Articles | Volume 11, issue 4
https://doi.org/10.5194/esd-11-903-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-11-903-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The synergistic impact of ENSO and IOD on Indian summer monsoon rainfall in observations and climate simulations – an information theory perspective
Praveen Kumar Pothapakula
CORRESPONDING AUTHOR
Institute for Atmospheric and Environmental Sciences, Goethe University, Frankfurt am Main, Germany
Cristina Primo
Institute for Atmospheric and Environmental Sciences, Goethe University, Frankfurt am Main, Germany
Silje Sørland
Department of Environmental Systems Science, ETH Zürich, Zurich, Switzerland
Bodo Ahrens
Institute for Atmospheric and Environmental Sciences, Goethe University, Frankfurt am Main, Germany
Related authors
Praveen Kumar Pothapakula, Amelie Hoff, Anika Obermann-Hellhund, Timo Keber, and Bodo Ahrens
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2022-24, https://doi.org/10.5194/esd-2022-24, 2022
Preprint withdrawn
Short summary
Short summary
The Vb-cyclones simulated with a coupled regional climate model with two different driving data sets are compared against each other in historical period, thereafter the future climate predictions were analyzed. The Vb-cyclones in two simulations agree well in terms of their occurrence, intensity and track in two simulations, though there are discrepancies in seasonal cycles and their process linking Mediterranean Sea in historical period. So significant changes were observed in the future.
Silje Lund Sørland, Roman Brogli, Praveen Kumar Pothapakula, Emmanuele Russo, Jonas Van de Walle, Bodo Ahrens, Ivonne Anders, Edoardo Bucchignani, Edouard L. Davin, Marie-Estelle Demory, Alessandro Dosio, Hendrik Feldmann, Barbara Früh, Beate Geyer, Klaus Keuler, Donghyun Lee, Delei Li, Nicole P. M. van Lipzig, Seung-Ki Min, Hans-Jürgen Panitz, Burkhardt Rockel, Christoph Schär, Christian Steger, and Wim Thiery
Geosci. Model Dev., 14, 5125–5154, https://doi.org/10.5194/gmd-14-5125-2021, https://doi.org/10.5194/gmd-14-5125-2021, 2021
Short summary
Short summary
We review the contribution from the CLM-Community to regional climate projections following the CORDEX framework over Europe, South Asia, East Asia, Australasia, and Africa. How the model configuration, horizontal and vertical resolutions, and choice of driving data influence the model results for the five domains is assessed, with the purpose of aiding the planning and design of regional climate simulations in the future.
Prashant Singh and Bodo Ahrens
EGUsphere, https://doi.org/10.5194/egusphere-2025-1728, https://doi.org/10.5194/egusphere-2025-1728, 2025
Short summary
Short summary
Intense deep convective clouds (e.g. lightning events) can rapidly move water vapour and other gases into the upper troposphere. The Third Pole region, especially the Himalayas, frequently experiences such storms. ICON-CLM (3.3 km) and ERA5 reanalysis data (30 km), these convective events can lift water vapour into the upper troposphere but rarely into the lower stratosphere in the Third Pole. After reaching the upper troposphere, the water vapour tends to move horizontally away from the region.
Zhicheng Luo, Duoying Ji, and Bodo Ahrens
EGUsphere, https://doi.org/10.5194/egusphere-2025-389, https://doi.org/10.5194/egusphere-2025-389, 2025
Short summary
Short summary
Climate models face challenges in accurately simulating cold regions' soil temperatures and snow conditions. By comparing different models, we found that the land surface models have a strong impact on simulation errors. Additionally, they struggle to account for snow’s insulating effect on the ground properly. Our findings highlight the need for improving frozen soil simulation, which is crucial for understanding the climate impacts of frozen soil.
Roman Brogli, Christoph Heim, Jonas Mensch, Silje Lund Sørland, and Christoph Schär
Geosci. Model Dev., 16, 907–926, https://doi.org/10.5194/gmd-16-907-2023, https://doi.org/10.5194/gmd-16-907-2023, 2023
Short summary
Short summary
The pseudo-global-warming (PGW) approach is a downscaling methodology that imposes the large-scale GCM-based climate change signal on the boundary conditions of a regional climate simulation. It offers several benefits in comparison to conventional downscaling. We present a detailed description of the methodology, provide companion software to facilitate the preparation of PGW simulations, and present validation and sensitivity studies.
Praveen Kumar Pothapakula, Amelie Hoff, Anika Obermann-Hellhund, Timo Keber, and Bodo Ahrens
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2022-24, https://doi.org/10.5194/esd-2022-24, 2022
Preprint withdrawn
Short summary
Short summary
The Vb-cyclones simulated with a coupled regional climate model with two different driving data sets are compared against each other in historical period, thereafter the future climate predictions were analyzed. The Vb-cyclones in two simulations agree well in terms of their occurrence, intensity and track in two simulations, though there are discrepancies in seasonal cycles and their process linking Mediterranean Sea in historical period. So significant changes were observed in the future.
Roman Brogli, Silje Lund Sørland, Nico Kröner, and Christoph Schär
Weather Clim. Dynam., 2, 1093–1110, https://doi.org/10.5194/wcd-2-1093-2021, https://doi.org/10.5194/wcd-2-1093-2021, 2021
Short summary
Short summary
In a warmer future climate, climate simulations predict that some land areas will experience excessive warming during summer. We show that the excessive summer warming is related to the vertical distribution of warming within the atmosphere. In regions characterized by excessive warming, much of the warming occurs close to the surface. In other regions, most of the warming is redistributed to higher levels in the atmosphere, which weakens the surface warming.
Silje Lund Sørland, Roman Brogli, Praveen Kumar Pothapakula, Emmanuele Russo, Jonas Van de Walle, Bodo Ahrens, Ivonne Anders, Edoardo Bucchignani, Edouard L. Davin, Marie-Estelle Demory, Alessandro Dosio, Hendrik Feldmann, Barbara Früh, Beate Geyer, Klaus Keuler, Donghyun Lee, Delei Li, Nicole P. M. van Lipzig, Seung-Ki Min, Hans-Jürgen Panitz, Burkhardt Rockel, Christoph Schär, Christian Steger, and Wim Thiery
Geosci. Model Dev., 14, 5125–5154, https://doi.org/10.5194/gmd-14-5125-2021, https://doi.org/10.5194/gmd-14-5125-2021, 2021
Short summary
Short summary
We review the contribution from the CLM-Community to regional climate projections following the CORDEX framework over Europe, South Asia, East Asia, Australasia, and Africa. How the model configuration, horizontal and vertical resolutions, and choice of driving data influence the model results for the five domains is assessed, with the purpose of aiding the planning and design of regional climate simulations in the future.
Emmanuele Russo, Silje Lund Sørland, Ingo Kirchner, Martijn Schaap, Christoph C. Raible, and Ulrich Cubasch
Geosci. Model Dev., 13, 5779–5797, https://doi.org/10.5194/gmd-13-5779-2020, https://doi.org/10.5194/gmd-13-5779-2020, 2020
Short summary
Short summary
The parameter space of the COSMO-CLM RCM is investigated for the Central Asia CORDEX domain using a perturbed physics ensemble (PPE) with different parameter values. Results show that only a subset of model parameters presents relevant changes in model performance and these changes depend on the considered region and variable: objective calibration methods are highly necessary in this case. Additionally, the results suggest the need for calibrating an RCM when targeting different domains.
Marie-Estelle Demory, Ségolène Berthou, Jesús Fernández, Silje L. Sørland, Roman Brogli, Malcolm J. Roberts, Urs Beyerle, Jon Seddon, Rein Haarsma, Christoph Schär, Erasmo Buonomo, Ole B. Christensen, James M. Ciarlo ̀, Rowan Fealy, Grigory Nikulin, Daniele Peano, Dian Putrasahan, Christopher D. Roberts, Retish Senan, Christian Steger, Claas Teichmann, and Robert Vautard
Geosci. Model Dev., 13, 5485–5506, https://doi.org/10.5194/gmd-13-5485-2020, https://doi.org/10.5194/gmd-13-5485-2020, 2020
Short summary
Short summary
Now that global climate models (GCMs) can run at similar resolutions to regional climate models (RCMs), one may wonder whether GCMs and RCMs provide similar regional climate information. We perform an evaluation for daily precipitation distribution in PRIMAVERA GCMs (25–50 km resolution) and CORDEX RCMs (12–50 km resolution) over Europe. We show that PRIMAVERA and CORDEX simulate similar distributions. Considering both datasets at such a resolution results in large benefits for impact studies.
Cited articles
Akiyo, Y., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N., and Kitoh, A.: APHRODITE: Constructing a Long-Term Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges, B. Am. Meteorol. Soc., 93, 1401–1415, https://doi.org/10.1175/BAMS-D-11-00122.1, 2012. a
Ashok, K., Guan, Z., and Yamagata, T.: Impact of the Indian Ocean Dipole on the relationship between Indian monsoon rainfall and ENSO, Geophys. Res. Lett., 28, 4499–4502, https://doi.org/10.1029/2001GL013294, 2001. a, b
Asharaf, S. and Ahrens, B.: Indian Summer Monsoon Rainfall Feedback Processes in Climate Change Scenarios, J. Climate, 28, 5414–5429, https://doi.org/10.1175/JCLI-D-14-00233.1, 2015. a
Behera, S. K. and Ratnam, J. K.: Quasi-asymmetric response of the Indian summer monsoon rainfall to opposite phases of the IOD, Scient. Rep., 8, 123, https://doi.org/10.1038/s41598-017-18396-6, 2018. a, b, c
Bennett, A., Nijssen, B., Ou, G., Clark, M., and Nearing, G.: Quantifying process connectivity with transfer entropy in hydrologic models, Water Resour. Res., 55, 4613–4629, https://doi.org/10.1029/2018WR024555, 2019. a
Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I. A., Hoose, C., and Kristjánsson, J. E.: The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate, Geosci. Model Dev., 6, 687–720, https://doi.org/10.5194/gmd-6-687-2013, 2013. a
Bertschinger, N., Rauh, J., Olbrich, E., Jost, J., and Ay, N.: Quantifying unique information, Entropy, 16, 2161–2183, https://doi.org/10.3390/e16042161, 2014. a
Bhaskar, A., Ramesh, D. S., Vichare, G., Koganti, T., and Gurubaran, S.: Quantitative assessment of drivers of recent global temperature variability: an information theoretic approach, Clim. Dynam., 49, 3877–3886, https://doi.org/10.1007/s00382-017-3549-5, 2017. a
Bhaskaran, B., Ramachandran, A., Jones, R., and Moufouma‐Okia, W.: Regional climate model applications on sub-regional scales over the Indian monsoon region: the role of domain size on downscaling uncertainty, J. Geophys. Res.-Atmos., 117, D10113, https://doi.org/10.1029/2012JD017956, 2012. a
Cai, W., Cowan, T., and Sullivan A.: Recent unprecedented skewness towards positive Indian Ocean dipole occurrences and its impact on Australian rainfall, Geophys. Res. Lett., 36, L11705, https://doi.org/10.1029/2009GL037604, 2009a. a
Cai, W., Sullivan, A., and Cowan, T.: Rainfall teleconnections with Indo-Pacific variability in the WCRP CMIP3 models, J. Climate, 22, 5046–5071, https://doi.org/10.1175/2009JCLI2694.1, 2009b. a
Campuzano, S. A., De Santis, A., Pavon-Carrasco, F. J., Osete, M. L., and Qamili, E.: New perspectives in the study of the Earth’s magnetic field and climate connection: The use of transfer entropy, PLOS ONE, 13, e0207270, https://doi.org/10.1371/journal.pone.0207270, 2018. a
Chowdary, J. S., Bandgar, A. B., Gnanaseelan, C., and Luo, J. J.: Role of tropical Indian Ocean air-sea interactions in modulating Indian summer monsoon in a coupled model, Atmos. Sci. Lett., 16, 170–176, https://doi.org/10.1002/asl2.561, 2015. a
Choudhary, A., Dimri, A. P., and Maharana, P.: Assessment of CORDEX-SA experiments in representing precipitation climatology of summer monsoon over India, Theor. Appl. Climatol., 134, 283–307, https://doi.org/10.1007/s00704-017-2274-7, 2018. a
Cover, T. M. and Thomas, J. A.: Elements of Information Theory, Wiley, New York, NY, USA, 1991. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Dobler, A. and Ahrens, B.: Four climate change scenarios for the Indian summer monsoon by the regional climate model COSMO-CLM, J. Geophys. Res.-Atmos., 116, D24104, https://doi.org/10.1029/2011JD016329, 2011. a
Doms, G., Forstner, J., Heise, E., Herzog, H. J., Mironov, D., Raschendorfer, M., Reinhardt, T., Ritter, B., Schrodin, R., Schulz, J. P., and Vogel, G.: A Description of the Nonhydrostatic Regional Model LM, Part II: Physical Parameterization, DWD, available at: http://www.cosmo-model.org/ (last access: 2 November 2020), 2011. a
ESGF – Earth System Grid Federation: GCM and RCM datasets, available at:
https://esgf-data.dkrz.de/projects/esgf-dkrz/, last access: 2 November 2020. a
Finn, C. and Lizier, J. T.: Pointwise Partial Information Decomposition Using the Specificity and Ambiguity Lattices, Entropy, 20, 297, https://doi.org/10.3390/e20040297, 2018. a
Fuhrer, O., Osuna, C., Lapillonne, X., Gysi, T., Cumming, B., Bianco, M., Arteaga, A., and Schulthess, T. C.: Towards a performance portable, architecture agnostic implementation strategy for weather and climate models, Supercomputing frontiers and innovations, available at: http://superfri.org/superfri/article/view/17 (last access: 2 November 2020), 2014. a
Gadgil, S.: Indian monsoon and its variability, Annu. Rev. Earth Planet. Sci., 31, 429–467, https://doi.org/10.1146/annurev.earth.31.100901.141251, 2003. a, b
Gerken, T., Ruddell, B. L., Yu, R., Stoy, P. C., and Drewry, D. T.: Robust observations of land-to-atmosphere feedbacks using the information flows of FLUXNET, NPJ Clim. Atmos. Sci., 2, 37, https://doi.org/10.1038/s41612-019-0094-4, 2019. a
Giorgi, F., Jones, C. and Asrar, G. R.: Addressing climate information needs at the regional level: the CORDEX framework, World Meteorol. Organ. Bull., 58, 175–183, 2009. a
Goodwell, A. and Kumar, P.: Temporal Information Partitioning Networks (TIPNets): A process network approach to infer ecohydrologic shifts, Water Resour. Res., 53, 5899–5919, https://doi.org/10.1002/2016WR020218, 2017. a
Goswami, B. N.: Inter-annual variations of Indian summer monsoon in a GCM: External conditions versus internal feedbacks, J. Climate, 11, 501–522, https://doi.org/10.1175/1520-0442(1998)011<0501:IVOISM>2.0.CO;2, 1998. a, b
Goswami, B. N., Madhusoodanan, M. S., Neema, C. P., and Sengupta, D.: A physical mechanism for North Atlantic SST influence on the Indian summer monsoon, Geophys. Res. Lett., 33, L02706, https://doi.org/10.1029/2005GL024803, 2006. a
Griffith, V. and Koch, C.: Quantifying Synergistic Mutual Information, in: Guided Self-Organization: Inception. Emergence, Complexity and Computation, vol. 9, edited by: Prokopenko, M., Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-53734-9_6, 2014. a
Gutowski Jr., W. J., Giorgi, F., Timbal, B., Frigon, A., Jacob, D., Kang, H.-S., Raghavan, K., Lee, B., Lennard, C., Nikulin, G., O'Rourke, E., Rixen, M., Solman, S., Stephenson, T., and Tangang, F.: WCRP COordinated Regional Downscaling EXperiment (CORDEX): a diagnostic MIP for CMIP6, Geosci. Model Dev., 9, 4087–4095, https://doi.org/10.5194/gmd-9-4087-2016, 2016. a
Hazeleger, W., Severijns, C., Semmler, T., Ştefănescu, S., Yang, S., Wang, X., Wyser, K., Dutra, E., Baldasano, J. M., Bintanja, R., Bougeault, P., Caballero, R., Ekman, A. M. L., Christensen, J. H., van den Hurk, B., Jimenez, P., Jones, C., Kållberg, P., Koenigk, T., McGrath, R., Miranda, P., Van Noije, T., Palmer, T., Parodi, J. A., Schmith, T., Selten, F., Storelvmo, T., Sterl, A., Tapamo, H., Vancoppenolle, M., Viterbo, P., and Willén, U.: EC-Earth: a seamless earth-system prediction approach in action, B. Am. Meteorol. Soc., 91, 1357–1363, https://doi.org/10.1175/2010BAMS2877.1, 2010. a
Hrudya, P. H., Varikoden, H., and Vishnu, R.: A review on the Indian summer monsoon rainfall, variability and its association with ENSO and IOD, Meteorol. Atmos. Phys., 11, 421, https://doi.org/10.1007/s00703-020-00734-5, 2020. a
James, R. G., Barnett, N., and Crutchfield, J. P.: Information flows? A critique of transfer entropies, Phys. Rev. Lett., 116, 238701, https://doi.org/10.1103/PhysRevLett.116.238701, 2016. a
JAMSTEC – Japan Agency for Marine-Earth Science and Technology: IOD index, available at: http://www.jamstec.go.jp/, last access: 2 November 2020. a
Jiang, P. and Kumar, P.: Using Information Flow for Whole System understanding from component dynamics, Water Resour. Res., 55, 8305–8329, https://doi.org/10.1029/2019WR025820, 2019. a
Joshua, G., Tyler, R., Jones, Neuder, M., James, W. C., White, and Elizabeth B.: An information-theoretic approach to extracting climate signals from deep polar ice cores, Chaos, 29, 101105, https://doi.org/10.1063/1.5127211, 2019. a
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chellaih, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Dennis, J.: The NCEP/NCAR 40-year reanalysis project, B. Am. Meteorol. Soc., 77, 437–470, 1996. a
Kantz, H. and Schreiber, T.: Nonlinear Time Series Analysis, Cambridge University Press, Cambridge, UK, 1997. a
Knuth, K. H., Gotera, A., Curry, C. T., Huyser, K. A., Wheeler, K. R., and Rossow, W. B.: Revealing relationships among relevant climate variables with information theory, preprint: arXiv:1311.4632, 2013. a
Kraskov, A., Stoegbauer, H., and Grassberger, P.: Estimating mutual information, Phys. Rev. E, 69, 066138, https://doi.org/10.1103/PhysRevE.69.066138, 2004. a
Krakovska, A.: Correlation Dimension Detects Causal Links in Coupled Dynamical Systems, Entropy, 21, 818, https://doi.org/10.3390/e21090818, 2019. a
Krishna Kumar, K., Rajagopalan, B., Hoerling, M., Bates, G., and Cane, M.: Unraveling the mystery of Indian monsoon failure during El Niño, Science, 314, 115–119, https://doi.org/10.1126/science.1131152, 2006. a
Krishnaswami, J., Vaidyanathan, S., Rajagopalan, B., Bonnel, M., Sankaran, M., Bhalla, R. S., and Badiger, S.: Non-stationary and non-linear influence of ENSO and Indian Ocean Dipole on Indian summer monsoon rainfall and extreme rain events, Clim. Dynam., 45, 175–184, https://doi.org/10.1007/s00382-014-2288-0, 2015. a
Leonardo, N., Wollstadt, P., Mediano, P., Wibral, M., and Lizier, J. T.: Large-scale directed network inference with multivariate transfer entropy and hierarchical statistical testing, Netw. Neuro Sci., 3, 827–847, https://doi.org/10.1162/netn_a_00092, 2019. a
Leutwyler, D., Fuhrer, O., Lapillonne, X., Lüthi, D., and Schaer, C.: Towards European-scale convection-resolving climate simulations with GPUs: a study with COSMO 4.19, Geosci. Model Dev., 9, 3393–3412, https://doi.org/10.5194/gmd-9-3393-2016, 2016. a
Liu, L., Yu, W., and Li, T.: Dynamic and thermodynamic air–sea coupling associated with the Indian Ocean dipole diagnosed from 23 WCRP CMIP3 models, J. Climate, 24, 4941–4958, https://doi.org/10.1175/2011JCLI4041.1, 2011. a
Lizier, J. T.: JIDT: an information theoretic toolkit for studying the dynamics of complex systems, Front. Robot., 1, 11, https://doi.org/10.3389/frobt.2014.00011, 2014. a
Lucas-Picher, P., Christensen, J. H., Saeed. F., Kumar, P., Asharaf, S., Ahrens, B., Wiltshire, A., Jacob, D., and Hagemann, S.: Can regional climate models represent the Indian Monsoon?, J. Hydrometeorol., 12, 849–868, https://doi.org/10.1175/2011JHM1327.1, 2011. a
McSweeney, C. F., Jones, R. J., Lee, R. W. and Rowell, P. D: Selecting CMIP5 GCMs for downscaling over multiple regions, Clim. Dynam., 44, 3237–3260, https://doi.org/10.1007/s00382-014-2418-8, 2015. a
Nair, P. J., Chakraborty, A., Varikoden, H., Francis, P. A., and Kuttipurath, J.: The local and global climate forcings induced inhomogeneity of Indian rainfall, Nature, 8, 6062, https://doi.org/10.1038/s41598-018-24021-x, 2018. a
Nowack, P., Runge, J., Erling, V., and Haigh, J. D.: Causal networks for climate model evaluation and constrained projections, Nat. Commun., 11, 1415, https://doi.org/10.1038/s41467-020-15195-y, 2020. a
Palmer, T., Brankovic, C., Viterbo, P., and Miller, M.: Modeling interannual variations of summer monsoons, J. Climate, 5, 399–417, https://doi.org/10.1175/1520-0442(1992)005<0399:MIVOSM>2.0.CO;2, 2006. a
Pillai, P. A. and Chowdary, J. S.: Indian summer monsoon intraseasonal oscillation associated with the developing and decaying phase of El Niño, Int. J. Climatol., 36, 1846–1862, https://doi.org/10.1002/joc.4464, 2016. a
Pothapakula, P. K.: pothapakulapraveen/ESD: Codes, Zenodo, https://doi.org/10.5281/zenodo.4192441, 2020. a
Pothapakula, P. K., Primo, C., and Ahrens, B.: Quantification of Information Exchange in Idealized and Climate System Applications, Entropy, 21, 1094, https://doi.org/10.3390/e21111094, 2019. a, b
PSL – Physical Sciences Laboratory: ENSO index, available at: http://www.esrl.noaa.gov/psd, last access: 2 November 2020. a
Raschendorfer, M.: The new turbulence parametrization of LM, COSMO Newslett., 1, 90–98, 2001. a
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670, 2002. a
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, E. J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, A., Bloom, S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., and Woollen, J.: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications, J. Climate, 24, 3624–3648, https://doi.org/10.1175/JCLI-D-11-00015.1, 2011. a
Ritter, B. and Geleyn, J. F.: A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations, Mon. Weather Rev., 120, 303–325, https://doi.org/10.1175/1520-0493(1992)120<0303:ACRSFN>2.0.CO;2, 1992. a
Rockel, B., Will, A., and Hense, A.: The regional climate model COSMO‐CLM (CCLM), Meteorol. Z., 17, 347–348, 2008. a
Ruddell, B. L., Drewry, D. T., and Nearing, G. S.: Information theory for model diagnostics: structural error is indicated by tradeoffs between functional and predictive performance, Water Resour. Res., 55, 6534–6554, https://doi.org/10.1029/2018WR023692, 2019. a
Runge, J., Petoukhov, V., and Kurth, J.: Quantifying the strength and delay of climatic interactions: The ambiguities of cross correlation and a novel measure based on graphical models, J. Climate, 27, 720–739, https://doi.org/10.1175/JCLI-D-13-00159.1, 2014. a, b
Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E., and Glymour, C.: Inferring Causation from Time Series in Earth System Sciences, Nat. Commun., 10, 2553, https://doi.org/10.1038/s41467-019-10105-3, 2019. a
Sabeerali, C. T., Ajayamohan, R. S., Bangalath, H. K., and Chen, N.: Atlantic Zonal Mose: an emerging source of Indian summer monsoon variability in a warming world, Geophys. Res. Lett., 46, 4460–4464, https://doi.org/10.1029/2019GL082379, 2019. a
Saji, N. H., Goswami, B. N., Vinayachandran, P. N., and Yamagata, T.: A dipole mode in the tropical Indian Ocean, Nature, 401, 360–363, https://doi.org/10.1038/43854, 1999. a, b, c
Saji, N. H., Xie, S. P., and Yamagata, T.: Tropical Indian Ocean variability in the IPCC twentieth-century climate simulations, J. Climate, 19, 4397–4417, https://doi.org/10.1175/JCLI3847.1, 2006. a
Schlemmer, L., Schaer, C., Luethi, D., and Strebel, L.: A Groundwater and Runoff Formulation for Weather and Climate Models, J. Adv. Model. Earth Syst., 10, 1809–1832, https://doi.org/10.1029/2017MS001260, 2018. a
Schneider, U., Fuchs, T., Meyer‐Christoffer, A., and Rudolf,B.: Global Precipitation Analysis Products of the GPCC, Global Pre-cip. Climatol. Cent., Dtsch. Wetterdienst, Offenbach am Main, Germany, 2008. a
Schrodin, E. and Heise, E.: A New Multi-Layer Soil Model, COSMO Newslett., 2, 149–151, 2002. a
Shoaib, A.: Information-theoretic model of self-organizing fullerenes and the emergence of C60, Chem. Phys. Lett., 713, 52–57, https://doi.org/10.1016/j.cplett.2018.10.024, 2018. a
Shukla, R. P. and Haung, B.: Interannual variability of the Indian summer monsoon associated with the air-sea feedback in the northern Indian Ocean, Clim. Dynam., 46, 1977–1990, https://doi.org/10.1007/s00382-015-2687-x, 2016. a
Slingo, J. and Annamalai, H.: 1997: The El Niño of the century and the response of the Indian summer monsoon, Mon. Weather Rev., 128, 1778–1797, https://doi.org/10.1175/1520-0493(2000)128<1778:TENOOT>2.0.CO;2, 2000. a
Smirnov, D. A.: Spurious causalities with transfer entropy, Phys. Rev. E, 87, 042917, https://doi.org/10.1103/PhysRevE.87.042917, 2013. a
Sperber, K. R., Annamalai, H., Kang, I. S., Kitoh, A., Moise, A., Turner, A., Wang, B., and Zhou, T.: The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century, Clim. Dynam., 41, 2711–2744, https://doi.org/10.1007/s00382-012-1607-6, 2012.
a
Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S., Salzmann, M., Schmidt, H., Bader, J., Block, K., Brokopf, R., Fast, I., Kinne, S., Kornblueh, L., Lohmann, U., Pincus, R., Reichler, T., and Roeckner, E.: The atmospheric component of the MPI-M Earth System Model: ECHAM6, J. Adv. Model. Earth Syst., 5, 146–172, https://doi.org/10.1002/jame.20015, 2017. a
Tiedtke, M.: A comprehensive mass flux scheme for cumulusparameterization in large‐scale models, Mon. Weather Rev., 117, 1779–1800, 1989. a
Webster, P. J., Magna, V., Palmer, T., Shukla, J., Tomas, R. A., Yanai, M., and Yasunari, T.: Monsoons: processes, predictability and the prospects for prediction, J. Geophys. Res., 103, 14451–14510, https://doi.org/10.1029/97JC02719, 1988. a
Wibral, M., Finn, C., Wollstadt, P., Lizier, J. T., and Priesemann, V.: Quantifying Information Modification in Developing Neural Networks via Partial Information Decomposition, Entropy, 19, 494, https://doi.org/10.3390/e19090494, 2017. a
Yun, K. S. and Timmermann, A.: Decadal monsoon-ENSO relationships reexamined, Geophys. Res. Lett., 45, 2014–2021, https://doi.org/10.1002/2017GL076912, 2018. a
Short summary
Information exchange (IE) from the Indian Ocean Dipole (IOD) and El Niño–Southern Oscillation (ENSO) to Indian summer monsoon rainfall (ISMR) is investigated. Observational data show that IOD and ENSO synergistically exchange information on ISMR variability over central India. IE patterns observed in three global climate models (GCMs) differ from observations. Our study highlights new perspectives that IE metrics could bring to climate science.
Information exchange (IE) from the Indian Ocean Dipole (IOD) and El Niño–Southern Oscillation...
Altmetrics
Final-revised paper
Preprint