Articles | Volume 10, issue 1
https://doi.org/10.5194/esd-10-91-2019
https://doi.org/10.5194/esd-10-91-2019
Review
 | 
13 Feb 2019
Review |  | 13 Feb 2019

ESD Reviews: Model dependence in multi-model climate ensembles: weighting, sub-selection and out-of-sample testing

Gab Abramowitz, Nadja Herger, Ethan Gutmann, Dorit Hammerling, Reto Knutti, Martin Leduc, Ruth Lorenz, Robert Pincus, and Gavin A. Schmidt

Related authors

An ensemble estimate of Australian soil organic carbon using machine learning and process-based modelling
Lingfei Wang, Gab Abramowitz, Ying-Ping Wang, Andy Pitman, and Raphael A. Viscarra Rossel
SOIL, 10, 619–636, https://doi.org/10.5194/soil-10-619-2024,https://doi.org/10.5194/soil-10-619-2024, 2024
Short summary
On the predictability of turbulent fluxes from land: PLUMBER2 MIP experimental description and preliminary results
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin De Kauwe, Sam Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
EGUsphere, https://doi.org/10.5194/egusphere-2023-3084,https://doi.org/10.5194/egusphere-2023-3084, 2024
Short summary
Opening Pandora's box: reducing global circulation model uncertainty in Australian simulations of the carbon cycle
Lina Teckentrup, Martin G. De Kauwe, Gab Abramowitz, Andrew J. Pitman, Anna M. Ukkola, Sanaa Hobeichi, Bastien François, and Benjamin Smith
Earth Syst. Dynam., 14, 549–576, https://doi.org/10.5194/esd-14-549-2023,https://doi.org/10.5194/esd-14-549-2023, 2023
Short summary
Examining the role of environmental memory in the predictability of carbon and water fluxes across Australian ecosystems
Jon Cranko Page, Martin G. De Kauwe, Gab Abramowitz, Jamie Cleverly, Nina Hinko-Najera, Mark J. Hovenden, Yao Liu, Andy J. Pitman, and Kiona Ogle
Biogeosciences, 19, 1913–1932, https://doi.org/10.5194/bg-19-1913-2022,https://doi.org/10.5194/bg-19-1913-2022, 2022
Short summary
A flux tower dataset tailored for land model evaluation
Anna M. Ukkola, Gab Abramowitz, and Martin G. De Kauwe
Earth Syst. Sci. Data, 14, 449–461, https://doi.org/10.5194/essd-14-449-2022,https://doi.org/10.5194/essd-14-449-2022, 2022
Short summary

Related subject area

Earth system change: climate prediction
Past and future response of the North Atlantic warming hole to anthropogenic forcing
Saïd Qasmi
Earth Syst. Dynam., 14, 685–695, https://doi.org/10.5194/esd-14-685-2023,https://doi.org/10.5194/esd-14-685-2023, 2023
Short summary
Performance-based sub-selection of CMIP6 models for impact assessments in Europe
Tamzin E. Palmer, Carol F. McSweeney, Ben B. B. Booth, Matthew D. K. Priestley, Paolo Davini, Lukas Brunner, Leonard Borchert, and Matthew B. Menary
Earth Syst. Dynam., 14, 457–483, https://doi.org/10.5194/esd-14-457-2023,https://doi.org/10.5194/esd-14-457-2023, 2023
Short summary
Emergent constraints for the climate system as effective parameters of bulk differential equations
Chris Huntingford, Peter M. Cox, Mark S. Williamson, Joseph J. Clarke, and Paul D. L. Ritchie
Earth Syst. Dynam., 14, 433–442, https://doi.org/10.5194/esd-14-433-2023,https://doi.org/10.5194/esd-14-433-2023, 2023
Short summary
Ensemble forecast of an index of the Madden–Julian Oscillation using a stochastic weather generator based on circulation analogs
Meriem Krouma, Riccardo Silini, and Pascal Yiou
Earth Syst. Dynam., 14, 273–290, https://doi.org/10.5194/esd-14-273-2023,https://doi.org/10.5194/esd-14-273-2023, 2023
Short summary
Reconstructions and predictions of the global carbon budget with an emission-driven Earth system model
Hongmei Li, Tatiana Ilyina, Tammas Loughran, Aaron Spring, and Julia Pongratz
Earth Syst. Dynam., 14, 101–119, https://doi.org/10.5194/esd-14-101-2023,https://doi.org/10.5194/esd-14-101-2023, 2023
Short summary

Cited articles

Abramowitz, G.: Model independence in multi-model ensemble prediction, Aust. Meteorol. Ocean., 59, 3–6, 2010. 
Abramowitz, G. and Gupta, H.: Toward a model space and model independence metric, Geophys. Res. Lett., 35, L05705, https://doi.org/10.1029/2007GL032834, 2008. 
Abramowitz, G. and Bishop, C. H.: Climate Model Dependence and the Ensemble Dependence Transformation of CMIP Projections, J. Climate, 28, 2332–2348, 2015. 
Annan, J. D. and Hargreaves, J. C.: Reliability of the CMIP3 ensemble, Geophys. Res. Lett., 37, L02703, https://doi.org/10.1029/2009GL041994, 2010. 
Annan, J. D. and Hargreaves, J. C.: Understanding the CMIP3 ensemble, J. Climate, 24, 4529–4538, 2011. 
Download
Short summary
Best estimates of future climate projections typically rely on a range of climate models from different international research institutions. However, it is unclear how independent these different estimates are, and, for example, the degree to which their agreement implies robustness. This work presents a review of the varied and disparate attempts to quantify and address model dependence within multi-model climate projection ensembles.
Altmetrics
Final-revised paper
Preprint