Articles | Volume 12, issue 2
https://doi.org/10.5194/esd-12-439-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/esd-12-439-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The thermal response of small and shallow lakes to climate change: new insights from 3D hindcast modelling
Francesco Piccioni
CORRESPONDING AUTHOR
LEESU, Ecole des Ponts ParisTech, Univ Paris Est Créteil, Marne-la-Vallée, France
Céline Casenave
MISTEA, Université Montpellier, INRAE, Institut Agro, Montpellier, France
Bruno Jacques Lemaire
LEESU, Ecole des Ponts ParisTech, Univ Paris Est Créteil, Marne-la-Vallée, France
AgroParisTech, Paris, France
Patrick Le Moigne
CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
Philippe Dubois
LEESU, Ecole des Ponts ParisTech, Univ Paris Est Créteil, Marne-la-Vallée, France
Brigitte Vinçon-Leite
CORRESPONDING AUTHOR
LEESU, Ecole des Ponts ParisTech, Univ Paris Est Créteil, Marne-la-Vallée, France
Related authors
No articles found.
Sophie Barthelemy, Bertrand Bonan, Miquel Tomas-Burguera, Gilles Grandjean, Séverine Bernardie, Jean-Philippe Naulin, Patrick Le Moigne, Aaron Boone, and Jean-Christophe Calvet
Hydrol. Earth Syst. Sci., 29, 2321–2337, https://doi.org/10.5194/hess-29-2321-2025, https://doi.org/10.5194/hess-29-2321-2025, 2025
Short summary
Short summary
A drought index is developed that quantifies drought on an annual scale, making it applicable to monitoring clay shrinkage damage to buildings. A comparison with the number of insurance claims for subsidence shows that the presence of trees near individual houses must be taken into account. Significant soil moisture droughts occurred in France in 2003, 2018, 2019, 2020, and 2022. Particularly high index values are observed in 2022. It is found that droughts will become more severe in the future.
Tanguy Ronan Lunel, Belen Marti, Aaron Boone, and Patrick Le Moigne
EGUsphere, https://doi.org/10.5194/egusphere-2024-3562, https://doi.org/10.5194/egusphere-2024-3562, 2025
Short summary
Short summary
Modelling evapotranspiration is essential for understanding the water cycle. While irrigation is known to increase evapotranspiration, it is less known that it also modifies local weather, which can in turn partially reduce evapotranspiration. This latter phenomenon is overlooked in some land surface model configurations. This study investigates and quantifies the impact of this oversight, showing that land surface models overestimate evapotranspiration by about 25% for crops in irrigated areas.
Tanguy Lunel, Maria Antonia Jimenez, Joan Cuxart, Daniel Martinez-Villagrasa, Aaron Boone, and Patrick Le Moigne
Atmos. Chem. Phys., 24, 7637–7666, https://doi.org/10.5194/acp-24-7637-2024, https://doi.org/10.5194/acp-24-7637-2024, 2024
Short summary
Short summary
During the summer in Catalonia, a cool wind, the marinada, blows into the eastern Ebro basin in the afternoon. This study investigates its previously unclear dynamics using observations and a meteorological model. It is found to be driven by a cool marine air mass that flows over the mountains into the basin. The study shows how the sea breeze, upslope winds, larger weather patterns and irrigation play a prominent role in the formation and characteristics of the marinada.
Antoine Sobaga, Bertrand Decharme, Florence Habets, Christine Delire, Noële Enjelvin, Paul-Olivier Redon, Pierre Faure-Catteloin, and Patrick Le Moigne
Hydrol. Earth Syst. Sci., 27, 2437–2461, https://doi.org/10.5194/hess-27-2437-2023, https://doi.org/10.5194/hess-27-2437-2023, 2023
Short summary
Short summary
Seven instrumented lysimeters are used to assess the simulation of the soil water dynamic in one land surface model. Four water potential and hydraulic conductivity closed-form equations, including one mixed form, are evaluated. One form is more relevant for simulating drainage, especially during intense drainage events. The soil profile heterogeneity of one parameter of the closed-form equations is shown to be important.
Olivia Desgué-Itier, Laura Melo Vieira Soares, Orlane Anneville, Damien Bouffard, Vincent Chanudet, Pierre Alain Danis, Isabelle Domaizon, Jean Guillard, Théo Mazure, Najwa Sharaf, Frédéric Soulignac, Viet Tran-Khac, Brigitte Vinçon-Leite, and Jean-Philippe Jenny
Hydrol. Earth Syst. Sci., 27, 837–859, https://doi.org/10.5194/hess-27-837-2023, https://doi.org/10.5194/hess-27-837-2023, 2023
Short summary
Short summary
The long-term effects of climate change will include an increase in lake surface and deep water temperatures. Incorporating up to 6 decades of limnological monitoring into an improved 1D lake model approach allows us to predict the thermal regime and oxygen solubility in four peri-alpine lakes over the period 1850–2100. Our modeling approach includes a revised selection of forcing variables and provides a way to investigate the impacts of climate variations on lakes for centennial timescales.
Patrick Le Moigne, Eric Bazile, Anning Cheng, Emanuel Dutra, John M. Edwards, William Maurel, Irina Sandu, Olivier Traullé, Etienne Vignon, Ayrton Zadra, and Weizhong Zheng
The Cryosphere, 16, 2183–2202, https://doi.org/10.5194/tc-16-2183-2022, https://doi.org/10.5194/tc-16-2183-2022, 2022
Short summary
Short summary
This paper describes an intercomparison of snow models, of varying complexity, used for numerical weather prediction or academic research. The results show that the simplest models are, under certain conditions, able to reproduce the surface temperature just as well as the most complex models. Moreover, the diversity of surface parameters of the models has a strong impact on the temporal variability of the components of the simulated surface energy balance.
Antoine Sobaga, Bertrand Decharme, Florence Habets, Christine Delire, Noële Enjelvin, Paul-Olivier Redon, Pierre Faure-Catteloin, and Patrick Le Moigne
EGUsphere, https://doi.org/10.5194/egusphere-2022-274, https://doi.org/10.5194/egusphere-2022-274, 2022
Preprint archived
Short summary
Short summary
Seven instrumented lysimeters are used to assess the simulation of the soil water dynamic in one land surface model. Three water potential and hydraulic conductivity closed-form equations including one mixed form are evaluated. The mixed form is more relevant to simulate drainage especially during intense drainage events. Soil profile heterogeneity of one parameter of the closed-form equations is shown to be important.
Tingfeng Wu, Boqiang Qin, Anning Huang, Yongwei Sheng, Shunxin Feng, and Céline Casenave
Geosci. Model Dev., 15, 745–769, https://doi.org/10.5194/gmd-15-745-2022, https://doi.org/10.5194/gmd-15-745-2022, 2022
Short summary
Short summary
Most hydrodynamic models were initially developed based in marine environments. They cannot be directly applied to large lakes. Based on field observations and numerical experiments of a large shallow lake, we developed a hydrodynamic model by adopting new schemes of wind stress, wind waves, and turbulence for large lakes. Our model can greatly improve the simulation of lake currents. This study will be a reminder to limnologists to prudently use ocean models to study lake hydrodynamics.
Thibault Guinaldo, Simon Munier, Patrick Le Moigne, Aaron Boone, Bertrand Decharme, Margarita Choulga, and Delphine J. Leroux
Geosci. Model Dev., 14, 1309–1344, https://doi.org/10.5194/gmd-14-1309-2021, https://doi.org/10.5194/gmd-14-1309-2021, 2021
Short summary
Short summary
Lakes are of fundamental importance in the Earth system as they support essential environmental and economic services such as freshwater supply. Despite the impact of lakes on the water cycle, they are generally not considered in global hydrological studies. Based on a model called MLake, we assessed both the importance of lakes in simulating river flows at global scale and the value of their level variations for water resource management.
Patrick Le Moigne, François Besson, Eric Martin, Julien Boé, Aaron Boone, Bertrand Decharme, Pierre Etchevers, Stéphanie Faroux, Florence Habets, Matthieu Lafaysse, Delphine Leroux, and Fabienne Rousset-Regimbeau
Geosci. Model Dev., 13, 3925–3946, https://doi.org/10.5194/gmd-13-3925-2020, https://doi.org/10.5194/gmd-13-3925-2020, 2020
Short summary
Short summary
The study describes how a hydrometeorological model, operational at Météo-France, has been improved. Particular emphasis is placed on the impact of climatic data, surface, and soil parametrizations on the model results. Model simulations and evaluations carried out on a variety of measurements of river flows and snow depths are presented. All improvements in climate, surface data, and model physics have a positive impact on system performance.
Cited articles
Adrian, R., O'Reilly, C. M., Zagarese, H., Baines, S. B., Hessen, D. O.,
Keller, W., Livingstone, D. M., Sommaruga, R., Straile, D., Van Donk, E., Weyhenmeyer, G. A., and Winder, M.: Lakes as sentinels of climate change, Limnol. Oceanogr., 54, 2283–2297, https://doi.org/10.4319/lo.2009.54.6_part_2.2283, 2009. a
Alduchov, O. A. and Eskridge, R. E.: Improved Magnus' form approximation of
saturation vapor pressure, Tech. Rep. DOE/ER/61011-T6, Department of Commerce, Asheville, NC, USA, https://doi.org/10.2172/548871, 1997. a
Aparicio Medrano, E., Uittenbogaard, R., Van de Wiel, B., Dionisio Pires, M.,
and Clercx, H.: An alternative explanation for cyanobacterial scum formation
and persistence by oxygenic photosynthesis, Harmful Algae, 60, 27–35,
https://doi.org/10.1016/j.hal.2016.10.002, 2016. a
Austin, J. A. and Colman, S. M.: Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: A positive ice-albedo feedback, Geophys. Res. Lett., 34, L06604, https://doi.org/10.1029/2006GL029021, 2007. a
Bachmann, R., Hoyer, M., and Canfield, D.: The Potential For Wave Disturbance in Shallow Florida Lakes, Lake Reserv. Manage., 16, 281–291, https://doi.org/10.1080/07438140009354236, 2000. a
Bernard, O. and Rémond, B.: Validation of a simple model accounting for light and temperature effect on microalgal growth, Bioresour. Technol., 123,
520–527, https://doi.org/10.1016/j.biortech.2012.07.022, 2012. a, b
Biggs, J., von Fumetti, S., and Kelly-Quinn, M.: The importance of small
waterbodies for biodiversity and ecosystem services: implications for policy
makers, Hydrobiologia, 793, 3–39, https://doi.org/10.1007/s10750-016-3007-0, 2016. a, b
Burkey, J.: Mann-Kendall Tau-b with Sen's Method (enhanced), MATLAB Central
!file Exchange, available at: https://www.mathworks.com/matlabcentral/!fileexchange/11190-mann-kendall-tau-b-with-sen-s-method-enhanced, last access: 12 February 2020. a
Carey, C. C., Ibelings, B. W., Hoffmann, E. P., Hamilton, D. P., and Brookes,
J. D.: Eco-physiological adaptations that favour freshwater cyanobacteria in
a changing climate, Water Res., 46, 1394–1407,
https://doi.org/10.1016/j.watres.2011.12.016, 2012. a, b
Chanudet, V., Fabre, V., and van der Kaaij, T.: Application of a
three-dimensional hydrodynamic model to the Nam Theun 2 Reservoir (Lao PDR), J. Great Lakes Res., 38, 260–269, https://doi.org/10.1016/j.jglr.2012.01.008, 2012. a
Downing, J. A., Prairie, Y. T., Cole, J. J., Duarte, C. M., Tranvik, L. J.,
Striegl, R. G., McDowell, W. H., Kortelainen, P., Caraco, N. F., Melack, J. M., and Middelburg, J. J.: The global abundance and size distribution of lakes, ponds, and impoundments, Limnol. Oceanogr., 51, 2388–2397,
https://doi.org/10.4319/lo.2006.51.5.2388, 2006. a, b
Dupuis, A. P. and Hann, B. J.: Warm spring and summer water temperatures in
small eutrophic lakes of the Canadian prairies: potential implications for
phytoplankton and zooplankton, J. Plankt. Res., 31, 489–502,
https://doi.org/10.1093/plankt/fbp001, 2009. a, b, c, d
Durand, Y., Brun, E., Merindol, L., Guyomarc'h, G., Lesaffre, B., and Martin,
E.: A meteorological estimation of relevant parameters for snow models,
Ann. Glaciol., 18, 65–71, https://doi.org/10.3189/S0260305500011277, 1993. a
Elliott, J. A., Jones, I. D., and Thackeray, S. J.: Testing the Sensitivity of Phytoplankton Communities to Changes in Water Temperature and Nutrient Load, in a Temperate Lake, Hydrobiologia, 559, 401–411,
https://doi.org/10.1007/s10750-005-1233-y, 2006. a
Flaim, G., Eccel, E., Zeileis, A., Toller, G., Cerasino, L., and Obertegger,
U.: Effects of re-oligotrophication and climate change on lake thermal
structure, Freshwater Biol., 61, 1802–1814, https://doi.org/10.1111/fwb.12819, 2016. a
Frassl, M. A., Boehrer, B., Holtermann, P. L., Hu, W., Klingbeil, K., Peng, Z., Zhu, J., and Rinke, K.: Opportunities and Limits of Using Meteorological Reanalysis Data for Simulating Seasonal to Sub-Daily Water Temperature Dynamics in a Large Shallow Lake, Water, 10, 594, https://doi.org/10.3390/w10050594, 2018. a
Frumkin, H., Bratman, G. N., Breslow, S. J., Cochran, B., Kahn, P. H., Lawler, J. J., Levin, P. S., Tandon, P. S., Varanasi, U., Wolf, K. L., and Wood, S. A.: Nature Contact and Human Health: A Research Agenda, Environ. Health Perspect., 125, 075001, https://doi.org/10.1289/EHP1663, 2017. a, b
Fu, H., Yuan, G., Özkan, K., Johansson, L. S., Søndergaard, M., Lauridsen, T. L., and Jeppesen, E.: Seasonal and long-term trends in the spatial heterogeneity of lake phytoplankton communities over two decades of restoration and climate change, Sci. Total Environ., 748, 141106, https://doi.org/10.1016/j.scitotenv.2020.141106, 2020. a
Gallagher, C., Lund, R., and Robbins, M.: Changepoint Detection in Climate
Time Series with Long-Term Trends, J. Climate, 26, 4994–5006,
https://doi.org/10.1175/JCLI-D-12-00704.1, 2013. a
Gillooly, J.: Effect of body size and temperature on generation time in
zooplankton, J. Plankt. Res., 22, 241–251, https://doi.org/10.1093/plankt/22.2.241, 2000. a
Grigorieva, E., Matzarakis, A., and De Freitas, C.: Analysis of growing
degree-days as climate impact indicator in a region with extreme annual air
temperature amplitude, Clim. Res., 42, 143–154, https://doi.org/10.3354/cr00888, 2010. a
Habets, F., Boone, A., Champeaux, J.-L., Etchevers, P., Franchisteguy, L.,
Leblois, E., Ledoux, E., Le Moigne, P., Martin, E., Morel, S., Noilhan, J.,
Quintana Seguí, P., Rousset, F., and Viennot, P.: The SAFRAN-ISBA-MODCOU hydrometeorological model applied over France, J. Geophys. Res., 113, D06113, https://doi.org/10.1029/2007JD008548, 2008. a
Hadley, K. R., Paterson, A. M., Stainsby, E. A., Michelutti, N., Yao, H.,
Rusak, J. A., Ingram, R., McConnell, C., and Smol, J. P.: Climate warming
alters thermal stability but not stratification phenology in a small
north-temperate lake, Hydrol. Process., 28, 6309–6319, https://doi.org/10.1002/hyp.10120, 2014. a
Hassall, C.: The ecology and biodiversity of urban ponds, Wiley
Interdisciplin. Rev.: Water, 1, 187–206, https://doi.org/10.1002/wat2.1014, 2014. a
Higgins, S. L., Thomas, F., Goldsmith, B., Brooks, S. J., Hassall, C., Harlow, J., Stone, D., Völker, S., and White, P.: Urban freshwaters, biodiversity, and human health and well-being: Setting an interdisciplinary research agenda, WIREs Water, 6, e1339, https://doi.org/10.1002/wat2.1339, 2019. a
Hill, M. J., Biggs, J., Thornhill, I., Briers, R. A., Gledhill, D. G., White,
J. C., Wood, P. J., and Hassall, C.: Urban ponds as an aquatic biodiversity
resource in modified landscapes, Global Change Biol., 23, 986–999,
https://doi.org/10.1111/gcb.13401, 2017. a
Hodges, B.: Hydrodynamical Modeling, in: Encyclopedia of Inland Waters, Elsevier, https://doi.org/10.1016/B978-0-12-409548-9.09123-5, 2014. a
Huisman, J., Codd, G. A., Paerl, H. W., Ibelings, B. W., Verspagen, J. M. H.,
and Visser, P. M.: Cyanobacterial blooms, Nat. Rev. Microbiol., 16, 471–483, https://doi.org/10.1038/s41579-018-0040-1, 2018. a
Humphries, S. E. and Lyne, V. D.: Cyanophyte blooms: The role of cell buoyancy, Limnol. Oceanogr., 33, 79–91, https://doi.org/10.4319/lo.1988.33.1.0079, 1988. a
Idso, S. B.: On the concept of lake stability, Limnol. Oceanogr.y, 18, 681–683, https://doi.org/10.4319/lo.1973.18.4.0681, 1973. a
Jankowski, T., Livingstone, D. M., Bührer, H., Forster, R., and Niederhauser, P.: Consequences of the 2003 European heat wave for lake temperature profiles, thermal stability, and hypolimnetic oxygen depletion:
Implications for a warmer world, Limnol. Oceanogr., 51, 815–819,
https://doi.org/10.4319/lo.2006.51.2.0815, 2006. a
Jenny, J.-P., Francus, P., Normandeau, A., Lapointe, F., Perga, M.-E., Ojala,
A., Schimmelmann, A., and Zolitschka, B.: Global spread of hypoxia in
freshwater ecosystems during the last three centuries is caused by rising
local human pressure, Global Change Biol., 22, 1481–1489,
https://doi.org/10.1111/gcb.13193, 2016. a
Jones, J. and Brett, M. T.: Lake Nutrients, Eutrophication, and Climate Change, in: Global Environmental Change, Handbook of Global Environmental Pollution, edited by: Freedman, B., Springer Netherlands, Dordrecht, 273–279, https://doi.org/10.1007/978-94-007-5784-4_109, 2014. a
Kendall, M.: Rank correlation methods, Rank correlation methods, Griffin,
Oxford, England, 1975. a
Kerimoglu, O. and Rinke, K.: Stratification dynamics in a shallow reservoir
under different hydro-meteorological scenarios and operational strategies,
Water Resour. Res., 49, 7518–7527, https://doi.org/10.1002/2013WR013520, 2013. a, b
Kraemer, B., Anneville, O., Chandra, S., Dix, M., Kuusisto, E., Livingstone,
D., Rimmer, A., Schladow, S., Silow, E., Sitoki, L., Tamatamah, R.,
Vadeboncoeur, Y., and McIntyre, P.: Morphometry and average temperature affect lake stratification responses to climate change: Lake Stratification Responses to Climate, Geophys. Res. Lett., 42, 4981–4988, https://doi.org/10.1002/2015GL064097, 2015. a
Layden, A., MacCallum, S., and Merchant, C.: Determining lake surface water
temperatures worldwide using a tuned one-dimensional lake model (FLake, v1), Geosci. Model Dev., 9, 2167–2189, https://doi.org/10.5194/gmd-9-2167-2016, 2016. a
Leendertse, J. J.: Aspects of a computational model for long-period water-wave propagation: Rand Corporation, Santa Monica, California, Memorandum RM-5294-PR, p. 165, 1967. a
Lemonsu, A., Kounkou-Arnaud, R., Desplat, J., Salagnac, J.-L., and Masson, V.: Evolution of the Parisian urban climate under a global changing climate, Climatic Change, 116, 679–692, https://doi.org/10.1007/s10584-012-0521-6, 2013. a
Livingstone, D. M.: Impact of Secular Climate Change on the Thermal Structure of a Large Temperate Central European Lake, Climatic Change, 57, 205–225, https://doi.org/10.1023/A:1022119503144, 2003. a
Lürling, M., Eshetu, F., Faassen, E. J., Kosten, S., and Huszar, V. L. M.: Comparison of cyanobacterial and green algal growth rates at different
temperatures, Freshwater Biol., 58, 552–559, https://doi.org/10.1111/j.1365-2427.2012.02866.x, 2013. a
Maier, D. B., Diehl, S., and Bigler, C.: Interannual variation in seasonal
diatom sedimentation reveals the importance of late winter processes and
their timing for sediment signal formation, Limnol. Oceanogr., 64, 1186–1199, https://doi.org/10.1002/lno.11106, 2019. a
Mann, H. B.: Nonparametric Tests Against Trend, Econometrica, 13, 245–259, https://doi.org/10.2307/1907187, 1945. a
Mariani, L., Parisi, S. G., Cola, G., and Failla, O.: Climate change in Europe and effects on thermal resources for crops, Int. J. Biometeorol., 56,
1123–1134, https://doi.org/10.1007/s00484-012-0528-8, 2012. a
McEnroe, N. A., Buttle, J. M., Marsalek, J., Pick, F. R., Xenopoulos, M. A.,
and Frost, P. C.: Thermal and chemical stratification of urban ponds: Are
they `completely mixed reactors'?, Urban Ecosyst., 16, 327–339,
https://doi.org/10.1007/s11252-012-0258-z, 2013. a
McMaster, G. S. and Wilhelm, W. W.: Growing degree-days: one equation, two
interpretations, Agr. Forest Meteorol., 87, 291–300,
https://doi.org/10.1016/S0168-1923(97)00027-0, 1997. a
Meerhoff, M. and Jeppesen, E.: Shallow Lakes and Ponds, in: Encyclopedia of
Inland Waters, edited by: Likens, G. E., Academic Press, Oxford, 645–655, https://doi.org/10.1016/B978-012370626-3.00041-7, 2009. a
Mendonça, R., Müller, R. A., Clow, D., Verpoorter, C., Raymond, P., Tranvik, L. J., and Sobek, S.: Organic carbon burial in global lakes and reservoirs, Nat. Commun., 8, 1694, https://doi.org/10.1038/s41467-017-01789-6, 2017. a
Moras, S., Ayala, A. I., and Pierson, D. C.: Historical modelling of changes in Lake Erken thermal conditions, Hydrol. Earth Syst. Sci., 23, 5001–5016, https://doi.org/10.5194/hess-23-5001-2019, 2019. a, b
Murakami, M., Oonishi, Y., and Kunishi, H.: A numerical simulation of the
distribution of water temperature and salinity in the Seto Inland Sea, J. Oceanogr. Soc. Jpn., 41, 213–224, https://doi.org/10.1007/BF02109271, 1985. a
Neuheimer, A. B. and Taggart, C. T.: The growing degree-day and fish
size-at-age: The overlooked metric, Can. J. Fish. Aquat. Sci., 64, 375–385, 2007. a
Niedrist, G., Psenner, R., and Sommaruga, R.: Climate warming increases
vertical and seasonal water temperature differences, and inter-annual
variability in a mountain lake, Climatic Change, 151, 473–490, https://doi.org/10.1007/s10584-018-2328-6, 2018. a, b
Noble, A. and Hassall, C.: Poor ecological quality of urban ponds in northern
England: causes and consequences, Urban Ecosyst., 18, 649–662,
https://doi.org/10.1007/s11252-014-0422-8, 2015. a
O'Reilly, C. M., Sharma, S., Gray, D. K., Hampton, S. E., Read, J. S., Rowley, R. J., Schneider, P., Lenters, J. D., McIntyre, P. B., Kraemer, B. M., Weyhenmeyer, G. A., Straile, D., Dong, B., Adrian, R., Allan, M. G., Anneville, O., Arvola, L., Austin, J., Bailey, J. L., Baron, J. S., Brookes, J. D., de Eyto, E., Dokulil, M. T., Hamilton, D. P., Havens, K., Hetherington, A. L., Higgins, S. N., Hook, S., Izmest'eva, L. R., Joehnk, K. D., Kangur, K., Kasprzak, P., Kumagai, M., Kuusisto, E., Leshkevich, G., Livingstone, D. M., MacIntyre, S., May, L., Melack, J. M., Mueller‐Navarra, D. C., Naumenko, M., Noges, P., Noges, T., North, R. P., Plisnier, P.-D., Rigosi, A., Rimmer, A., Rogora, M., Rudstam, L. G., Rusak, J. A., Salmaso, N., Samal, N. R., Schindler, D. E., Schladow, S. G., Schmid, M., Schmidt, Silke, R., Silow, E., Soylu, M. E., Teubner, K., Verburg, P., Voutilainen, A., Watkinson, A., Williamson, C. E., and Zhang, G.: Rapid and highly variable warming of lake surface waters around the globe, Geophys. Res. Lett., 42, 10,773–10,781, https://doi.org/10.1002/2015GL066235, 2015. a, b
Paerl, H. and Huisman, J.: Blooms Like It Hot, Science, 320, 57–58, https://doi.org/10.1126/science.1155398, 2008. a, b
Paerl, H. W. and Paul, V. J.: Climate change: Links to global expansion of
harmful cyanobacteria, Water Res., 46, 1349–1363,
https://doi.org/10.1016/j.watres.2011.08.002, 2012. a, b
Pfeifroth, U., Sanchez‐Lorenzo, A., Manara, V., Trentmann, J., and Hollmann,
R.: Trends and Variability of Surface Solar Radiation in Europe Based On Surface- and Satellite-Based Data Records, J. Geophys. Res.-Atmos., 123, 1735–1754, https://doi.org/10.1002/2017JD027418, 2018. a
Piccioni, F., Casenave, C., Lemaire, B. J., Le Moigne, P.. Dubois, P., and Vinçon-Leite, B.: Long-term (1960–2017) simulation of Lake Champs-sur-Marne with Delft3D-FLOW: model configuration and results, Mendeley, https://doi.org/10.17632/92kzf5t5xn.1, 2020. a
Piccolroaz, S., Amadori, M., Toffolon, M., and Dijkstra, H. A.: Importance of
planetary rotation for ventilation processes in deep elongated lakes: Evidence from Lake Garda (Italy), Scient. Rep., 9, 1–11,
https://doi.org/10.1038/s41598-019-44730-1, 2019. a, b
Piccolroaz, S., Woolway, R. I., and Merchant, C. J.: Global reconstruction of
twentieth century lake surface water temperature reveals different warming
trends depending on the climatic zone, Climatic Change, 160, 427–442,
https://doi.org/10.1007/s10584-020-02663-z, 2020. a, b
Poole, H. H. and Atkins, W. R. G.: Photo-electric Measurements of Submarine
Illumination throughout the Year, J. Mar. Biol. Assoc. UK, 16, 297–324,
https://doi.org/10.1017/S0025315400029829, 1929. a
Quintana-Seguí, P., Le Moigne, P., Durand, Y., Martin, E., Habets, F.,
Baillon, M., Canellas, C., Franchisteguy, L., and Morel, S.: Analysis of
Near-Surface Atmospheric Variables: Validation of the SAFRAN Analysis over France, J. Appl. Meteorol. Clim., 47, 92–107, https://doi.org/10.1175/2007JAMC1636.1, 2008. a, b
Raimonet, M., Oudin, L., Thieu, V., Silvestre, M., Vautard, R., Rabouille, C., and Le Moigne, P.: Evaluation of Gridded Meteorological Datasets for
Hydrological Modeling, J. Hydrometeorol., 18, 3027–3041,
https://doi.org/10.1175/JHM-D-17-0018.1, 2017. a
Ralston, D. K., Keafer, B. A., Brosnahan, M. L., and Anderson, D. M.:
Temperature dependence of an estuarine harmful algal bloom: Resolving
interannual variability in bloom dynamics using a degree day approach, Limnol. Oceanogr., 59, 1112–1126, https://doi.org/10.4319/lo.2014.59.4.1112, 2014. a
Rasconi, S., Winter, K., and Kainz, M. J.: Temperature increase and fluctuation induce phytoplankton biodiversity loss – Evidence from a multi-seasonal mesocosm experiment, Ecol. Evol., 7, 2936–2946,
https://doi.org/10.1002/ece3.2889, 2017. a
Reid, P. C., Hari, R. ., Beaugrand, G., Livingstone, D. M., Marty, C.,
Straile, D., Barichivich, J., Goberville, E., Adrian, R., Aono, Y., Brown,
R., Foster, J., Groisman, P., Hélaouët, P., Hsu, H.-H., Kirby, R., Knight, J., Kraberg, A., Li, J., Lo, T.-T., Myneni, R. B., North, R. P., Pounds, J. A., Sparks, T., Stübi, R., Tian, Y., Wiltshire, K. H., Xiao, D., and Zhu, Z.: Global impacts of the 1980s regime shift, Global Change Biol., 22, 682–703, https://doi.org/10.1111/gcb.13106, 2016. a
Schlenker, W., Hanemann, W. M., and Fisher, A. C.: Water Availability, Degree Days, and the Potential Impact of Climate Change on Irrigated Agriculture in California, Climatic Change, 81, 19–38, https://doi.org/10.1007/s10584-005-9008-z, 2007. a
Schmid, M., Hunziker, S., and Wüest, A.: Lake surface temperatures in a
changing climate: a global sensitivity analysis, Climatic Change, 124, 301–315, https://doi.org/10.1007/s10584-014-1087-2, 2014. a
Schneider, P. and Hook, S. J.: Space observations of inland water bodies show
rapid surface warming since 1985, Geophys. Res. Lett., 37, L22405, https://doi.org/10.1029/2010GL045059, 2010. a
Schneider, P., Hook, S. J., Radocinski, R. G., Corlett, G. K., Hulley, G. C.,
Schladow, S. G., and Steissberg, T. E.: Satellite observations indicate rapid
warming trend for lakes in California and Nevada, Geophys. Res. Lett., 36, L22402, https://doi.org/10.1029/2009GL040846, 2009. a, b
Sen, P. K.: Estimates of the Regression Coefficient Based on Kendall's Tau, J. Am. Stat. Assoc., 63, 1379–1389, https://doi.org/10.1080/01621459.1968.10480934, 1968. a
Shatwell, T., Thiery, W., and Kirillin, G.: Future projections of temperature
and mixing regime of European temperate lakes, Hydrol. Earth Syst. Sci., 23, 1533–1551, https://doi.org/10.5194/hess-23-1533-2019, 2019. a
Song, K., Xenopoulos, M. A., Buttle, J. M., Marsalek, J., Wagner, N. D., Pick, F. R., and Frost, P. C.: Thermal stratification patterns in urban ponds and their relationships with vertical nutrient gradients, J. Environ. Manage., 127, 317–323, https://doi.org/10.1016/j.jenvman.2013.05.052, 2013. a, b, c
Soulignac, F., Vinçon-Leite, B., Lemaire, B. J., Scarati Martins, J. R.,
Bonhomme, C., Dubois, P., Mezemate, Y., Tchiguirinskaia, I., Schertzer, D.,
and Tassin, B.: Performance Assessment of a 3D Hydrodynamic Model Using High Temporal Resolution Measurements in a Shallow Urban Lake, Environ. Model. Assess., 22, 309–322, https://doi.org/10.1007/s10666-017-9548-4, 2017. a, b, c
Soulignac, F., Danis, P.-A., Bouffard, D., Chanudet, V., Dambrine, E.,
Guénand, Y., Harmel, T., Ibelings, B. W., Trevisan, D., Uittenbogaard, R., and Anneville, O.: Using 3D modeling and remote sensing capabilities for a better understanding of spatio-temporal heterogeneities of phytoplankton
abundance in large lakes, J. Great Lakes Res., 44, 756–764,
https://doi.org/10.1016/j.jglr.2018.05.008, 2018. a
Stelling, G. S. and Leendertse, J. J.: Approximation of Convective Processes by Cyclic AOI Methods, edited by: Spaulding, M. L., Bedford, K., and Blumberg, A., in: Estuarine and coastal modeling, Proceedings 2nd ASCE Conference on Estuarine and Coastal Modelling, Tampa, 1992. a
Stetler, J. T., Girdner, S., Mack, J., Winslow, L. A., Leach, T. H., and Rose, K. C.: Atmospheric stilling and warming air temperatures drive long-term changes in lake stratification in a large oligotrophic lake, Limnol. Oceanogr., https://doi.org/10.1002/lno.11654, in press, 2020. a
Tan, Z., Yao, H., and Zhuang, Q.: A Small Temperate Lake in the 21st Century: Dynamics of Water Temperature, Ice Phenology, Dissolved Oxygen, and Chlorophyll a, Water Resour. Res., 54, 4681–4699, https://doi.org/10.1029/2017WR022334, 2018. a
Thomas, M. K., Kremer, C. T., and Litchman, E.: Environment and evolutionary
history determine the global biogeography of phytoplankton temperature
traits, Global Ecol. Biogeogr., 25, 75–86, https://doi.org/10.1111/geb.12387, 2016. a
Tímea, K., Kovács-Székely, I., and Anda, A.: Comparison of parametric and non-parametric time-series analysis methods on a long-term meteorological data set, Cent. Eur. Geol., 60, 1–17, https://doi.org/10.1556/24.60.2017.011, 2017. a
Toporowska, M. and Pawlik-Skowronska, J.: Four-year study on phytoplankton
biodiversity in a small hypertrophic lake affected by water blooms of
toxigenic Cyanobacteria, Pol. J. Environ. Stud., 23, 2014. a
Torralba, V., Doblas-Reyes, F. J., and Gonzalez-Reviriego, N.: Uncertainty in
recent near-surface wind speed trends: a global reanalysis intercomparison,
Environ. Res. Lett., 12, 114019, https://doi.org/10.1088/1748-9326/aa8a58, 2017. a
Tran Khac, V., Hong, Y., Plec, D., Lemaire, B. J., Dubois, P., Saad, M., and
Vinçon-Leite, B.: An Automatic Monitoring System for High-Frequency Measuring and Real-Time Management of Cyanobacterial Blooms in Urban Water Bodies, Processes, 6, 11, https://doi.org/10.3390/pr6020011, 2018.
a
van den Bosch, M. and Sang, A. O.: 2096 – Urban Natural Environments As
Nature Based Solutions for Improved Public Health – a Systematic Review of Reviews, J. Transp. Health, 5, S64–S83, https://doi.org/10.1016/j.jth.2017.05.230, 2017. a
Vautard, R., Cattiaux, J., Yiou, P., Thépaut, J.-N., and Ciais, P.: Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness, Nat. Geosci. 3, 756–761, https://doi.org/10.1038/ngeo979, 2010. a
Verpoorter, C., Kutser, T., Seekell, D. A., and Tranvik, L. J.: A global
inventory of lakes based on high-resolution satellite imagery, Geophys. Res. Lett., 41, 6396–6402, https://doi.org/10.1002/2014GL060641, 2014. a
Vinçon-Leite, B., Lemaire, B. J., Khac, V. T., and Tassin, B.: Long-term
temperature evolution in a deep sub-alpine lake, Lake Bourget, France: how a one-dimensional model improves its trend assessment, Hydrobiologia, 731, 49–64, https://doi.org/10.1007/s10750-014-1818-4, 2014. a, b
Wagner, C. and Adrian, R.: Cyanobacteria dominance: Quantifying the effects of climate change, Limnol. Oceanogr., 54, 2460–2468,
https://doi.org/10.4319/lo.2009.54.6_part_2.2460, 2009. a, b
Wagner, T. and Erickson, L.: Sustainable Management of Eutrophic Lakes and Reservoirs, J. Environ. Protect., 08, 436–463, https://doi.org/10.4236/jep.2017.84032, 2017. a, b
Wang, F., Shao, W., Yu, H., Kan, G., He, X., Zhang, D., Ren, M., and Wang, G.: Re-evaluation of the Power of the Mann–Kendall Test for Detecting
Monotonic Trends in Hydrometeorological Time Series, Front. Earth Sci., 8, 14, https://doi.org/10.3389/feart.2020.00014, 2020. a
Wilhelm, S. and Adrian, R.: Impact of summer warming on the thermal
characteristics of a polymictic lake and consequences for oxygen, nutrients
and phytoplankton, Freshwater Biol., 53, 226–237, https://doi.org/10.1111/j.1365-2427.2007.01887.x, 2008. a, b
Wilkinson, A. A., Hondzo, M., and Guala, M.: Vertical heterogeneities of
cyanobacteria and microcystin concentrations in lakes using a seasonal In
situ monitoring station, Global Ecol. Conserv., 21, e00838,
https://doi.org/10.1016/j.gecco.2019.e00838, 2020. a
Winder, M. and Sommer, U.: Phytoplankton response to a changing climate,
Hydrobiologia, 698, 5–16, https://doi.org/10.1007/s10750-012-1149-2, 2012. a, b
You, J., Mallery, K., Hong, J., and Hondzo, M.: Temperature effects on growth
and buoyancy of Microcystis aeruginosa, J. Plankt. Res., 40, 16–28,
https://doi.org/10.1093/plankt/fbx059, 2018. a, b
Zhang, X., Wang, K., Frassl, M. A., and Boehrer, B.: Reconstructing Six Decades of Surface Temperatures at a Shallow Lake, Water, 12, 405,
https://doi.org/10.3390/w12020405, 2020. a, b
Zou, W., Zhu, G., Cai, Y., Xu, H., Zhu, M., Gong, Z., Zhang, Y., and Qin, B.:
Quantifying the dependence of cyanobacterial growth to nutrient for the
eutrophication management of temperate-subtropical shallow lakes, Water Res., 177, 115806, https://doi.org/10.1016/j.watres.2020.115806, 2020. a
Short summary
Small lakes are ecosystems highly impacted by climate change. Here, the thermal regime of a small, shallow lake over the past six decades was reconstructed via 3D modelling. Significant changes were found: strong water warming in spring and summer (0.7 °C/decade) as well as increased stratification and thermal energy for cyanobacteria growth, especially in spring. The strong spatial patterns detected for stratification might create local conditions particularly favourable to cyanobacteria bloom.
Small lakes are ecosystems highly impacted by climate change. Here, the thermal regime of a...
Altmetrics
Final-revised paper
Preprint