Articles | Volume 7, issue 3
https://doi.org/10.5194/esd-7-549-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/esd-7-549-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A Lagrangian analysis of the present-day sources of moisture for major ice-core sites
Anita Drumond
CORRESPONDING AUTHOR
EPhysLab, Facultade de Ciencias, Universidade de Vigo, Ourense, 32004, Spain
Erica Taboada
Facultad de Ciencias, Universidad de La Laguna, La Laguna, 38200, Spain
Raquel Nieto
EPhysLab, Facultade de Ciencias, Universidade de Vigo, Ourense, 32004, Spain
Department of Atmospheric Sciences, Institute of Astronomy, Geophysics
and Atmospheric Sciences, University of São Paulo, São Paulo,
05508-090, Brazil
Luis Gimeno
EPhysLab, Facultade de Ciencias, Universidade de Vigo, Ourense, 32004, Spain
Sergio M. Vicente-Serrano
Instituto Pirenaico de Ecología, Consejo Superior de
Investigaciones Científicas (IPE-CSIC), Zaragoza, 38200, Spain
Juan Ignacio López-Moreno
Instituto Pirenaico de Ecología, Consejo Superior de
Investigaciones Científicas (IPE-CSIC), Zaragoza, 38200, Spain
Related authors
Sergio M. Vicente-Serrano, Raquel Nieto, Luis Gimeno, Cesar Azorin-Molina, Anita Drumond, Ahmed El Kenawy, Fernando Dominguez-Castro, Miquel Tomas-Burguera, and Marina Peña-Gallardo
Earth Syst. Dynam., 9, 915–937, https://doi.org/10.5194/esd-9-915-2018, https://doi.org/10.5194/esd-9-915-2018, 2018
Short summary
Short summary
We analyzed changes in surface relative humidity (RH) at the global scale from 1979 to 2014 and compared the variability and trends in RH with those in land evapotranspiration and ocean evaporation in moisture source areas across a range of selected regions worldwide. Our results stress that the different hypotheses that may explain the decrease in RH under a global warming scenario could act together to explain recent RH trends.
Rogert Sorí, Raquel Nieto, Anita Drumond, Sergio M. Vicente-Serrano, and Luis Gimeno
Hydrol. Earth Syst. Sci., 21, 6379–6399, https://doi.org/10.5194/hess-21-6379-2017, https://doi.org/10.5194/hess-21-6379-2017, 2017
Rogert Sorí, Raquel Nieto, Sergio M. Vicente-Serrano, Anita Drumond, and Luis Gimeno
Earth Syst. Dynam., 8, 653–675, https://doi.org/10.5194/esd-8-653-2017, https://doi.org/10.5194/esd-8-653-2017, 2017
A. Drumond, J. Marengo, T. Ambrizzi, R. Nieto, L. Moreira, and L. Gimeno
Hydrol. Earth Syst. Sci., 18, 2577–2598, https://doi.org/10.5194/hess-18-2577-2014, https://doi.org/10.5194/hess-18-2577-2014, 2014
Ixeia Vidaller, Toshiyuki Fujioka, Juan Ignacio López-Moreno, Ana Moreno, and the ASTER Team
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-75, https://doi.org/10.5194/cp-2024-75, 2024
Preprint under review for CP
Short summary
Short summary
Since the Pyrenean Last Glacial Maximum (75 ka), the deglaciation of the Ésera glacier (central Pyrenees) was characterized by complex dynamics, with advances and rapid retreats. Cosmogenic dates of moraines along the headwaters of the valley and lacustrine sediments analyses allowed to reconstruct evolutionary history of the Ésera glacier and the associated environmental implications during the last deglaciation and calculate the Equilibrium Line Altitude to determine changes in temperature.
Helen Flynn, J. Julio Camarero, Alba Sanmiguel-Vallelado, Francisco Rojas Heredia, Pablo Domínguez Aguilar, Jesús Revuelto, and Juan Ignacio López-Moreno
EGUsphere, https://doi.org/10.5194/egusphere-2024-3385, https://doi.org/10.5194/egusphere-2024-3385, 2024
Short summary
Short summary
In the Spanish Pyrenees, changing snow seasons and warmer growing seasons could negatively impact tree growth in the montane evergreen forests. We used automatic sensors that measure tree growth to monitor and analyze the interactions between the climate, snow, and tree growth. We found a transition in the daily growth cycle that is triggered by the presence of snow. Additionally, warmer February and May temperatures enhanced tree growth.
Josep Bonsoms, Marc Oliva, Juan Ignacio López-Moreno, and Guillaume Jouvet
EGUsphere, https://doi.org/10.5194/egusphere-2024-1770, https://doi.org/10.5194/egusphere-2024-1770, 2024
Short summary
Short summary
The extent to which Greenland's peripheral glaciers and ice caps current and future ice loss rates are unprecedented within the Holocene is poorly understood. This study connects the maximum ice extent of the Late Holocene with present and future glacier evolution in the Nuussuaq Peninsula (Central-Western Greenland). By > 2070 glacier mass loss may double the rate from the Late Holocene to the present, highlighting significant impacts of anthropogenic climate change.
Josep Bonsoms, Juan I. López-Moreno, Esteban Alonso-González, César Deschamps-Berger, and Marc Oliva
Nat. Hazards Earth Syst. Sci., 24, 245–264, https://doi.org/10.5194/nhess-24-245-2024, https://doi.org/10.5194/nhess-24-245-2024, 2024
Short summary
Short summary
Climate warming is changing mountain snowpack patterns, leading in some cases to rain-on-snow (ROS) events. Here we analyzed near-present ROS and its sensitivity to climate warming across the Pyrenees. ROS increases during the coldest months of the year but decreases in the warmest months and areas under severe warming due to snow cover depletion. Faster snow ablation is anticipated in the coldest and northern slopes of the range. Relevant implications in mountain ecosystem are anticipated.
Esteban Alonso-González, Kristoffer Aalstad, Norbert Pirk, Marco Mazzolini, Désirée Treichler, Paul Leclercq, Sebastian Westermann, Juan Ignacio López-Moreno, and Simon Gascoin
Hydrol. Earth Syst. Sci., 27, 4637–4659, https://doi.org/10.5194/hess-27-4637-2023, https://doi.org/10.5194/hess-27-4637-2023, 2023
Short summary
Short summary
Here we explore how to improve hyper-resolution (5 m) distributed snowpack simulations using sparse observations, which do not provide information from all the areas of the simulation domain. We propose a new way of propagating information throughout the simulations adapted to the hyper-resolution, which could also be used to improve simulations of other nature. The method has been implemented in an open-source data assimilation tool that is readily accessible to everyone.
Solomon H. Gebrechorkos, Jian Peng, Ellen Dyer, Diego G. Miralles, Sergio M. Vicente-Serrano, Chris Funk, Hylke E. Beck, Dagmawi T. Asfaw, Michael B. Singer, and Simon J. Dadson
Earth Syst. Sci. Data, 15, 5449–5466, https://doi.org/10.5194/essd-15-5449-2023, https://doi.org/10.5194/essd-15-5449-2023, 2023
Short summary
Short summary
Drought is undeniably one of the most intricate and significant natural hazards with far-reaching consequences for the environment, economy, water resources, agriculture, and societies across the globe. In response to this challenge, we have devised high-resolution drought indices. These indices serve as invaluable indicators for assessing shifts in drought patterns and their associated impacts on a global, regional, and local level facilitating the development of tailored adaptation strategies.
Ixeia Vidaller, Eñaut Izagirre, Luis Mariano del Rio, Esteban Alonso-González, Francisco Rojas-Heredia, Enrique Serrano, Ana Moreno, Juan Ignacio López-Moreno, and Jesús Revuelto
The Cryosphere, 17, 3177–3192, https://doi.org/10.5194/tc-17-3177-2023, https://doi.org/10.5194/tc-17-3177-2023, 2023
Short summary
Short summary
The Aneto glacier, the largest glacier in the Pyrenees, has shown continuous surface and ice thickness losses in the last decades. In this study, we examine changes in its surface and ice thickness for 1981–2022 and the remaining ice thickness in 2020. During these 41 years, the glacier has shrunk by 64.7 %, and the ice thickness has decreased by 30.5 m on average. The mean ice thickness in 2022 was 11.9 m, compared to 32.9 m in 1981. The results highlight the critical situation of the glacier.
César Deschamps-Berger, Simon Gascoin, David Shean, Hannah Besso, Ambroise Guiot, and Juan Ignacio López-Moreno
The Cryosphere, 17, 2779–2792, https://doi.org/10.5194/tc-17-2779-2023, https://doi.org/10.5194/tc-17-2779-2023, 2023
Short summary
Short summary
The estimation of the snow depth in mountains is hard, despite the importance of the snowpack for human societies and ecosystems. We measured the snow depth in mountains by comparing the elevation of points measured with snow from the high-precision altimetric satellite ICESat-2 to the elevation without snow from various sources. Snow depths derived only from ICESat-2 were too sparse, but using external airborne/satellite products results in spatially richer and sufficiently precise snow depths.
Josep Bonsoms, Juan Ignacio López-Moreno, and Esteban Alonso-González
The Cryosphere, 17, 1307–1326, https://doi.org/10.5194/tc-17-1307-2023, https://doi.org/10.5194/tc-17-1307-2023, 2023
Short summary
Short summary
This work analyzes the snow response to temperature and precipitation in the Pyrenees. During warm and wet seasons, seasonal snow depth is expected to be reduced by −37 %, −34 %, and −27 % per degree Celsius at low-, mid-, and high-elevation areas, respectively. The largest snow reductions are anticipated at low elevations of the eastern Pyrenees. Results anticipate important impacts on the nearby ecological and socioeconomic systems.
Miguel Bartolomé, Gérard Cazenave, Marc Luetscher, Christoph Spötl, Fernando Gázquez, Ánchel Belmonte, Alexandra V. Turchyn, Juan Ignacio López-Moreno, and Ana Moreno
The Cryosphere, 17, 477–497, https://doi.org/10.5194/tc-17-477-2023, https://doi.org/10.5194/tc-17-477-2023, 2023
Short summary
Short summary
In this work we study the microclimate and the geomorphological features of Devaux ice cave in the Central Pyrenees. The research is based on cave monitoring, geomorphology, and geochemical analyses. We infer two different thermal regimes. The cave is impacted by flooding in late winter/early spring when the main outlets freeze, damming the water inside. Rock temperatures below 0°C and the absence of drip water indicate frozen rock, while relict ice formations record past damming events.
Esteban Alonso-González, Kristoffer Aalstad, Mohamed Wassim Baba, Jesús Revuelto, Juan Ignacio López-Moreno, Joel Fiddes, Richard Essery, and Simon Gascoin
Geosci. Model Dev., 15, 9127–9155, https://doi.org/10.5194/gmd-15-9127-2022, https://doi.org/10.5194/gmd-15-9127-2022, 2022
Short summary
Short summary
Snow cover plays an important role in many processes, but its monitoring is a challenging task. The alternative is usually to simulate the snowpack, and to improve these simulations one of the most promising options is to fuse simulations with available observations (data assimilation). In this paper we present MuSA, a data assimilation tool which facilitates the implementation of snow monitoring initiatives, allowing the assimilation of a wide variety of remotely sensed snow cover information.
Ana Moreno, Miguel Bartolomé, Juan Ignacio López-Moreno, Jorge Pey, Juan Pablo Corella, Jordi García-Orellana, Carlos Sancho, María Leunda, Graciela Gil-Romera, Penélope González-Sampériz, Carlos Pérez-Mejías, Francisco Navarro, Jaime Otero-García, Javier Lapazaran, Esteban Alonso-González, Cristina Cid, Jerónimo López-Martínez, Belén Oliva-Urcia, Sérgio Henrique Faria, María José Sierra, Rocío Millán, Xavier Querol, Andrés Alastuey, and José M. García-Ruíz
The Cryosphere, 15, 1157–1172, https://doi.org/10.5194/tc-15-1157-2021, https://doi.org/10.5194/tc-15-1157-2021, 2021
Short summary
Short summary
Our study of the chronological sequence of Monte Perdido Glacier in the Central Pyrenees (Spain) reveals that, although the intense warming associated with the Roman period or Medieval Climate Anomaly produced important ice mass losses, it was insufficient to make this glacier disappear. By contrast, recent global warming has melted away almost 600 years of ice accumulated since the Little Ice Age, jeopardising the survival of this and other southern European glaciers over the next few decades.
Rogert Sorí, Marta Vázquez, Milica Stojanovic, Raquel Nieto, Margarida L. R. Liberato, and Luis Gimeno
Nat. Hazards Earth Syst. Sci., 20, 1805–1832, https://doi.org/10.5194/nhess-20-1805-2020, https://doi.org/10.5194/nhess-20-1805-2020, 2020
Jian Peng, Simon Dadson, Feyera Hirpa, Ellen Dyer, Thomas Lees, Diego G. Miralles, Sergio M. Vicente-Serrano, and Chris Funk
Earth Syst. Sci. Data, 12, 753–769, https://doi.org/10.5194/essd-12-753-2020, https://doi.org/10.5194/essd-12-753-2020, 2020
Short summary
Short summary
Africa has been severely influenced by intense drought events, which has led to crop failure, food shortages, famine, epidemics and even mass migration. The current study developed a high spatial resolution drought dataset entirely from satellite-based products. The dataset has been comprehensively inter-compared with other drought indicators and may contribute to an improved characterization of drought risk and vulnerability and minimize drought's impact on water and food security in Africa.
Miquel Tomas-Burguera, Sergio M. Vicente-Serrano, Santiago Beguería, Fergus Reig, and Borja Latorre
Earth Syst. Sci. Data, 11, 1917–1930, https://doi.org/10.5194/essd-11-1917-2019, https://doi.org/10.5194/essd-11-1917-2019, 2019
Short summary
Short summary
A database of reference evapotranspiration (ETo) was obtained and made publicly available for Spain covering the 1961–2014 period at a spatial resolution of 1.1 km. Previous to ETo calculation, data of required climate variables were interpolated and validated, and the uncertainty was estimated. Obtained ETo values can be used to calculate irrigation requirements, improve drought studies (our main motivation) and study the impact of climate change, as a positive trend was detected.
Pauline Rivoire, Yves Tramblay, Luc Neppel, Elke Hertig, and Sergio M. Vicente-Serrano
Nat. Hazards Earth Syst. Sci., 19, 1629–1638, https://doi.org/10.5194/nhess-19-1629-2019, https://doi.org/10.5194/nhess-19-1629-2019, 2019
Short summary
Short summary
In order to define a dry period, a threshold for wet days is usually considered to account for measurement errors and evaporation. In the present study, we compare the threshold of 1 mm d−1, the most commonly used threshold, to a time-varying threshold describing evapotranspiration to compare how the risk of extreme dry spells is estimated with both thresholds. Results indicate that considering a fixed threshold can underestimate extreme dry spells during the extended summer.
Marina Peña-Gallardo, Sergio Martín Vicente-Serrano, Fernando Domínguez-Castro, and Santiago Beguería
Nat. Hazards Earth Syst. Sci., 19, 1215–1234, https://doi.org/10.5194/nhess-19-1215-2019, https://doi.org/10.5194/nhess-19-1215-2019, 2019
Short summary
Short summary
Drought events are of great importance in most Mediterranean climate regions, and the impacts caused on rainfed crops are particularly evident. In this study the impacts of drought on two representative rainfed crops in Spain (wheat and barley) are assessed by testing various worldwide drought indices and two datasets at different spatial resolution.
Sergio M. Vicente-Serrano, Cesar Azorin-Molina, Marina Peña-Gallardo, Miquel Tomas-Burguera, Fernando Domínguez-Castro, Natalia Martín-Hernández, Santiago Beguería, Ahmed El Kenawy, Iván Noguera, and Mónica García
Nat. Hazards Earth Syst. Sci., 19, 1189–1213, https://doi.org/10.5194/nhess-19-1189-2019, https://doi.org/10.5194/nhess-19-1189-2019, 2019
Short summary
Short summary
Drought is a major driver of vegetation activity in Spain. Here we used a high-resolution remote-sensing dataset spanning the period from 1981 to 2015 to assess the sensitivity of 23 vegetation types to drought across Spain. Results demonstrate that vegetation activity is controlled largely by the interannual variability of drought. Nevertheless, there are some considerable spatio-temporal variations, which can be linked to differences in land cover and aridity conditions.
António P. Ferreira, Raquel Nieto, and Luis Gimeno
Earth Syst. Sci. Data, 11, 603–627, https://doi.org/10.5194/essd-11-603-2019, https://doi.org/10.5194/essd-11-603-2019, 2019
Short summary
Short summary
The completeness of global radiosonde humidity observations taken over time is studied based on IGRA data. The study illustrates how the number of long-term time series depends on the required frequency, continuity, and vertical sampling of data, in addition to record length. Furthermore, a dataset with metadata related to IGRA is described. It is hoped that such metadata will help climate and environmental scientists to find the most complete in situ observations meeting their research needs.
Fernando Domínguez-Castro, Sergio M. Vicente-Serrano, Miquel Tomás-Burguera, Marina Peña-Gallardo, Santiago Beguería, Ahmed El Kenawy, Yolanda Luna, and Ana Morata
Nat. Hazards Earth Syst. Sci., 19, 611–628, https://doi.org/10.5194/nhess-19-611-2019, https://doi.org/10.5194/nhess-19-611-2019, 2019
Short summary
Short summary
We mapped – for the first time – the probability of occurrence of drought over Spain, with the overriding aim of improving current drought assessment, management and mitigation measures, and strategies across the region. Spatially, our estimations suggest a higher probability of extreme drought events in southern and central areas of Spain compared to northern and eastern regions. Nevertheless, there are strong differences among drought indices and drought timescales.
Luis Gimeno-Sotelo, Raquel Nieto, Marta Vázquez, and Luis Gimeno
Earth Syst. Dynam., 10, 121–133, https://doi.org/10.5194/esd-10-121-2019, https://doi.org/10.5194/esd-10-121-2019, 2019
Short summary
Short summary
Ice melting at the scale of inter-annual fluctuations against the trend is favoured by an increase in moisture transport in summer, autumn, and winter and a decrease in spring. On a daily basis extreme humidity transport increases the formation of ice in winter and decreases it in spring, summer, and autumn; in these three seasons it thus contributes to Arctic sea ice melting. These patterns differ sharply from that linked to decline, especially in summer when the opposite trend applies.
Iago Algarra, Jorge Eiras-Barca, Gonzalo Miguez-Macho, Raquel Nieto, and Luis Gimeno
Earth Syst. Dynam., 10, 107–119, https://doi.org/10.5194/esd-10-107-2019, https://doi.org/10.5194/esd-10-107-2019, 2019
Short summary
Short summary
We analyse moisture transport triggered by the Great Plains low-level jet (GPLLJ), a maximum in wind speed fields located within the first kilometre of the US Great Plain's troposphere, through the innovative Eulerian Weather Research and Forecasting Model tracer tool. Much moisture associated with this low-level jet has been found in northern regions located in a vast extension of the continent, highlighting the key role played by the GPLLJ in North America's advective transport of moisture.
Paulina Ordoñez, Raquel Nieto, Luis Gimeno, Pedro Ribera, David Gallego, Carlos Abraham Ochoa-Moya, and Arturo Ignacio Quintanar
Earth Syst. Dynam., 10, 59–72, https://doi.org/10.5194/esd-10-59-2019, https://doi.org/10.5194/esd-10-59-2019, 2019
Short summary
Short summary
The identification of moisture sources for a region is of prominent importance regarding the characterization of precipitation. In this work, the moisture sources for the western North American monsoon (WNAM) region are identified; these sources are the Gulf of California, the WNAM itself, eastern Mexico and the Caribbean Sea. We find that rainfall intensity over the WNAM region is related to the amount of moisture transported from the Caribbean Sea and eastern Mexico during the preceding days.
Brett Woelber, Marco P. Maneta, Joel Harper, Kelsey G. Jencso, W. Payton Gardner, Andrew C. Wilcox, and Ignacio López-Moreno
Hydrol. Earth Syst. Sci., 22, 4295–4310, https://doi.org/10.5194/hess-22-4295-2018, https://doi.org/10.5194/hess-22-4295-2018, 2018
Short summary
Short summary
The hydrology of high-elevation headwaters in midlatitudes is typically dominated by snow processes, which are very sensitive to changes in energy inputs at the top of the snowpack. We present a data analyses that reveal how snowmelt and transpiration waves induced by the diurnal solar cycle generate water pressure fluctuations that propagate through the snowpack–hillslope–stream system. Changes in diurnal energy inputs alter these pressure cycles with potential ecohydrological consequences.
Sergio M. Vicente-Serrano, Raquel Nieto, Luis Gimeno, Cesar Azorin-Molina, Anita Drumond, Ahmed El Kenawy, Fernando Dominguez-Castro, Miquel Tomas-Burguera, and Marina Peña-Gallardo
Earth Syst. Dynam., 9, 915–937, https://doi.org/10.5194/esd-9-915-2018, https://doi.org/10.5194/esd-9-915-2018, 2018
Short summary
Short summary
We analyzed changes in surface relative humidity (RH) at the global scale from 1979 to 2014 and compared the variability and trends in RH with those in land evapotranspiration and ocean evaporation in moisture source areas across a range of selected regions worldwide. Our results stress that the different hypotheses that may explain the decrease in RH under a global warming scenario could act together to explain recent RH trends.
Patrícia Páscoa, Célia M. Gouveia, Ana C. Russo, Roxana Bojariu, Sergio M. Vicente-Serrano, and Ricardo M. Trigo
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-264, https://doi.org/10.5194/hess-2018-264, 2018
Revised manuscript not accepted
Luis Gimeno-Sotelo, Raquel Nieto, Marta Vázquez, and Luis Gimeno
Earth Syst. Dynam., 9, 611–625, https://doi.org/10.5194/esd-9-611-2018, https://doi.org/10.5194/esd-9-611-2018, 2018
Short summary
Short summary
We have identified changes in the pattern of moisture transport for precipitation over the Arctic region, the Arctic Ocean, and its 13 main subdomains concurrent with the major sea ice decline that occurred in 2003. The pattern consists of a general decrease in moisture transport in summer and enhanced moisture transport in autumn and early winter, with different contributions depending on the moisture source and ocean subregion.
Martin Beniston, Daniel Farinotti, Markus Stoffel, Liss M. Andreassen, Erika Coppola, Nicolas Eckert, Adriano Fantini, Florie Giacona, Christian Hauck, Matthias Huss, Hendrik Huwald, Michael Lehning, Juan-Ignacio López-Moreno, Jan Magnusson, Christoph Marty, Enrique Morán-Tejéda, Samuel Morin, Mohamed Naaim, Antonello Provenzale, Antoine Rabatel, Delphine Six, Johann Stötter, Ulrich Strasser, Silvia Terzago, and Christian Vincent
The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, https://doi.org/10.5194/tc-12-759-2018, 2018
Short summary
Short summary
This paper makes a rather exhaustive overview of current knowledge of past, current, and future aspects of cryospheric issues in continental Europe and makes a number of reflections of areas of uncertainty requiring more attention in both scientific and policy terms. The review paper is completed by a bibliography containing 350 recent references that will certainly be of value to scholars engaged in the fields of glacier, snow, and permafrost research.
Esteban Alonso-González, J. Ignacio López-Moreno, Simon Gascoin, Matilde García-Valdecasas Ojeda, Alba Sanmiguel-Vallelado, Francisco Navarro-Serrano, Jesús Revuelto, Antonio Ceballos, María Jesús Esteban-Parra, and Richard Essery
Earth Syst. Sci. Data, 10, 303–315, https://doi.org/10.5194/essd-10-303-2018, https://doi.org/10.5194/essd-10-303-2018, 2018
Short summary
Short summary
We present a new daily gridded snow depth and snow water equivalent database over the Iberian Peninsula from 1980 to 2014 structured in common elevation bands. The data have proved their consistency with in situ observations and remote sensing data (MODIS). The presented dataset may be useful for many applications, including land management, hydrometeorological studies, phenology of flora and fauna, winter tourism and risk management.
Rogert Sorí, Raquel Nieto, Anita Drumond, Sergio M. Vicente-Serrano, and Luis Gimeno
Hydrol. Earth Syst. Sci., 21, 6379–6399, https://doi.org/10.5194/hess-21-6379-2017, https://doi.org/10.5194/hess-21-6379-2017, 2017
Jesús Revuelto, Cesar Azorin-Molina, Esteban Alonso-González, Alba Sanmiguel-Vallelado, Francisco Navarro-Serrano, Ibai Rico, and Juan Ignacio López-Moreno
Earth Syst. Sci. Data, 9, 993–1005, https://doi.org/10.5194/essd-9-993-2017, https://doi.org/10.5194/essd-9-993-2017, 2017
Short summary
Short summary
This work describes the snow and meteorological data set available for the Izas Experimental Catchment in the Central Spanish Pyrenees, from the 2011 to 2017 snow seasons. The climatic data set consists of (i) continuous meteorological variables acquired from an automatic weather station (AWS), (ii) detailed information on snow depth distribution collected with a terrestrial laser scanner for certain dates and (iii) time-lapse images showing the evolution of the snow-covered area.
Rogert Sorí, Raquel Nieto, Sergio M. Vicente-Serrano, Anita Drumond, and Luis Gimeno
Earth Syst. Dynam., 8, 653–675, https://doi.org/10.5194/esd-8-653-2017, https://doi.org/10.5194/esd-8-653-2017, 2017
Samuel T. Buisán, Michael E. Earle, José Luís Collado, John Kochendorfer, Javier Alastrué, Mareile Wolff, Craig D. Smith, and Juan I. López-Moreno
Atmos. Meas. Tech., 10, 1079–1091, https://doi.org/10.5194/amt-10-1079-2017, https://doi.org/10.5194/amt-10-1079-2017, 2017
Short summary
Short summary
Within the framework of the WMO-SPICE (Solid Precipitation Intercomparison Experiment) the Thies tipping bucket precipitation gauge, widely used at AEMET, was assessed against the SPICE reference.
Most countries use tipping buckets and for this reason the underestimation of snowfall precipitation is a large-scale problem.
The methodology presented here can be used by other national weather services to test precipitation bias corrections and to identify regions where errors are higher.
Ana María Durán-Quesada, Luis Gimeno, and Jorge Amador
Earth Syst. Dynam., 8, 147–161, https://doi.org/10.5194/esd-8-147-2017, https://doi.org/10.5194/esd-8-147-2017, 2017
Short summary
Short summary
This work aims to leverage the understanding of precipitation distribution with a long-term analysis of moisture transport from oceanic and continental sources and its relevance for regional precipitation features, variability and trends. Combining reanalysis, model output, in situ observations and satellite products we provide a robust survey that is useful for, for example, modelling, water resource management, flood and drought monitoring, rain-linked disease spread and ecosystem studies.
Graham A. Sexstone, Steven R. Fassnacht, Juan Ignacio López-Moreno, and Christopher A. Hiemstra
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-188, https://doi.org/10.5194/tc-2016-188, 2016
Revised manuscript has not been submitted
Short summary
Short summary
Seasonal snowpacks vary spatially within mountainous environments and the representation of this variability by modeling can be a challenge. This study uses high-resolution airborne lidar data to evaluate the variability of snow depth within a grid size common for modeling applications. Results suggest that snow depth coefficient of variation is well correlated with ecosystem type, depth of snow, and topography and forest characteristics, and can be parameterized using airborne lidar data.
Sergio M. Vicente-Serrano, Cesar Azorin-Molina, Arturo Sanchez-Lorenzo, Ahmed El Kenawy, Natalia Martín-Hernández, Marina Peña-Gallardo, Santiago Beguería, and Miquel Tomas-Burguera
Hydrol. Earth Syst. Sci., 20, 3393–3410, https://doi.org/10.5194/hess-20-3393-2016, https://doi.org/10.5194/hess-20-3393-2016, 2016
Short summary
Short summary
In this work we analyse the recent evolution and meteorological drivers of the atmospheric evaporative demand in the Canary Islands. We found that the reference evapotranspiration increased by 18.2 mm decade−1 – on average – between 1961 and 2013, with the highest increase recorded during summer. This increase was mainly driven by changes in the aerodynamic component, caused by a statistically significant reduction of the relative humidity.
Alexandre M. Ramos, Raquel Nieto, Ricardo Tomé, Luis Gimeno, Ricardo M. Trigo, Margarida L. R. Liberato, and David A. Lavers
Earth Syst. Dynam., 7, 371–384, https://doi.org/10.5194/esd-7-371-2016, https://doi.org/10.5194/esd-7-371-2016, 2016
Short summary
Short summary
An atmospheric river (AR) detection algorithm is used for the North Atlantic Ocean basin, allowing the identification of the major ARs that affected western European coasts between 1979 and 2014. A Lagrangian analysis was then applied in order to identify the main sources of moisture of the ARs that reach western European coasts. Results confirm not only the advection of moisture linked to ARs from subtropical ocean areas but also the existence of a tropical one.
Juan Ignacio López-Moreno, Jesús Revuelto, Ibai Rico, Javier Chueca-Cía, Asunción Julián, Alfredo Serreta, Enrique Serrano, Sergio Martín Vicente-Serrano, Cesar Azorin-Molina, Esteban Alonso-González, and José María García-Ruiz
The Cryosphere, 10, 681–694, https://doi.org/10.5194/tc-10-681-2016, https://doi.org/10.5194/tc-10-681-2016, 2016
Short summary
Short summary
This paper analyzes the evolution of the Monte Perdido Glacier, Spanish Pyrenees, since 1981. Changes in ice volume were estimated by geodetic methods and terrestrial laser scanning. An acceleration in ice thinning is detected during the 21st century. Local climatic changes observed during the study period do not seem sufficient to explain the acceleration. The strong disequilibrium between the glacier and the current climate and feedback mechanisms seems to be the most plausible explanation.
L. Gimeno, M. Vázquez, R. Nieto, and R. M. Trigo
Earth Syst. Dynam., 6, 583–589, https://doi.org/10.5194/esd-6-583-2015, https://doi.org/10.5194/esd-6-583-2015, 2015
Short summary
Short summary
There appears to be a connection between two climate change indicators: an increase in evaporation over source regions and Arctic ice melting.
E. Nadal-Romero, J. Revuelto, P. Errea, and J. I. López-Moreno
SOIL, 1, 561–573, https://doi.org/10.5194/soil-1-561-2015, https://doi.org/10.5194/soil-1-561-2015, 2015
Short summary
Short summary
Geomatic techniques have been routinely applied in erosion studies, providing the opportunity to build high-resolution topographic models.The aim of this study is to assess and compare the functioning of terrestrial laser scanner and close range photogrammetry techniques to evaluate erosion and deposition processes in a humid badlands area.
Our results demonstrated that north slopes experienced more intense and faster dynamics than south slopes as well as the highest erosion rates.
J. Revuelto, J. I. López-Moreno, C. Azorin-Molina, and S. M. Vicente-Serrano
The Cryosphere, 8, 1989–2006, https://doi.org/10.5194/tc-8-1989-2014, https://doi.org/10.5194/tc-8-1989-2014, 2014
A. Drumond, J. Marengo, T. Ambrizzi, R. Nieto, L. Moreira, and L. Gimeno
Hydrol. Earth Syst. Sci., 18, 2577–2598, https://doi.org/10.5194/hess-18-2577-2014, https://doi.org/10.5194/hess-18-2577-2014, 2014
E. Morán-Tejeda, J. Zabalza, K. Rahman, A. Gago-Silva, J. I. López-Moreno, S. Vicente-Serrano, A. Lehmann, C. L. Tague, and M. Beniston
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-11983-2013, https://doi.org/10.5194/hessd-10-11983-2013, 2013
Manuscript not accepted for further review
J. Lorenzo-Lacruz, E. Morán-Tejeda, S. M. Vicente-Serrano, and J. I. López-Moreno
Hydrol. Earth Syst. Sci., 17, 119–134, https://doi.org/10.5194/hess-17-119-2013, https://doi.org/10.5194/hess-17-119-2013, 2013
Related subject area
Dynamics of the Earth system: models
Stable stadial and interstadial states of the last glacial's climate identified in a combined stable water isotope and dust record from Greenland
The modelled climatic response to the 18.6-year lunar nodal cycle and its role in decadal temperature trends
The future of the El Niño–Southern Oscillation: using large ensembles to illuminate time-varying responses and inter-model differences
Regime-oriented causal model evaluation of Atlantic–Pacific teleconnections in CMIP6
Seasonal forecasting skill for the High Mountain Asia region in the Goddard Earth Observing System
Assessing sensitivities of climate model weighting to multiple methods, variables, and domains in the south-central United States
Global and northern-high-latitude net ecosystem production in the 21st century from CMIP6 experiments
Potential for bias in effective climate sensitivity from state-dependent energetic imbalance
Regional dynamical and statistical downscaling temperature, humidity and wind speed for the Beijing region under stratospheric aerosol injection geoengineering
Process-based estimate of global-mean sea-level changes in the Common Era
Present and future European heat wave magnitudes: climatologies, trends, and their associated uncertainties in GCM-RCM model chains
Improving the prediction of the Madden–Julian Oscillation of the ECMWF model by post-processing
Estimating the lateral transfer of organic carbon through the European river network using a land surface model
Effect of the Atlantic Meridional Overturning Circulation on atmospheric pCO2 variations
A methodology for the spatiotemporal identification of compound hazards: wind and precipitation extremes in Great Britain (1979–2019)
MESMER-M: an Earth system model emulator for spatially resolved monthly temperature
Evaluation of convection-permitting extreme precipitation simulations for the south of France
Agricultural management effects on mean and extreme temperature trends
Weakened impact of the Atlantic Niño on the future equatorial Atlantic and Guinea Coast rainfall
The fractional energy balance equation for climate projections through 2100
Climate change in the High Mountain Asia in CMIP6
The sensitivity of the El Niño–Southern Oscillation to volcanic aerosol spatial distribution in the MPI Grand Ensemble
Coupled regional Earth system modeling in the Baltic Sea region
Climate change projections of terrestrial primary productivity over the Hindu Kush Himalayan forests
Bookkeeping estimates of the net land-use change flux – a sensitivity study with the CMIP6 land-use dataset
Climate-controlled root zone parameters show potential to improve water flux simulations by land surface models
Space–time dependence of compound hot–dry events in the United States: assessment using a multi-site multi-variable weather generator
First assessment of the earth heat inventory within CMIP5 historical simulations
The thermal response of small and shallow lakes to climate change: new insights from 3D hindcast modelling
Labrador Sea subsurface density as a precursor of multidecadal variability in the North Atlantic: a multi-model study
How modelling paradigms affect simulated future land use change
Identifying meteorological drivers of extreme impacts: an application to simulated crop yields
Simulating compound weather extremes responsible for critical crop failure with stochastic weather generators
Characterisation of Atlantic meridional overturning hysteresis using Langevin dynamics
Evaluating the dependence structure of compound precipitation and wind speed extremes
Future sea level contribution from Antarctica inferred from CMIP5 model forcing and its dependence on precipitation ansatz
The extremely warm summer of 2018 in Sweden – set in a historical context
Effect of changing ocean circulation on deep ocean temperature in the last millennium
How large does a large ensemble need to be?
Reconstructing coupled time series in climate systems using three kinds of machine-learning methods
An investigation of weighting schemes suitable for incorporating large ensembles into multi-model ensembles
What could we learn about climate sensitivity from variability in the surface temperature record?
Using a nested single-model large ensemble to assess the internal variability of the North Atlantic Oscillation and its climatic implications for central Europe
Climate change in a conceptual atmosphere–phytoplankton model
Variability of surface climate in simulations of past and future
Statistical estimation of global surface temperature response to forcing under the assumption of temporal scaling
Emulating Earth system model temperatures with MESMER: from global mean temperature trajectories to grid-point-level realizations on land
A global semi-empirical glacial isostatic adjustment (GIA) model based on Gravity Recovery and Climate Experiment (GRACE) data
Improvement in the decadal prediction skill of the North Atlantic extratropical winter circulation through increased model resolution
Societal breakdown as an emergent property of large-scale behavioural models of land use change
Keno Riechers, Leonardo Rydin Gorjão, Forough Hassanibesheli, Pedro G. Lind, Dirk Witthaut, and Niklas Boers
Earth Syst. Dynam., 14, 593–607, https://doi.org/10.5194/esd-14-593-2023, https://doi.org/10.5194/esd-14-593-2023, 2023
Short summary
Short summary
Paleoclimate proxy records show that the North Atlantic climate repeatedly transitioned between two regimes during the last glacial interval. This study investigates a bivariate proxy record from a Greenland ice core which reflects past Greenland temperatures and large-scale atmospheric conditions. We reconstruct the underlying deterministic drift by estimating first-order Kramers–Moyal coefficients and identify two separate stable states in agreement with the aforementioned climatic regimes.
Manoj Joshi, Robert A. Hall, David P. Stevens, and Ed Hawkins
Earth Syst. Dynam., 14, 443–455, https://doi.org/10.5194/esd-14-443-2023, https://doi.org/10.5194/esd-14-443-2023, 2023
Short summary
Short summary
The 18.6-year lunar nodal cycle arises from variations in the angle of the Moon's orbital plane and affects ocean tides. In this work we use a climate model to examine the effect of this cycle on the ocean, surface, and atmosphere. The timing of anomalies is consistent with the so-called slowdown in global warming and has implications for when global temperatures will exceed 1.5 ℃ above pre-industrial levels. Regional anomalies have implications for seasonal climate areas such as Europe.
Nicola Maher, Robert C. Jnglin Wills, Pedro DiNezio, Jeremy Klavans, Sebastian Milinski, Sara C. Sanchez, Samantha Stevenson, Malte F. Stuecker, and Xian Wu
Earth Syst. Dynam., 14, 413–431, https://doi.org/10.5194/esd-14-413-2023, https://doi.org/10.5194/esd-14-413-2023, 2023
Short summary
Short summary
Understanding whether the El Niño–Southern Oscillation (ENSO) is likely to change in the future is important due to its widespread impacts. By using large ensembles, we can robustly isolate the time-evolving response of ENSO variability in 14 climate models. We find that ENSO variability evolves in a nonlinear fashion in many models and that there are large differences between models. These nonlinear changes imply that ENSO impacts may vary dramatically throughout the 21st century.
Soufiane Karmouche, Evgenia Galytska, Jakob Runge, Gerald A. Meehl, Adam S. Phillips, Katja Weigel, and Veronika Eyring
Earth Syst. Dynam., 14, 309–344, https://doi.org/10.5194/esd-14-309-2023, https://doi.org/10.5194/esd-14-309-2023, 2023
Short summary
Short summary
This study uses a causal discovery method to evaluate the ability of climate models to represent the interactions between the Atlantic multidecadal variability (AMV) and the Pacific decadal variability (PDV). The approach and findings in this study present a powerful methodology that can be applied to a number of environment-related topics, offering tremendous insights to improve the understanding of the complex Earth system and the state of the art of climate modeling.
Elias C. Massoud, Lauren Andrews, Rolf Reichle, Andrea Molod, Jongmin Park, Sophie Ruehr, and Manuela Girotto
Earth Syst. Dynam., 14, 147–171, https://doi.org/10.5194/esd-14-147-2023, https://doi.org/10.5194/esd-14-147-2023, 2023
Short summary
Short summary
In this study, we benchmark the forecast skill of the NASA’s Goddard Earth Observing System subseasonal-to-seasonal (GEOS-S2S version 2) hydrometeorological forecasts in the High Mountain Asia (HMA) region. Hydrometeorological forecast skill is dependent on the forecast lead time, the memory of the variable within the physical system, and the validation dataset used. Overall, these results benchmark the GEOS-S2S system’s ability to forecast HMA hydrometeorology on the seasonal timescale.
Adrienne M. Wootten, Elias C. Massoud, Duane E. Waliser, and Huikyo Lee
Earth Syst. Dynam., 14, 121–145, https://doi.org/10.5194/esd-14-121-2023, https://doi.org/10.5194/esd-14-121-2023, 2023
Short summary
Short summary
Climate projections and multi-model ensemble weighting are increasingly used for climate assessments. This study examines the sensitivity of projections to multi-model ensemble weighting strategies in the south-central United States. Model weighting and ensemble means are sensitive to the domain and variable used. There are numerous findings regarding the improvement in skill with model weighting and the sensitivity associated with various strategies.
Han Qiu, Dalei Hao, Yelu Zeng, Xuesong Zhang, and Min Chen
Earth Syst. Dynam., 14, 1–16, https://doi.org/10.5194/esd-14-1-2023, https://doi.org/10.5194/esd-14-1-2023, 2023
Short summary
Short summary
The carbon cycling in terrestrial ecosystems is complex. In our analyses, we found that both the global and the northern-high-latitude (NHL) ecosystems will continue to have positive net ecosystem production (NEP) in the next few decades under four global change scenarios but with large uncertainties. NHL ecosystems will experience faster climate warming but steadily contribute a small fraction of the global NEP. However, the relative uncertainty of NHL NEP is much larger than the global values.
Benjamin M. Sanderson and Maria Rugenstein
Earth Syst. Dynam., 13, 1715–1736, https://doi.org/10.5194/esd-13-1715-2022, https://doi.org/10.5194/esd-13-1715-2022, 2022
Short summary
Short summary
Equilibrium climate sensitivity (ECS) is a measure of how much long-term warming should be expected in response to a change in greenhouse gas concentrations. It is generally calculated in climate models by extrapolating global average temperatures to a point of where the planet is no longer a net absorber of energy. Here we show that some climate models experience energy leaks which change as the planet warms, undermining the standard approach and biasing some existing model estimates of ECS.
Jun Wang, John C. Moore, Liyun Zhao, Chao Yue, and Zhenhua Di
Earth Syst. Dynam., 13, 1625–1640, https://doi.org/10.5194/esd-13-1625-2022, https://doi.org/10.5194/esd-13-1625-2022, 2022
Short summary
Short summary
We examine how geoengineering using aerosols in the atmosphere might impact urban climate in the greater Beijing region containing over 50 million people. Climate models have too coarse resolutions to resolve regional variations well, so we compare two workarounds for this – an expensive physical model and a cheaper statistical method. The statistical method generally gives a reasonable representation of climate and has limited resolution and a different seasonality from the physical model.
Nidheesh Gangadharan, Hugues Goosse, David Parkes, Heiko Goelzer, Fabien Maussion, and Ben Marzeion
Earth Syst. Dynam., 13, 1417–1435, https://doi.org/10.5194/esd-13-1417-2022, https://doi.org/10.5194/esd-13-1417-2022, 2022
Short summary
Short summary
We describe the contributions of ocean thermal expansion and land-ice melting (ice sheets and glaciers) to global-mean sea-level (GMSL) changes in the Common Era. The mass contributions are the major sources of GMSL changes in the pre-industrial Common Era and glaciers are the largest contributor. The paper also describes the current state of climate modelling, uncertainties and knowledge gaps along with the potential implications of the past variabilities in the contemporary sea-level rise.
Changgui Lin, Erik Kjellström, Renate Anna Irma Wilcke, and Deliang Chen
Earth Syst. Dynam., 13, 1197–1214, https://doi.org/10.5194/esd-13-1197-2022, https://doi.org/10.5194/esd-13-1197-2022, 2022
Short summary
Short summary
This study endorses RCMs' added value on the driving GCMs in representing observed heat wave magnitudes. The future increase of heat wave magnitudes projected by GCMs is attenuated when downscaled by RCMs. Within the downscaling, uncertainties can be attributed almost equally to choice of RCMs and to the driving data associated with different GCMs. Uncertainties of GCMs in simulating heat wave magnitudes are transformed by RCMs in a complex manner rather than simply inherited.
Riccardo Silini, Sebastian Lerch, Nikolaos Mastrantonas, Holger Kantz, Marcelo Barreiro, and Cristina Masoller
Earth Syst. Dynam., 13, 1157–1165, https://doi.org/10.5194/esd-13-1157-2022, https://doi.org/10.5194/esd-13-1157-2022, 2022
Short summary
Short summary
The Madden–Julian Oscillation (MJO) has important socioeconomic impacts due to its influence on both tropical and extratropical weather extremes. In this study, we use machine learning (ML) to correct the predictions of the weather model holding the best performance, developed by the European Centre for Medium-Range Weather Forecasts (ECMWF). We show that the ML post-processing leads to an improved prediction of the MJO geographical location and intensity.
Haicheng Zhang, Ronny Lauerwald, Pierre Regnier, Philippe Ciais, Kristof Van Oost, Victoria Naipal, Bertrand Guenet, and Wenping Yuan
Earth Syst. Dynam., 13, 1119–1144, https://doi.org/10.5194/esd-13-1119-2022, https://doi.org/10.5194/esd-13-1119-2022, 2022
Short summary
Short summary
We present a land surface model which can simulate the complete lateral transfer of sediment and carbon from land to ocean through rivers. Our model captures the water, sediment, and organic carbon discharges in European rivers well. Application of our model in Europe indicates that lateral carbon transfer can strongly change regional land carbon budgets by affecting organic carbon distribution and soil moisture.
Amber Boot, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 13, 1041–1058, https://doi.org/10.5194/esd-13-1041-2022, https://doi.org/10.5194/esd-13-1041-2022, 2022
Short summary
Short summary
Atmospheric pCO2 of the past shows large variability on different timescales. We focus on the effect of the strength of Atlantic Meridional Overturning Circulation (AMOC) on this variability and on the AMOC–pCO2 relationship. We find that climatic boundary conditions and the representation of biology in our model are most important for this relationship. Under certain conditions, we find internal oscillations, which can be relevant for atmospheric pCO2 variability during glacial cycles.
Aloïs Tilloy, Bruce D. Malamud, and Amélie Joly-Laugel
Earth Syst. Dynam., 13, 993–1020, https://doi.org/10.5194/esd-13-993-2022, https://doi.org/10.5194/esd-13-993-2022, 2022
Short summary
Short summary
Compound hazards occur when two different natural hazards impact the same time period and spatial area. This article presents a methodology for the spatiotemporal identification of compound hazards (SI–CH). The methodology is applied to compound precipitation and wind extremes in Great Britain for the period 1979–2019. The study finds that the SI–CH approach can accurately identify single and compound hazard events and represent their spatial and temporal properties.
Shruti Nath, Quentin Lejeune, Lea Beusch, Sonia I. Seneviratne, and Carl-Friedrich Schleussner
Earth Syst. Dynam., 13, 851–877, https://doi.org/10.5194/esd-13-851-2022, https://doi.org/10.5194/esd-13-851-2022, 2022
Short summary
Short summary
Uncertainty within climate model projections on inter-annual timescales is largely affected by natural climate variability. Emulators are valuable tools for approximating climate model runs, allowing for easy exploration of such uncertainty spaces. This study takes a first step at building a spatially resolved, monthly temperature emulator that takes local yearly temperatures as the sole input, thus providing monthly temperature distributions which are of critical value to impact assessments.
Linh N. Luu, Robert Vautard, Pascal Yiou, and Jean-Michel Soubeyroux
Earth Syst. Dynam., 13, 687–702, https://doi.org/10.5194/esd-13-687-2022, https://doi.org/10.5194/esd-13-687-2022, 2022
Short summary
Short summary
This study downscales climate information from EURO-CORDEX (approx. 12 km) output to a higher horizontal resolution (approx. 3 km) for the south of France. We also propose a matrix of different indices to evaluate the high-resolution precipitation output. We find that a higher resolution reproduces more realistic extreme precipitation events at both daily and sub-daily timescales. Our results and approach are promising to apply to other Mediterranean regions and climate impact studies.
Aine M. Gormley-Gallagher, Sebastian Sterl, Annette L. Hirsch, Sonia I. Seneviratne, Edouard L. Davin, and Wim Thiery
Earth Syst. Dynam., 13, 419–438, https://doi.org/10.5194/esd-13-419-2022, https://doi.org/10.5194/esd-13-419-2022, 2022
Short summary
Short summary
Our results show that agricultural management can impact the local climate and highlight the need to evaluate land management in climate models. We use regression analysis on climate simulations and observations to assess irrigation and conservation agriculture impacts on warming trends. This allowed us to distinguish between the effects of land management and large-scale climate forcings such as rising CO2 concentrations and thus gain insight into the impacts under different climate regimes.
Koffi Worou, Hugues Goosse, Thierry Fichefet, and Fred Kucharski
Earth Syst. Dynam., 13, 231–249, https://doi.org/10.5194/esd-13-231-2022, https://doi.org/10.5194/esd-13-231-2022, 2022
Short summary
Short summary
Over the Guinea Coast, the increased rainfall associated with warm phases of the Atlantic Niño is reasonably well simulated by 24 climate models out of 31, for the present-day conditions. In a warmer climate, general circulation models project a gradual decrease with time of the rainfall magnitude associated with the Atlantic Niño for the 2015–2039, 2040–2069 and 2070–2099 periods. There is a higher confidence in these changes over the equatorial Atlantic than over the Guinea Coast.
Roman Procyk, Shaun Lovejoy, and Raphael Hébert
Earth Syst. Dynam., 13, 81–107, https://doi.org/10.5194/esd-13-81-2022, https://doi.org/10.5194/esd-13-81-2022, 2022
Short summary
Short summary
This paper presents a new class of energy balance model that accounts for the long memory within the Earth's energy storage. The model is calibrated on instrumental temperature records and the historical energy budget of the Earth using an error model predicted by the model itself. Our equilibrium climate sensitivity and future temperature projection estimates are consistent with those estimated by complex climate models.
Mickaël Lalande, Martin Ménégoz, Gerhard Krinner, Kathrin Naegeli, and Stefan Wunderle
Earth Syst. Dynam., 12, 1061–1098, https://doi.org/10.5194/esd-12-1061-2021, https://doi.org/10.5194/esd-12-1061-2021, 2021
Short summary
Short summary
Climate change over High Mountain Asia is investigated with CMIP6 climate models. A general cold bias is found in this area, often related to a snow cover overestimation in the models. Ensemble experiments generally encompass the past observed trends, suggesting that even biased models can reproduce the trends. Depending on the future scenario, a warming from 1.9 to 6.5 °C, associated with a snow cover decrease and precipitation increase, is expected at the end of the 21st century.
Benjamin Ward, Francesco S. R. Pausata, and Nicola Maher
Earth Syst. Dynam., 12, 975–996, https://doi.org/10.5194/esd-12-975-2021, https://doi.org/10.5194/esd-12-975-2021, 2021
Short summary
Short summary
Using the largest ensemble of a climate model currently available, the Max Planck Institute Grand Ensemble (MPI-GE), we investigated the impact of the spatial distribution of volcanic aerosols on the El Niño–Southern Oscillation (ENSO) response. By selecting three eruptions with different aerosol distributions, we found that the shift of the Intertropical Convergence Zone (ITCZ) is the main driver of the ENSO response, while other mechanisms commonly invoked seem less important in our model.
Matthias Gröger, Christian Dieterich, Jari Haapala, Ha Thi Minh Ho-Hagemann, Stefan Hagemann, Jaromir Jakacki, Wilhelm May, H. E. Markus Meier, Paul A. Miller, Anna Rutgersson, and Lichuan Wu
Earth Syst. Dynam., 12, 939–973, https://doi.org/10.5194/esd-12-939-2021, https://doi.org/10.5194/esd-12-939-2021, 2021
Short summary
Short summary
Regional climate studies are typically pursued by single Earth system component models (e.g., ocean models and atmosphere models). These models are driven by prescribed data which hamper the simulation of feedbacks between Earth system components. To overcome this, models were developed that interactively couple model components and allow an adequate simulation of Earth system interactions important for climate. This article reviews recent developments of such models for the Baltic Sea region.
Halima Usman, Thomas A. M. Pugh, Anders Ahlström, and Sofia Baig
Earth Syst. Dynam., 12, 857–870, https://doi.org/10.5194/esd-12-857-2021, https://doi.org/10.5194/esd-12-857-2021, 2021
Short summary
Short summary
The study assesses the impacts of climate change on forest productivity in the Hindu Kush Himalayan region. LPJ-GUESS was simulated from 1851 to 2100. In first approach, the model was compared with observational estimates. The comparison showed a moderate agreement. In the second approach, the model was assessed for the temporal and spatial trends of net biome productivity and its components along with carbon pool. Increases in both variables were predicted in 2100.
Kerstin Hartung, Ana Bastos, Louise Chini, Raphael Ganzenmüller, Felix Havermann, George C. Hurtt, Tammas Loughran, Julia E. M. S. Nabel, Tobias Nützel, Wolfgang A. Obermeier, and Julia Pongratz
Earth Syst. Dynam., 12, 763–782, https://doi.org/10.5194/esd-12-763-2021, https://doi.org/10.5194/esd-12-763-2021, 2021
Short summary
Short summary
In this study, we model the relative importance of several contributors to the land-use and land-cover change (LULCC) flux based on a LULCC dataset including uncertainty estimates. The uncertainty of LULCC is as relevant as applying wood harvest and gross transitions for the cumulative LULCC flux over the industrial period. However, LULCC uncertainty matters less than the other two factors for the LULCC flux in 2014; historical LULCC uncertainty is negligible for estimates of future scenarios.
Fransje van Oorschot, Ruud J. van der Ent, Markus Hrachowitz, and Andrea Alessandri
Earth Syst. Dynam., 12, 725–743, https://doi.org/10.5194/esd-12-725-2021, https://doi.org/10.5194/esd-12-725-2021, 2021
Short summary
Short summary
The roots of vegetation largely control the Earth's water cycle by transporting water from the subsurface to the atmosphere but are not adequately represented in land surface models, causing uncertainties in modeled water fluxes. We replaced the root parameters in an existing model with more realistic ones that account for a climate control on root development and found improved timing of modeled river discharge. Further extension of our approach could improve modeled water fluxes globally.
Manuela I. Brunner, Eric Gilleland, and Andrew W. Wood
Earth Syst. Dynam., 12, 621–634, https://doi.org/10.5194/esd-12-621-2021, https://doi.org/10.5194/esd-12-621-2021, 2021
Short summary
Short summary
Compound hot and dry events can lead to severe impacts whose severity may depend on their timescale and spatial extent. Here, we show that the spatial extent and timescale of compound hot–dry events are strongly related, spatial compound event extents are largest at
sub-seasonal timescales, and short events are driven more by high temperatures, while longer events are more driven by low precipitation. Future climate impact studies should therefore be performed at different timescales.
Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, and Joel Finnis
Earth Syst. Dynam., 12, 581–600, https://doi.org/10.5194/esd-12-581-2021, https://doi.org/10.5194/esd-12-581-2021, 2021
Short summary
Short summary
The current radiative imbalance at the top of the atmosphere is increasing the heat stored in the oceans, atmosphere, continental subsurface and cryosphere, with consequences for societies and ecosystems (e.g. sea level rise). We performed the first assessment of the ability of global climate models to represent such heat storage in the climate subsystems. Models are able to reproduce the observed atmosphere heat content, with biases in the simulation of heat content in the rest of components.
Francesco Piccioni, Céline Casenave, Bruno Jacques Lemaire, Patrick Le Moigne, Philippe Dubois, and Brigitte Vinçon-Leite
Earth Syst. Dynam., 12, 439–456, https://doi.org/10.5194/esd-12-439-2021, https://doi.org/10.5194/esd-12-439-2021, 2021
Short summary
Short summary
Small lakes are ecosystems highly impacted by climate change. Here, the thermal regime of a small, shallow lake over the past six decades was reconstructed via 3D modelling. Significant changes were found: strong water warming in spring and summer (0.7 °C/decade) as well as increased stratification and thermal energy for cyanobacteria growth, especially in spring. The strong spatial patterns detected for stratification might create local conditions particularly favourable to cyanobacteria bloom.
Pablo Ortega, Jon I. Robson, Matthew Menary, Rowan T. Sutton, Adam Blaker, Agathe Germe, Jöel J.-M. Hirschi, Bablu Sinha, Leon Hermanson, and Stephen Yeager
Earth Syst. Dynam., 12, 419–438, https://doi.org/10.5194/esd-12-419-2021, https://doi.org/10.5194/esd-12-419-2021, 2021
Short summary
Short summary
Deep Labrador Sea densities are receiving increasing attention because of their link to many of the processes that govern decadal climate oscillations in the North Atlantic and their potential use as a precursor of those changes. This article explores those links and how they are represented in global climate models, documenting the main differences across models. Models are finally compared with observational products to identify the ones that reproduce the links more realistically.
Calum Brown, Ian Holman, and Mark Rounsevell
Earth Syst. Dynam., 12, 211–231, https://doi.org/10.5194/esd-12-211-2021, https://doi.org/10.5194/esd-12-211-2021, 2021
Short summary
Short summary
The variety of human and natural processes in the land system can be modelled in many different ways. However, little is known about how and why basic model assumptions affect model results. We compared two models that represent land use in completely distinct ways and found several results that differed greatly. We identify the main assumptions that caused these differences and therefore key issues that need to be addressed for more robust model development.
Johannes Vogel, Pauline Rivoire, Cristina Deidda, Leila Rahimi, Christoph A. Sauter, Elisabeth Tschumi, Karin van der Wiel, Tianyi Zhang, and Jakob Zscheischler
Earth Syst. Dynam., 12, 151–172, https://doi.org/10.5194/esd-12-151-2021, https://doi.org/10.5194/esd-12-151-2021, 2021
Short summary
Short summary
We present a statistical approach for automatically identifying multiple drivers of extreme impacts based on LASSO regression. We apply the approach to simulated crop failure in the Northern Hemisphere and identify which meteorological variables including climate extreme indices and which seasons are relevant to predict crop failure. The presented approach can help unravel compounding drivers in high-impact events and could be applied to other impacts such as wildfires or flooding.
Peter Pfleiderer, Aglaé Jézéquel, Juliette Legrand, Natacha Legrix, Iason Markantonis, Edoardo Vignotto, and Pascal Yiou
Earth Syst. Dynam., 12, 103–120, https://doi.org/10.5194/esd-12-103-2021, https://doi.org/10.5194/esd-12-103-2021, 2021
Short summary
Short summary
In 2016, northern France experienced an unprecedented wheat crop loss. This crop loss was likely due to an extremely warm December 2015 and abnormally high precipitation during the following spring season. Using stochastic weather generators we investigate how severe the metrological conditions leading to the crop loss could be in current climate conditions. We find that December temperatures were close to the plausible maximum but that considerably wetter springs would be possible.
Jelle van den Berk, Sybren Drijfhout, and Wilco Hazeleger
Earth Syst. Dynam., 12, 69–81, https://doi.org/10.5194/esd-12-69-2021, https://doi.org/10.5194/esd-12-69-2021, 2021
Short summary
Short summary
A collapse of the Atlantic Meridional Overturning Circulation can be described by six parameters and Langevin dynamics. These parameters can be determined from collapses seen in climate models of intermediate complexity. With this parameterisation, it might be possible to estimate how much fresh water is needed to observe a collapse in more complicated models and reality.
Jakob Zscheischler, Philippe Naveau, Olivia Martius, Sebastian Engelke, and Christoph C. Raible
Earth Syst. Dynam., 12, 1–16, https://doi.org/10.5194/esd-12-1-2021, https://doi.org/10.5194/esd-12-1-2021, 2021
Short summary
Short summary
Compound extremes such as heavy precipitation and extreme winds can lead to large damage. To date it is unclear how well climate models represent such compound extremes. Here we present a new measure to assess differences in the dependence structure of bivariate extremes. This measure is applied to assess differences in the dependence of compound precipitation and wind extremes between three model simulations and one reanalysis dataset in a domain in central Europe.
Christian B. Rodehacke, Madlene Pfeiffer, Tido Semmler, Özgür Gurses, and Thomas Kleiner
Earth Syst. Dynam., 11, 1153–1194, https://doi.org/10.5194/esd-11-1153-2020, https://doi.org/10.5194/esd-11-1153-2020, 2020
Short summary
Short summary
In the warmer future, Antarctica's ice sheet will lose more ice due to enhanced iceberg calving and a warming ocean that melts more floating ice from below. However, the hydrological cycle is also stronger in a warmer world. Hence, more snowfall will precipitate on Antarctica and may balance the amplified ice loss. We have used future climate scenarios from various global climate models to perform numerous ice sheet simulations to show that precipitation may counteract mass loss.
Renate Anna Irma Wilcke, Erik Kjellström, Changgui Lin, Daniela Matei, Anders Moberg, and Evangelos Tyrlis
Earth Syst. Dynam., 11, 1107–1121, https://doi.org/10.5194/esd-11-1107-2020, https://doi.org/10.5194/esd-11-1107-2020, 2020
Short summary
Short summary
Two long-lasting high-pressure systems in summer 2018 led to heat waves over Scandinavia and an extended summer period with devastating impacts on both agriculture and human life. Using five climate model ensembles, the unique 263-year Stockholm temperature time series and a composite 150-year time series for the whole of Sweden, we found that anthropogenic climate change has strongly increased the probability of a warm summer, such as the one observed in 2018, occurring in Sweden.
Jeemijn Scheen and Thomas F. Stocker
Earth Syst. Dynam., 11, 925–951, https://doi.org/10.5194/esd-11-925-2020, https://doi.org/10.5194/esd-11-925-2020, 2020
Short summary
Short summary
Variability of sea surface temperatures (SST) in 1200–2000 CE is quite well-known, but the history of deep ocean temperatures is not. Forcing an ocean model with these SSTs, we simulate temperatures in the ocean interior. The circulation changes alter the amplitude and timing of deep ocean temperature fluctuations below 2 km depth, e.g. delaying the atmospheric signal by ~ 200 years in the deep Atlantic. Thus ocean circulation changes are shown to be as important as SST changes at these depths.
Sebastian Milinski, Nicola Maher, and Dirk Olonscheck
Earth Syst. Dynam., 11, 885–901, https://doi.org/10.5194/esd-11-885-2020, https://doi.org/10.5194/esd-11-885-2020, 2020
Short summary
Short summary
Initial-condition large ensembles with ensemble sizes ranging from 30 to 100 members have become a commonly used tool to quantify the forced response and internal variability in various components of the climate system, but there is no established method to determine the required ensemble size for a given problem. We propose a new framework that can be used to estimate the required ensemble size from a model's control run or an existing large ensemble.
Yu Huang, Lichao Yang, and Zuntao Fu
Earth Syst. Dynam., 11, 835–853, https://doi.org/10.5194/esd-11-835-2020, https://doi.org/10.5194/esd-11-835-2020, 2020
Short summary
Short summary
We investigate the applicability of machine learning (ML) on time series reconstruction and find that the dynamical coupling relation and nonlinear causality are crucial for the application of ML. Our results could provide insights into causality and ML approaches for paleoclimate reconstruction, parameterization schemes, and prediction in climate studies.
Anna Louise Merrifield, Lukas Brunner, Ruth Lorenz, Iselin Medhaug, and Reto Knutti
Earth Syst. Dynam., 11, 807–834, https://doi.org/10.5194/esd-11-807-2020, https://doi.org/10.5194/esd-11-807-2020, 2020
Short summary
Short summary
Justifiable uncertainty estimates of future change in northern European winter and Mediterranean summer temperature can be obtained by weighting a multi-model ensemble comprised of projections from different climate models and multiple projections from the same climate model. Weights reduce the influence of model biases and handle dependence by identifying a projection's model of origin from historical characteristics; contributions from the same model are scaled by the number of members.
James D. Annan, Julia C. Hargreaves, Thorsten Mauritsen, and Bjorn Stevens
Earth Syst. Dynam., 11, 709–719, https://doi.org/10.5194/esd-11-709-2020, https://doi.org/10.5194/esd-11-709-2020, 2020
Short summary
Short summary
In this paper we explore the potential of variability for constraining the equilibrium response of the climate system to external forcing. We show that the constraint is inherently skewed, with a long tail to high sensitivity, and that while the variability may contain some useful information, it is unlikely to generate a tight constraint.
Andrea Böhnisch, Ralf Ludwig, and Martin Leduc
Earth Syst. Dynam., 11, 617–640, https://doi.org/10.5194/esd-11-617-2020, https://doi.org/10.5194/esd-11-617-2020, 2020
Short summary
Short summary
North Atlantic air pressure variations influencing European climate variables are simulated in coarse-resolution global climate models (GCMs). As single-model runs do not sufficiently describe variations of their patterns, several model runs with slightly diverging initial conditions are analyzed. The study shows that GCM and regional climate model (RCM) patterns vary in a similar range over the same domain, while RCMs add consistent fine-scale information due to their higher spatial resolution.
György Károlyi, Rudolf Dániel Prokaj, István Scheuring, and Tamás Tél
Earth Syst. Dynam., 11, 603–615, https://doi.org/10.5194/esd-11-603-2020, https://doi.org/10.5194/esd-11-603-2020, 2020
Short summary
Short summary
We construct a conceptual model to understand the interplay between the atmosphere and the ocean biosphere in a climate change framework, including couplings between extraction of carbon dioxide by phytoplankton and climate change, temperature and carrying capacity of phytoplankton, and wind energy and phytoplankton production. We find that sufficiently strong mixing can result in decaying global phytoplankton content.
Kira Rehfeld, Raphaël Hébert, Juan M. Lora, Marcus Lofverstrom, and Chris M. Brierley
Earth Syst. Dynam., 11, 447–468, https://doi.org/10.5194/esd-11-447-2020, https://doi.org/10.5194/esd-11-447-2020, 2020
Short summary
Short summary
Under continued anthropogenic greenhouse gas emissions, it is likely that global mean surface temperature will continue to increase. Little is known about changes in climate variability. We analyze surface climate variability and compare it to mean change in colder- and warmer-than-present climate model simulations. In most locations, but not on subtropical land, simulated temperature variability up to decadal timescales decreases with mean temperature, and precipitation variability increases.
Eirik Myrvoll-Nilsen, Sigrunn Holbek Sørbye, Hege-Beate Fredriksen, Håvard Rue, and Martin Rypdal
Earth Syst. Dynam., 11, 329–345, https://doi.org/10.5194/esd-11-329-2020, https://doi.org/10.5194/esd-11-329-2020, 2020
Short summary
Short summary
This paper presents efficient Bayesian methods for linear response models of global mean surface temperature that take into account long-range dependence. We apply the methods to the instrumental temperature record and historical model runs in the CMIP5 ensemble to provide estimates of the transient climate response and temperature projections under the Representative Concentration Pathways.
Lea Beusch, Lukas Gudmundsson, and Sonia I. Seneviratne
Earth Syst. Dynam., 11, 139–159, https://doi.org/10.5194/esd-11-139-2020, https://doi.org/10.5194/esd-11-139-2020, 2020
Short summary
Short summary
Earth system models (ESMs) are invaluable to study the climate system but expensive to run. Here, we present a statistical tool which emulates ESMs at a negligible computational cost by creating stochastic realizations of yearly land temperature field time series. Thereby, 40 ESMs are considered, and for each ESM, a single simulation is required to train the tool. The resulting ESM-specific realizations closely resemble ESM simulations not employed during training at point to regional scales.
Yu Sun and Riccardo E. M. Riva
Earth Syst. Dynam., 11, 129–137, https://doi.org/10.5194/esd-11-129-2020, https://doi.org/10.5194/esd-11-129-2020, 2020
Short summary
Short summary
The solid Earth is still deforming because of the effect of past ice sheets through glacial isostatic adjustment (GIA). Satellite gravity observations by the Gravity Recovery and Climate Experiment (GRACE) mission are sensitive to those signals but are superimposed on the redistribution effect of water masses by the hydrological cycle. We propose a method separating the two signals, providing new constraints for forward GIA models and estimating the global water cycle's patterns and magnitude.
Mareike Schuster, Jens Grieger, Andy Richling, Thomas Schartner, Sebastian Illing, Christopher Kadow, Wolfgang A. Müller, Holger Pohlmann, Stephan Pfahl, and Uwe Ulbrich
Earth Syst. Dynam., 10, 901–917, https://doi.org/10.5194/esd-10-901-2019, https://doi.org/10.5194/esd-10-901-2019, 2019
Short summary
Short summary
Decadal climate predictions are valuable to society as they allow us to estimate climate conditions several years in advance. We analyze the latest version of the German MiKlip prediction system (https://www.fona-miklip.de) and assess the effect of the model resolution on the skill of the system. The increase in the resolution of the system reduces the bias and significantly improves the forecast skill for North Atlantic extratropical winter dynamics for lead times of two to five winters.
Calum Brown, Bumsuk Seo, and Mark Rounsevell
Earth Syst. Dynam., 10, 809–845, https://doi.org/10.5194/esd-10-809-2019, https://doi.org/10.5194/esd-10-809-2019, 2019
Short summary
Short summary
Concerns are growing that human activity will lead to social and environmental breakdown, but it is hard to anticipate when and where such breakdowns might occur. We developed a new model of land management decisions in Europe to explore possible future changes and found that decision-making that takes into account social and environmental conditions can produce unexpected outcomes that include societal breakdown in challenging conditions.
Cited articles
Aizen, V., Aizen, E., Melack, J., and Martma, T.: Isotopic measurements of precipitation on central Asia glaciers (southeastern Tibetan, northern Himalayas, central Tien Shan), J. Geophys. Res., 101, 9185–9196, 1996.
Andersen, K. K., Azuma, N., Barnola, J.-M., et al.: High-resolution record of Northern Hemisphere climate extending into the last interglacial period, Nature, 431, 147–151, https://doi.org/10.1038/nature02805, 2004
Bengtsson, L., Hagemann, S., and Hodges, K. I.: Can climate trends be calculated from reanalysis data?, J. Geophys. Res., 109, D11111, https://doi.org/10.1029/2004JD004536, 2004.
Camberlin, P. and Philippon, N.: The east African March–May rainy season: associated atmospheric dynamics and predictability over the 1968–97 period, J. Climate, 15, 1002–1019, 2002.
Chan, R. Y., Vuille, M., Hardy, D. R., and Bradley, R. S.: Intraseasonal precipitation variability on Kilimanjaro and the East African region and its relationship to the large-scale circulation, Theor. Appl. Climatol., 93, 149–165, 2008.
Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjörnsdottir, A. E., Jouzel, J., and Bond, G.: Evidence for general instability of past climate from a 250-kyr ice-core record, Nature, 364, 218–220, 1993.
Dee, D. P., Uppala, S. M., Simmons, A. J., et al.: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Delmotte, M., Masson, V., Jouzel, J., and Morgan, V.: A seasonal deuterium excess signal at Law Dome, coastal Eastern Antarctica: A southern ocean signature, J. Geophys. Res., 105, 7187–7197, 2000.
Drumond, A., Nieto, R., Gimeno, L., and Ambrizzi, T.: A lagrangian identification of major sources of moisture over Central Brazil and La Plata Basin, J. Geophys. Res., 113, D14128, https://doi.org/10.1029/2007JD009547, 2008.
Drumond, A., Marengo, J., Ambrizzi, T., Nieto, R., Moreira, L., and Gimeno, L.: The role of the Amazon Basin moisture in the atmospheric branch of the hydrological cycle: a Lagrangian analysis, Hydrol. Earth Syst. Sci., 18, 2577–2598, https://doi.org/10.5194/hess-18-2577-2014, 2014.
ECMWF: ERA-Interim data set, available at: http://www.ecmwf.int, last access: 1 July 2016.
Eichler, A., Schwikowski, M., Gäggeler, H. W., Furrer, V., Synal, H.-A., Beer, J., Saurer, M., and Funk, M.: Glaciochemical dating of an ice core from upper Grenzgletscher (4200 m a.s.l.), J. Glaciol., 46, 507–515, https://doi.org/10.3189/172756500781833098, 2000.
Fisher, D. A., Wake, C., Kreutz, K., Yalcin, K., Steig, E., Mayewski, P., Anderson, L., Zheng, J., Rupper, S., Zdanowicz, C., Demuth, M., Waszkiewicz, M., Dahl-Jensen, D., Goto-Azuma, K., Bourgeois, J. B., Koerner, R. M., Sekerka, J., Osterberg, E., Abbott, M. B., Finney, B. P., and Burns, S. J.: Stable isotope records from Mount Logan, Eclipse Ice Cores and Nearby Jellybean Lake. Water cycle of the North Pacific over 2000 years and over five vertical kilometres: sudden shift and tropical connections, Geogr. Phys. Quatern., 58, 337–352, 2004.
Gimeno, L., Drumond, A., Nieto, R., Trigo, R. M., and Stohl, A.: On the origin of continental precipitation, Geophys. Res. Lett., 37, L13804, https://doi.org/10.1029/2010GL043712, 2010.
Gimeno, L., Stohl, A., Trigo, R. M., Dominguez, F., Yoshimura, K., Yu, L., Drumond, A., Durán-Quesada, A. M., and Nieto, R.: Oceanic and Terrestrial Sources of Continental Precipitation, Rev. Geophys., 50, RG4003, https://doi.org/10.1029/2012RG000389, 2012.
Gimeno, L., Nieto, R., Drumond, A., Castillo, R., and Trigo, R. M.: Influence of the intensification of the major oceanic moisture sources on continental precipitation, Geophys. Res. Lett., 40, 1443–1450, https://doi.org/10.1002/grl.50338, 2013.
Henderson, K. A.: An ice core paleoclimate study of Windy Dome, Franz Josef Land (Russia): development of a recent climate history for the Barents Sea, Dissertation, The Ohio State University, Ohio, 2002.
Hou, S., Chappellaz, J., Raynaud, D., Masson-Delmotte, V., Jouzel, J., Bousquet, P., and Hauglustaine, D.: A new Himalayan ice core CH4 record: possible hints at the preindustrial latitudinal gradient, Clim. Past, 9, 2549–2554, https://doi.org/10.5194/cp-9-2549-2013, 2013.
Jouzel, J., Merlivat, L., and Lorius, C.: Deuterium excess in an East Antarctic ice core suggests higher relative humidity at the oceanic surface during the last glacial maximum, Nature, 299, 688–691, 1982.
Jouzel, J., Delaygue, G., Landais, A., Masson-Delmotte, V., Risi, C., and Vimeux, F.: Water isotopes as tools to document oceanic sources of precipitation, Water Resour. Res., 49, 7469–7486, https://doi.org/10.1002/2013WR013508, 2013.
Kurita, N.: Origin of Arctic water vapor during the ice-growth season, Geophys. Res. Lett., 38, L02709, https://doi.org/10.1029/2010GL046064, 2011.
Lorenz, C. and Kunstmann, H.: The hydrological cycle in three state-of-the-art reanalyses: Intercomparison and performance analysis, J. Hydrometeorol., 13, 1397–1420, https://doi.org/10.1175/jhm-d-11–088.1, 2012.
Mariani, I., Eichler, A., Jenk, T. M., Brönnimann, S., Auchmann, R., Leuenberger, M. C., and Schwikowski, M.: Temperature and precipitation signal in two Alpine ice cores over the period 1961–2001, Clim. Past, 10, 1093–1108, https://doi.org/10.5194/cp-10-1093-2014, 2014.
Markle, B. R., Bertler, N. A. N., Sinclair, K. E., and Sneed, S. B.: Synoptic variability in the Ross Sea region, Antarctica, as seen from back-trajectory modeling and ice core analysis, J. Geophys. Res., 117, D02113, https://doi.org/10.1029/2011JD016437, 2012.
Mashiotta, T. A., Thompson, L. G., and Davis, M. E.: The WhiteRiver Ash: New evidence from the Bona-Churchill ice corerecord, AGU Fall Meet. Suppl., 2004.
Masson-Delmotte, V., Jouzel, J., Landais, A., Stievenard, M., Johnsen, S. J., White, J. W. C., Werner, M., Sveinbjörnsdottir, A., and Fuhrer, K.: GRIP deuterium excess reveals rapid and orbital scale changes in Greenland moisture origin, Science, 309, 118–121, 2005.
Meese, D. A., Gow, A. J., Alley, R. B., Zielinski, G. A., Grootes, P. M., Ram, M., Taylor, K. C., Mayewski, P. A., and Bolzan, J. F.: The Greenland Ice Sheet Project 2 depth-age scale: Methods and results, J. Geophys. Res., 102, 26411–26423, https://doi.org/10.1029/97JC00269, 1997.
Moore, G. W. K., Holdsworth, G., and Alverson, K.: Variability in the climate of the Pacific Ocean and North America as expressed in the Mount Logan ice core, Ann. Glaciol., 35, 423–429, 2002.
Nieto, R., Durán-Quesada, A. M., and Gimeno, L.: Major sources of moisture for Antarctic ice-core sites identified through a Lagrangian approach, Clim. Res., 40, 45-49, https://doi.org/10.3354/cr00842, 2010.
Numaguti, A.: Origin and recycling processes of precipitating water over the Eurasian continent: Experiments using an atmospheric general circulation model, J. Geophys. Res., 104, 1957–1972, 1999.
Peixoto, J. P. and Oort, A. H.: Physics of climate, American Institute of Physics, New York, 1992.
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., PÉpin, L., Ritz, C., Saltzman, E., and Stievenard, M.: Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399, 429–436, 1999.
Pfahl, S. and Sodemann, H.: What controls deuterium excess in global precipitation?, Clim. Past, 10, 771–781, https://doi.org/10.5194/cp-10-771-2014, 2014.
Rasmussen, S. O., Abbott, P. M., Blunier, T., Bourne, A. J., Brook, E., Buchardt, S. L., Buizert, C., Chappellaz, J., Clausen, H. B., Cook, E., Dahl-Jensen, D., Davies, S. M., Guillevic, M., Kipfstuhl, S., Laepple, T., Seierstad, I. K., Severinghaus, J. P., Steffensen, J. P., Stowasser, C., Svensson, A., Vallelonga, P., Vinther, B. M., Wilhelms, F., and Winstrup, M.: A first chronology for the North Greenland Eemian Ice Drilling (NEEM) ice core, Clim. Past, 9, 2713–2730, https://doi.org/10.5194/cp-9-2713-2013, 2013.
Rienecker, M. M., Suarez, M. J, Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D. Takacs, L., Kim, G.-K., Bloom, S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., and Woollen, J.: MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications, J. Climate, 24, 3624–3648, https://doi.org/10.1175/JCLI-D-11-00015.1, 2011.
Ruth, U., Barnola, J.-M., Beer, J., Bigler, M., Blunier, T., Castellano, E., Fischer, H., Fundel, F., Huybrechts, P., Kaufmann, P., Kipfstuhl, S., Lambrecht, A., Morganti, A., Oerter, H., Parrenin, F., Rybak, O., Severi, M., Udisti, R., Wilhelms, F., and Wolff, E.: "EDML1": a chronology for the EPICA deep ice core from Dronning Maud Land, Antarctica, over the last 150 000 years, Clim. Past, 3, 475–484, https://doi.org/10.5194/cp-3-475-2007, 2007.
Scarchilli, C., Frezzotti, M., and Ruti, P. M.: Snow precipitation at four ice core sites in East Antarctica: provenance, seasonality and blocking factors, Clim. Dynam., 37, 2107–2125, https://doi.org/10.1007/s00382-010-0946-4, 2011.
Schlosser, E., Oerter,H., Masson-Delmotte, V., and Reijmer C.: Atmospheric influence on the deuterium excess signal in polar firn: Implications for ice-core interpretation, J. Glaciol., 54, 117–124, https://doi.org/10.3189/002214308784408991, 2008.
Sodemann, H. and Stohl, A.: Asymmetries in the moisture origin of Antarctic precipitation, Geophys. Res. Lett., 36, L22803, https://doi.org/10.1029/2009GL040242, 2009.
Sodemann, H. and Zubler, E.: Seasonal and inter-annual variability of moisture sources for Alpine precipitation during 1995–2002, Int. J. Climatol., 30, 947–961, https://doi.org/10.1002/joc.1932, 2009.
Sodemann, H., Schwierz, C., and Wernli, H.: Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence, J. Geophys. Res., 113, D12111, https://doi.org/10.1029/2007JD009416, 2008.
Steen-Larsen, H. C., Johnsen, S. J., Masson-Delmotte, V., Stenni, B., Risi, C., Sodemann, H., Balslev-Clausen, D., Blunier, T., Dahl-Jensen, D., Ellehøj, M. D., Falourd, S., Grindsted, A., Gkinis, V., Jouzel, J., Popp, T., Sheldon, S., Simonsen, S. B., Sjolte, J., Steffensen, J. P., Sperlich, P., Sveinbjörnsdóttir, A. E., Vinther, B. M., and White, J. W. C.: Continuous monitoring of summer surface water vapor isotopic composition above the Greenland Ice Sheet, Atmos. Chem. Phys., 13, 4815–4828, https://doi.org/10.5194/acp-13-4815-2013, 2013.
Steen-Larsen, H. C., Sveinbjörnsdottir, A. E., Jonsson, Th., Ritter, F., Bonne, J.-L., Masson-Delmotte, V., Sodemann, H., Blunier, T., Dahl-Jensen, D., Vinther, B. M.: Moisture sources and synoptic to seasonal variability of North Atlantic water vapor isotopic composition, J. Geophys. Res.-Atmos., 120, 5757–5774, https://doi.org/10.1002/2015JD023234, 2015.
Steffensen, J. P., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Fischer, H., Goto-Azuma, K., Hansson, M., Johnsen, S. J., Jouzel, J., Masson-Delmotte, V., Popp, T., Rasmussen, S. O., Roethlisberger, R., Ruth, U., Stauffer, B., Siggaard-Andersen, M.-L., Sveinbjornsdottir, A. E., Svensson, A., and White, J. W. C.: High-resolution Greenland Ice Core data show abrupt climate change happens in few years, Science, 321, 680–684, https://doi.org/10.1126/science.1157707, 2008.
Stohl, A. and James, P.: A Lagrangian Analysis of the Atmospheric Branch of the Global Water Water Cycle. Part I: Method Description, Validation and Demonstration for the August 2002 Flooding in Central Europe, J. Hydrometeorol., 5, 656–678, 2004.
Stohl, A. and James, P.: A Lagrangian analysis of the atmospheric branch of the global water cycle. II. Moisture transports between Earth's ocean basins and river catchments, J. Hydrometeorol., 6, 961–984, 2005.
Stohl, A., Heimberger, L., Scheele, M. P., and Wernli, H.: An intercomparison of results from three trajectory models, Meteorol. Appl., 8, 127–135, 2001.
Tierney, J. E., Smerdon, J. E., Anchukaitis, K. J., and Seager, R.: Multidecadal variability in East African hydroclimate controlled by the Indian Ocean, Nature, 493, 389–392, 2013.
Thompson, L. G., Hamilton, W. L., and Bull, C.: Climatological implications of microparticle concentrations in the ice core from Byrd Station, Western Antarctica, J. Glaciol., 14, 433–444, 1975.
Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Lin, P.-N., Henderson, K. A., Cole-Dai, J., Bolzan, J. F., and Liu, K-b.: Late Glacial Stage and Holocene tropical ice core records from Huascaran, Peru, Science, 269, 46–50, 1995.
Thompson, L. G., Davis, M. E., Thompson, E. M., Sowers, T. A., Henderson, K. A., Zagorodnov, V. S., Lin, P. N., Mikhalenko, V. N., Campen, R. K., Bolzan, J. F., Cole-Dai, J., and Francou, B.: A 25,000 year tropical climate history from Bolivian ice cores, Science, 282, 1858–1864, 1998.
Thompson, L. G., Mosley-Thompson, E., and Henderson K. A.: Ice core paleoclimate records in tropical South America since the Last Glacial Maximum, Journal of Quaternary Science, 15, 377–394, 2000.
Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Henderson, K. A., Brecher, H. H., Zagorodnov, V. S., Mashiotta, T. A., Lin, P.-N., Mikhalenko, V. N., Hardy, D. R., and Beer, J.: Kilimanjaro Ice core Records: Evidence of Holocene climate change in Tropical Africa, Science, 298, 589–593, https://doi.org/10.1126/science.1073198, 2002.
Trenberth, K. E., Fasullo, J. T., and Mackaro, J.: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses, J. Climate, 24, 4907–4924, https://doi.org/10.1175/2011jcli4171.1, 2011.
Yao, T., Masson-Delmotte, V., Gao, J., Yu, W., Yang, X., Risi, C., Sturm, C., Werner, M., Zhao, H., He, Y., Ren, W., Tian, L., Shi, C., and Hou, S.: A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations, Rev. Geophys., 51, 525–548, https://doi.org/10.1002/rog.20023, 2013.
Short summary
A Lagrangian approach was used to identify the moisture sources for fourteen ice-core sites located worldwide for the present climate. The approach computed budgets of evaporation minus precipitation by calculating changes in the specific humidity along 10-day backward trajectories. The results indicate that the oceanic regions around the subtropical high-pressure centers provide most of moisture, and their contribution varies throughout the year following the annual cycles of the centers.
A Lagrangian approach was used to identify the moisture sources for fourteen ice-core sites...
Altmetrics
Final-revised paper
Preprint