly to monthly
(Zhang et al., 2020) and seasonal to annual timescales (Al-
izadeh et al., 2020), respectively. The interest in these im-
pactful compound events is reflected in an increasing num-
ber of studies assessing changes in their frequency of oc-
currence. Substantial increases in the number of concurrent
droughts and heatwaves over the last few decades that are
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partly explained by increasing temperatures have been re-
ported not just for the US (Alizadeh et al., 2020; Mazdiyasni
and AghaKouchak, 2015; Tavakol et al., 2020) but also glob-
ally (Feng et al., 2020; Sarhadi et al., 2018) and for other re-
gions of the world such as China (Wu et al., 2019; Zhou and
Liu, 2018; Yu and Zhai, 2020) and Europe (Manning et al.,
2019).

While frequency of occurrence is an important factor de-
termining impacts, the severity of impacts related to com-
pound events likely also depends on their spatial extent, i.e.,
how large the affected region is, and their timescale, i.e.,
whether they just last weeks or extend over a longer period of
time. Indeed, spatiotemporal behavior is a common target of
analyses in general for drought, a related phenomenon, as in
the multi-temporal severity-area-duration analyses presented
by Andreadis et al. (2005). Despite their potential importance
for understanding and projecting the physical manifestation
and impacts of compound events, these spatiotemporal char-
acteristics have received comparably little attention. Only re-
cently have Alizadeh et al. (2020) and Wu et al. (2021) shown
that the area affected by concurrent hot—dry extremes has
increased significantly over the past few decades in the US
and globally for long, i.e., seasonal, timescales. However, it
remains to be investigated how the timescale of compound
events influences their characteristics and spatial extent.

This study aims to deepen our understanding of how the
timescale of compound hot—dry events in the US relates to
(1) spatial patterns of compound event affectedness (i.e.,
where in the US hot—dry events are most frequent), (2) spatial
extents of compound events (i.e., how large compound events
are), and (3) the role of temperature and precipitation as
drivers of compound events by focusing on multivariate and
spatial extreme events (Zscheischler et al., 2020). To answer
the question of how timescale shapes compound event char-
acteristics, we determine the probability, extent, and drivers
of spatial multivariate heatwaves and meteorological drought
over the conterminous US (CONUS) for different timescales
ranging from weekly to annual events.

Studying such spatial multivariate events is challenging
because they are rare in observational records (Zscheischler
et al., 2018). This challenge can, for example, be tackled
by developing stochastic simulation approaches to generate
large data sets with similar statistical properties as the obser-
vations (Vogel and Stedinger, 1988). A stochastic approach
to simulate spatial multivariate hot—dry events at different
timescales needs to (1) represent spatial dependencies be-
tween sites to capture the spatial aspect, (2) represent de-
pendencies between variables to capture dependencies be-
tween precipitation and temperature, and (3) be continuous
to enable studying timescales from weeks to years. How-
ever, existing models often only fulfill one or two of these
three requirements. On the one hand, existing spatial mod-
els for simulating spatial extreme events, such as the con-
ditional exceedance model by Heffernan and Tawn (2004),
are event-based (Keef et al., 2013; Diederen et al., 2019)
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and often applied to one variable, e.g., flood peaks. On the
other hand, continuous stochastic approaches, such as autore-
gressive moving-average-type models (Stedinger and Taylor,
1982) or bootstrap approaches (Rajagopalan et al., 2010),
do not represent spatial dependencies well. Therefore, Brun-
ner and Gilleland (2020) recently proposed a novel stochas-
tic approach for simulating continuous streamflow time se-
ries in multiple catchments based on the wavelet trans-
form. The Phase Randomization Simulation using wavelets
(PRSim.wave) model combines an empirical spatiotemporal
model based on the wavelet transform and phase randomiza-
tion with the flexible four-parameter kappa distribution and
builds on an earlier univariate version of the model (PRSim;
Brunner et al., 2019). It is able to simulate continuous, spa-
tially consistent time series but has so far only been applied
to one variable (streamflow).

We extend PRSim.wave here to multiple variables by
proposing a multi-site multi-variable stochastic weather gen-
erator (PRSim.weather) that simulates long time series of
spatially consistent temperature (7)) and precipitation (P)
time series. This multi-site multi-variable stochastic model
reproduces local variable distributions using flexible dis-
tributions for 7 and P and introduces spatiotemporal and
variable dependence using the wavelet transform (Torrence
and Compo, 1998) and phase randomization (Schreiber and
Schmitz, 2000; Lancaster et al., 2018). Using this multi-site
multi-variable generator to simulate a large set of spatial mul-
tivariate hot—dry events will help to shed light on the ques-
tion of how timescale shapes compound event characteristics
including spatial extent. Thus, this analysis will provide cru-
cial information to increase preparedness and develop adap-
tation measures for potentially impactful spatial multivariate
events.

2 Methods and materials

We develop a multi-variable multi-site weather generator that
stochastically simulates spatially consistent daily 7 and P
time series for a large number of locations. We apply this
model to a gridded T and P data set in the CONUS to gener-
ate a large sample of spatial multivariate hot—dry events. We
subsequently use this sample to determine which regions in
the US are susceptible to compound events and large spatial
multivariate event extents at different timescales. Last, we
look at how the importance of 7 and P for compound event
development varies with timescale.

2.1 Study region and data

The analysis is performed using a gridded data set of daily T
and P time series for 894 equally spaced grid cells in the
CONUS. T and P data were obtained from the ERAS-
Land reanalysis for the period 1981-2018 (ECMWF, 2019).
ERAS-Land relies on atmospheric forcing from the ERAS
reanalysis (Hersbach et al., 2020) and provides variables at
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a spatial resolution of 9 km for the period of 1981 to the
present. We chose a subset of regularly spaced grid cells
by sampling 1500 grid cells over the extent of the CONUS,
which resulted in 894 grid cells over land that are used for
this analysis.

2.2 Methods
2.2.1 Stochastic multi-site multi-variable modeling

To study compound hot—dry events, we develop a multi-site
multi-variable weather generator, PRSim.weather, that en-
ables simulation of large sets of spatially consistent com-
pound hot—dry events at a daily scale. PRSim.weather
combines an empirical spatiotemporal model based on the
wavelet transform and phase randomization with two flexi-
ble parametric distributions for 7" and P, which enables ex-
trapolation to yet unobserved values. It builds on the spatial
stochastic model PRSim.wave (Phase Randomization Sim-
ulation using wavelets) proposed by Brunner and Gilleland
(2020), which simulates continuous streamflow time series at
multiple sites. We expand the functionality of PRSim.wave
to simulate multiple variables, i.e., T and P, at multiple
sites. The weather generation procedure implemented in
PRSim.weather consists of five main steps (Fig. 1).

1. Feed in observed daily T and P time series for multiple
sites (here grid cells).

2. Fit monthly distributions to T and P time series at each
site to capture seasonal variations in distribution pa-
rameters (i.e., one separate distribution is fitted to the
data in each month). Using theoretical instead of em-
pirical distributions will allow us to generate extreme
values more extreme than the observations. For T, we
use the flexible skewed exponential power (SEP) dis-
tribution with four parameters (Ferndndez and Steel,
1998), which generalizes the Gaussian distribution, can
reproduce different skewness and kurtosis, and has been
previously applied for multi-site temperature simulation
(Evin et al., 2019). The SEP distribution is defined as

/(L + O AIE — 0/ @Ol 1/ forx <& )

o= {1 —[1/A+ Ayl —§)/al" 1/h) forx=§"

with location parameter &, scale parameter ¢, shape pa-
rameters « and &, and y(Z,«) representing the upper
tail of the incomplete gamma function (Asquith, 2014).

The parameters of the SEP distribution are estimated
using L-moments (R package Imomco; Asquith, 2020).
For P, we use an extended generalized Pareto distribu-
tion (E-GPD; Papastathopoulos and Tawn, 2013) with
three parameters to model positive precipitation val-
ues. The E-GPD jointly models non-extreme and ex-
treme values of P while bypassing the threshold selec-
tion problem as it enables smooth transitioning between
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a gamma-like distribution and a heavy-tailed general-
ized Pareto distribution (GPD) thanks to a transforma-
tion function G(v) (Naveau et al., 2016). The E-GPD is
defined as

F{x} = G[Hp{x/o}],

whete Hy(zy— || O O£ )

1—e* if 0 =0,
where o > 0 is a scale parameter, 6 is the shape param-
eter of the GPD, and G(v) = v”. The E-GPD has been
demonstrated to be valuable in multi-site precipitation
modeling thanks to its flexibility (Evin et al., 2018).
The parameters of the E-GPD distribution are estimated
using probability weighted moments (R package mev;
Belzile et al., 2020). We use the E-GPD to simulate
nonzero precipitation values and complement it with as
many zero values as in the observations to obtain the
full P distribution with an appropriate probability of
precipitation occurrence.

. Transform the 7 and P time series from the time

to the frequency domain by decomposing the series
into an amplitude and phase signal using a continuous
wavelet transform with the Morlet wavelet (Torrence
and Compo, 1998) (R package wavScalogram; Bolds
and Benitez, 2020). The continuous wavelet transform
is defined as the convolution of a time series x, of
length n:

N-1 /

(n" —n)ét

Wa(l) = Z XYy [f] : 3)
n'=0

where the (*) indicates the complex conjugate, [ the

wavelet scale, and o(n) the Morlet wavelet, which is
defined as

Yo(n) = /Aeiome=" /2 )

where 7 is a nondimensional time parameter, wy is the
nondimensional frequency, and i = +/—1 is the imagi-
nary unit.

. Generate one random time series using bootstrap re-

sampling on the temperature time series of one ran-
domly sampled site by sampling years with replace-
ment. Use the wavelet transform to also decompose this
bootstrapped series in order to obtain a random phase
signal.

. Generate stochastic time series for 7 and P by ap-

plying the inverse wavelet transform to the observed
amplitude signals and the randomly generated phases.
Rank-transform the newly generated time series using
the probability integral transform to the desired distri-
bution for each month using the monthly distribution
parameters derived in Step 2 (SEP parameters for 7 and
E-GPD parameters for P).
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Figure 1. Illustration of the five working steps of PRSim.weather: (1) feed in daily observed temperature (7') and precipitation (P) time series
for multiple sites (1, ..., n); (2) fit SEP distribution to 7" and E-GP distribution to P time series of all sites at a monthly scale; (3) decompose T
and P time series of all sites into an amplitude (A) and phase (P) signal using the wavelet transform; (4) generate one random time series
using bootstrap resampling and decompose that random series into an amplitude and phase signal too; and (5) generate random daily T
and P time series by combining the observed amplitude signal of each site and variable with the randomly generated phase signal and by
back-transforming the signals to the time domain using the inverse wavelet transform. Rank-transform the newly generated signal to the

desired distribution using the parameter estimates from Step 2.

The simulation of yet unobserved magnitudes becomes
possible thanks to the use of parametric distributions for T
and P in Step 2. The spatial and variable dependencies are
introduced in Step 5 by using the same random phases in the
wavelet transform at all sites and for both variables.

The stochastic multi-site multi-variable model is evaluated
with respect to the following characteristics: (1) 7 and P dis-
tributions (CDFs) at individual sites, (2) temporal autocorre-
lation of T and P (ACFs) at individual sites, (3) spatial de-
pendencies across sites for T and P (variograms), (4) T—P
variable dependencies (scatter plots), and (5) simulated spa-
tial patterns of the standardized temperature index (STI), the
standardized precipitation index (SPI), and the probability of
compound high STI and low SPI anomalies at a 1-month ag-
gregation level for moderate, severe, and extreme events ac-
cording to the empirical copula (see Sect. 2.2.2).

PRSim.weather is finally run n =100 times for the
894 grid cells in the US in order to substantially in-
crease the sample size available for the assessment of com-
pound hot—dry events by pooling the different model runs
(28 years - 100 = 2800 years).

2.2.2 Compound event analysis

While the focus is on the simulated series, compound events
and their corresponding 7" and P characteristics are identi-
fied at different timescales in both the observed and stochas-
tically simulated time series to assess the reliability of the
stochastic model. To look at different timescales, we first
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convert the 7" and P series to weekly and monthly series us-
ing mean values and sums, respectively. We work with aggre-
gation levels of 1 week to represent “flash” compound events
and of 1, 3, 6, and 12 months to represent sub-seasonal, sea-
sonal, and annual timescales. In a second step, we transform
the aggregated T and P series to series of standardized in-
dices, which we will use to study relationships between the
marginal behavior of compound events because they guaran-
tee variable and site comparability. Standardized precipita-
tion index (SPI) series (McKee et al., 1993) for each loca-
tion are computed by transforming the P values to a stan-
dardized normal distribution (mean 0 and SD 1) using a
site-specific E-GPD distribution (the Kolmogorov—Smirnov
test did not reject gamma in over 80 % of the grid cells).
Similarly, we compute standardized temperature index series
(STT; Zscheischler et al., 2014) using the SEP distribution for
transformation. Last, compound hot—dry events are identified
for each timescale and grid cell using a bivariate empirical
copula (Deheuvels, 1979; Genest and Favre, 2007), which
describes the joint distribution of 7' (STI) and P (SPI) with
uniform margins. We change the sign of the SPI values to
convert negative to positive anomalies as we are interested in
events during which STI and SPI are extreme. The empirical
copula of STI and SPI is described as

1 <& R; Si
C ) = - 1( : =< 3_l< )7 5
(. ) n; n+1_un+1_v )

where R; and S; represent pairs of ranks (across STI and SPI
time series), n the sample size, and C, (u, v) the rank-based
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Figure 2. Illustration of the relationship between monthly STI (yellow) and SPI (blue) time series and their bivariate copula (i.e., the values

of Cu(L7,

purple boxes.

estimator of the copula C(«, v). An example of how the em-
pirical copula (purple) is related to the margins STI (yellow)
and SPI (blue) is provided in Fig. 2.

Using the time series of empirical bivariate distribution
values, we identify moderate, severe, and extreme compound
events using three thresholds at 0.8, 0.9, and 0.95, respec-
tively (see Fig. 2 for an example with a threshold of 0.9). This
copula-based threshold procedure slightly differs from an ap-
proach whereby both margins (SPI and STI) have to jointly
exceed a threshold in order for an event to be defined as a
compound event. The bivariate threshold procedure includes
a slightly different event space, which besides the jointly
marginally extreme events also includes those events that are
extreme in terms of the bivariate distribution but not neces-
sarily in terms of both margins. Please note that the focus on
high 7" and low P events leads to the selection of compound
events in the summer season. For an aggregation period of
1 month, all selected compound events happen between May
and October, with over 90 % of the events happening in July
or August. The seasonal focus is slightly shifted towards late
summer (August) and early fall (September and October) as
we move towards longer aggregation periods.

To assess the spatial extent of compound events at differ-
ent timescales, we define the spatial extent of the compound
event as the percentage of grid cells affected by the com-
pound event at any given timescale. Then, for each grid cell,
we determine the median spatial extent of those events it is
affected by at each timescale.

To explain the role of the individual variables 7 and P
in compound event occurrence, we compute Kendall’s cor-
relation between the median bivariate distribution (empiri-
cal copula) and the median standardized indices STI and SPI
over all simulation runs at different timescales. This corre-
lation analysis is performed for nine hydroclimatic regions
in the United States (Bukovsky; Bukovsky, 2011) to quan-
tify the regional spread in the role of STI and SPI for com-
pound event development; i.e., correlation is computed be-
tween median bivariate distributions and median STI or SPI
at different grid cells within a region. We look at correlations
for different timescales and event extremeness levels to as-
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nsﬁ); purple) for one example grid cell. Compound STI and SPI events exceeding a copula-threshold of 0.9 are highlighted by

sess to which degree these two factors influence STI and SPI
importance.

3 Results

3.1 Evaluating the weather generator

The multi-site multi-variable stochastic simulation approach
in PRSim.weather is capable of reproducing the observed
statistical characteristics of 7 and P time series at individ-
ual locations as illustrated by one example station (Fig. 3).
The flexible SEP and E-GPD distributions capture the local T’
and P distributions well as indicated by the good match of
simulated with observed densities (Fig. 3a and b). The suit-
ability of the SEP and E-GPD distributions to model local T
and P distributions also extends to the tails as 100-year re-
turn levels estimated from the observed and simulated series
compare well for both variables. The temporal autocorrela-
tion in both variables is realistically reproduced, as shown by
the good agreement of simulated with observed autocorre-
lation functions, thanks to the observed frequency spectrum
information used in the inverse wavelet transform (Fig. 3c
and d). The simulated time series mimic the main tempo-
ral characteristics of the observed time series well, includ-
ing seasonality and temporal event distribution and cluster-
ing as illustrated by 3 years of observed and simulated T
and P data (Fig. 3e and f). The T—P variable dependence
is also generally well captured thanks to the use of the same
random phases for both variables when applying the inverse
wavelet transform (Fig. 3g and h). However, the number of
high T-low P events at a daily scale is slightly underesti-
mated. The above-described model evaluation can be gener-
alized to other grid cells in the data set. In addition to these
local characteristics, spatial correlations are captured as illus-
trated by the similarity of observed and simulated variograms
(Fig. 4). However, the spatial correlation of T is slightly over-
estimated by the simulations. Achieving a “perfect” joint rep-
resentation of the three forms of dependence — temporal, spa-
tial, and variable — is very challenging. The model is consid-
ered suitable for the analysis of compound hot—dry events

Earth Syst. Dynam., 12, 621-634, 2021
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simulation run), (e, f) 3-year time series of T (right y axis) and P (left y axis) for observations and simulations, and (g, h) heat scatter plot of
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Figure 4. PRSim.weather evaluation for spatial dependence: (a) ob-
served vs. simulated 7' (orange) variograms for 92 equally spaced
grid cells and (b) observed vs. simulated P (blue) variograms for
92 grid cells, which describe the degree of spatial dependence of a
field (Cressie, 1993).

because it has an acceptable performance with respect to all
three aspects and enables increasing the sample size of com-
pound events.

PRSim.weather enables simulation of a large sample of
extreme events in terms of standardized temperature (STI)
and precipitation indices (SPI). These spatial samples enable

Earth Syst. Dynam., 12, 621-634, 2021

comparing observed and simulated STI and SPI patterns for
different levels of extremeness (Fig. 5). While the simulated
spatial STI and SPI patterns look similar to the observed
ones, they are more expressed because of the larger sam-
ple available, which contains yet unobserved extremes be-
cause of the use of parametric distributions for simulating 7
and P. The spatial pattern for STI is rather weak, with STI
values being relatively homogeneously distributed except for
the Pacific Northwest and along the west coast where STI
values are slightly higher than in the rest of the country. In
contrast, the spatial pattern of median SPIs is expressed with
substantially higher negative anomalies in the western than
the eastern US and particularly strong negative anomalies in
the southwest.

The spatial STI and SPI patterns are reflected in the spatial
distribution of the probability of compound hot—dry events,
which is also realistically represented but slightly underes-
timated by PRSim.weather (Fig. 6). The highest probability
of compound hot—dry events at a monthly timescale is found
in the Pacific Northwest, along the west coast, in the Rocky
Mountains, and in the southeast, in particular in Texas. In
contrast, compound hot—dry events are relatively rare in the
Great Plains, the midwest, and Florida. For the remainder of
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our analysis, we focus on the stochastic simulations because
of their large sample size, which allows us to study rare spa-
tial multivariate hot—dry events.

3.2 Compound hot—dry events

The stochastically simulated compound hot—dry events re-
veal that the probability of co-occurring hot and dry peri-
ods is highest in the northwestern and southeastern US in-
dependently of the timescale considered (Fig. 7). However,
the probability of compound events decreases with increas-
ing duration, as can be expected due to the aggregation over
increasingly longer periods of multiple weather events that
may not all favor instantaneous compound hot—dry condi-
tions and joint extremeness. Still, there are spatial nuances
depending on the timescale considered. For example, the
high probabilities of compound events are located in the
south for short timescales and move to the southeast as we
move towards longer timescales. Timescale not only affects
local concurrence probabilities but also the size of the re-
gions affected by compound hot—dry events, which decreases
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with increasing timescale and event extremeness. At an an-
nual timescale, the probability of events at all extreme thresh-
olds is negligible.

Different regions of the US differ not only in how suscep-
tible they are to compound hot—dry event occurrence but also
in how likely they are to be affected by a widespread (large
spatial scale) compound event. The spatial occurrence pat-
terns for spatially extensive compound hot—dry events vary
by timescale (Fig. 8). For moderate extremes, the midwest is
the most affected by large events, with more prevalence in the
upper midwest at shorter timescales and the central to south-
ern midwest at longer timescales. For the severe category, the
western and southeastern regions are more affected, which is
a similar spatial pattern as the probability of compound hot—
dry events (Fig. 7), although there are no large-scale events
at a short timescale. In addition, large compound events gen-
erally become less likely as we move beyond the 3-month
timescale and toward extreme events (Fig. 9). While ~ 20 %
of the CONUS may be jointly affected by moderate and short
compound events, spatial extents of compound events be-
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Figure 7. Probability of compound hot—dry events (number of compound events compared to the total number of months) at different
timescales (1 week, 1 month, 3 months, 6 months, 1 year) and for three levels of extremeness (moderate C,, > 0.8, severe C;, > 0.9, and
extreme C,, > 0.95) per grid cell. The darker the color, the higher the probability that a grid cell is affected by compound hot—dry events.

come small to nonexistent for extreme and long-lasting (i.e.,
annual) compound events.

The importance of 7' (STI) and P (SPI) as drivers of
compound events varies by timescale and level of extreme-
ness (Fig. 10). T is a particularly important driver at short
timescales, as indicated by the high correlation between me-
dian STI and the median bivariate distribution of grid cells
within a specific hydroclimatic region (Fig. 10a). The impor-
tance of P as a driver of compound events increases with
timescale up to event durations of 6 months but decreases
with level of extremeness (Fig. 10b). In summary, the longer
the timescale, the more important P becomes as a driver
compared to 7 (up to a seasonal timescale).

4 Discussion

The  multi-site  multi-variable  stochastic ~ model
PRSim.weather proposed for the joint simulation of T
and P at multiple sites has been shown to be suitable for
the simulation of spatial multivariate hot—dry events. It

Earth Syst. Dynam., 12, 621-634, 2021

reproduces the distributional and temporal autocorrelation
characteristics of 7 and P at single sites, the dependence
between the two variables, the spatial correlation of 7 and P
across sites, and spatial patterns of STI, SPI, and their
concurrence probabilities. However, spatial dependencies
are slightly overestimated, while variable dependencies
are slightly underestimated. The model still has acceptable
performance across three types of dependencies — temporal,
spatial, and variable — and enables studying rare spatial
multivariate events, which would not be possible using
observations only. Please note that even though the model
generates yet unobserved observations, the simulations
are not independent of the limited sample size used to fit
the model because the model is data-driven like any other
calibrated and/or fitted model. Please also note that while
the model will be able to retain the statistical dependencies
between variables to some degree, individual simulated
events may not necessarily be physically consistent if many
variables are jointly simulated. We note that stochastic
approaches may be combined with physical approaches,
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Figure 8. Spatial patterns of median compound event extent per grid cell for different timescales and extremeness levels over nine hydrocli-
matic regions. The darker the color, the higher the median spatial extent of compound events a grid cell is affected by.

such as in the weather generator AWE-GEN-2 by Peleg
et al. (2017), or one may rely on large climate ensemble
simulation approaches (Deser et al., 2020; Bevacqua et al.,
2021).

Further model development should focus on how to im-
prove the representation of dependencies in very high 7T-—
low P events at a daily scale and applications in other con-
texts as well as under nonstationary conditions. While the
current application focuses on the two variables 7" and P in
the US, the model can be adapted to other regions, other vari-
ables, and a multivariate context in which more than two vari-
ables are of interest. Adapting the model to other regions and
variables requires reconsidering distribution choices, and ex-
tending it to a multivariate context necessitates adding more
input variables, which are subsequently randomized in the
same way as all other variables. Potential multivariate ap-
plications include the simulation of spatial concurrent plu-
vial, river, and coastal flooding by jointly modeling precipi-
tation, discharge, and water levels or the joint simulation of
wildfire drivers such as wind speed, temperature, and humid-
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ity. Extending model application to nonstationary conditions
would require the implementation of nonstationary distribu-
tions for both 7" and P. For example, one could introduce co-
variates for certain parameters of the marginal distributions
of T and P in Step 2 or introduce covariates with information
about trends or variability in P and/or T to guide resampling
in Step 4.

The finding that the western and southeastern US are most
likely to be affected by compound hot—dry events at sub-
annual timescales suggests that the likelihood of compound
events is somehow related to precipitation seasonality, with
regions receiving most of their precipitation in winter or
spring and comparably less in summer and fall (Finkelstein
and Truppi, 1991) being the most likely to be affected by
compound events. In “normal” years, both the western and
southeastern US receive a large part of their precipitation
through recurrent patterns such as atmospheric rivers (Rutz
et al., 2015) and tropical cyclones (Kunkel et al., 2012), re-
spectively. Anomalies can arise because of temporal shifts
or a weakening of these patterns in specific seasons and/or

Earth Syst. Dynam., 12, 621-634, 2021
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Figure 9. Relationship between compound event extent, timescale,
and event extremeness. Box plots summarize the spread of me-
dian extent (percentage of overall area affected) across grid cells
for weekly (red), monthly (orange), 3-monthly (purple), 6-monthly
(blue), and annual (green) timescales and three levels of extreme-
ness: moderate, severe, and extreme.

years. In addition, the regions most likely to experience com-
pound events are the regions found to be most susceptible to
heatwaves in the US (Smith et al., 2013).

Our finding that the spatial extents of compound events
are largest for moderate events at sub-seasonal timescales
implies that while these moderate events may have less se-
vere impacts at a local scale, they may still be highly relevant
at a regional scale. Compound events with large spatial ex-
tents represent a particular management challenge because
they may preclude the transfer of resources and emergency
supplies from one to another region. Consequently, the so-
cietal impacts of large-scale compound events can be ampli-
fied, since many coping strategies are predicated on some de-
gree of resource transfer from less severely affected adjacent
regions (Murgatroyd and Hall, 2020).

The finding that temperature is a comparably more impor-
tant driver for short compound events only, while precipi-
tation is comparably more important at seasonal timescales,
corroborates the findings of previous studies about the im-
portance of different hydrometeorological drivers at differ-
ent timescales. Zhang et al. (2020) have shown that temper-
ature is the most important hydrometeorological driver of
short-term compound hot—dry extremes, which aligns with
our findings. In addition, Tavakol et al. (2020) have shown
that at long (i.e., annual) timescales, hot—dry—windy events
co-occurred with major heatwaves, which is in line with our
finding that temperature is an important driver of extreme
compound hot—dry events at seasonal to annual timescales.

Future changes in the frequency and severity of compound
hot—dry events are expected because of changes in both tem-
perature and precipitation as well as their interdependence.
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The importance of temperature as a driver of short and ex-
treme compound hot—dry events suggests that the increasing
temperatures associated with climate change may induce fu-
ture changes in the frequency and magnitude of short and
extreme compound events. Such future increases have been
projected globally (Wu et al., 2021) and regionally, e.g., for
China (Zhou and Liu, 2018). In addition, previous studies
have shown that the number and intensity of compound hot—
dry events may increase because temperature and precipi-
tation may become increasingly coupled and/or correlated
in summer (De Luca et al., 2020; Zscheischler and Senevi-
ratne, 2017), possibly as a consequence of an intensification
of land—atmosphere feedbacks (Seneviratne et al., 2010). As
the number of compound events increases locally, the area
exposed to compound hot—dry events is projected to increase
with global warming (Vogel et al., 2019), continuing a trend
that has been already observed during the past few decades
(Alizadeh et al., 2020). How exactly future changes in com-
pound event extents relate to changes in drought spatial ex-
tent (Brunner et al., 2021) and in heatwave spatial extent re-
mains to be investigated.

5 Summary and conclusions

We introduce the multi-variable multi-site stochastic model
PRSim.weather to simulate continuous and spatially con-
sistent multivariate time series. The model is shown to re-
alistically simulate distributional and temporal autocorrela-
tion characteristics of temperature and precipitation at single
sites, dependencies between the two variables up to moder-
ate extremes, spatial correlation patterns, and spatial heat and
drought indicators as well as their co-occurrence probabili-
ties for a gridded large-sample data set in the United States.
However, future work is needed to improve the representa-
tion of very extreme hot—dry events. We apply the stochas-
tic model to generate a large set of spatial and multivariate
hot—dry events and use these simulated compound events to
assess how event timescale and extremeness influence the
spatial affectedness by compound hot—dry events over the
United States, the spatial extent of compound events, and
their main drivers temperature and precipitation. Our results
show that (1) the northwest and southeast are most likely
to be affected by compound hot—dry events independent of
timescale; (2) the spatial extent of compound hot—dry events
decreases with increasing event extremeness and timescale,
i.e., the events with the largest spatial extents are typically
short and only moderately extreme; and (3) temperature is
an important driver of short compound events, while pre-
cipitation is an important driver at seasonal timescales, par-
ticularly for the moderately extreme events. These findings
highlight the fact that occurrences of compound events are
strongly influenced by the timescales at which they are de-
fined. Research to quantify current compound event risk and
to project it into the future will need to take timescale into
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Figure 10. Importance of T and P as drivers of compound events across timescales and extremeness levels. Correlation of median bivariate
distribution (empirical copula) per grid cell with median (a) STI and (b) SPI per grid cell. Correlations were computed using all simulation
runs for nine hydroclimatic (Bukovsky) regions (spread of box plot) per timescale (color) and level of extremeness (hue).

consideration, especially as it also influences the sensitivity
to different climate drivers and their potential future changes.
Considering space scales and timescales in compound event
assessments will allow us to make nuanced statements about
which types of compound events may be changing because
of increasing temperatures in a warming world. For example,
short compound events and therefore events with large spa-
tial extents may become more frequent with increasing tem-
peratures, which will pose new regional management chal-
lenges.

Code and data availability. The ERAS5-Land tempera-
ture and precipitation data used for this analysis can be
downloaded from the Copernicus Climate Data Store:
https://doi.org/10.24381/cds.e2161bac  (ECMWF, 2019). The
stochastic weather generator PRSim.weather is implemented in the
R package PRSim under the function PRSim.weather and available
for download at https://cran.r-project.org/web/packages/PRSim/
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