Articles | Volume 14, issue 2
https://doi.org/10.5194/esd-14-345-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esd-14-345-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The implications of maintaining Earth's hemispheric albedo symmetry for shortwave radiative feedbacks
Aiden R. Jönsson
CORRESPONDING AUTHOR
Department of Meteorology, Stockholm University, 106 91 Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
Frida A.-M. Bender
Department of Meteorology, Stockholm University, 106 91 Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
Related authors
No articles found.
Alejandro Uribe, Frida Bender, and Thorsten Mauritsen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1559, https://doi.org/10.5194/egusphere-2024-1559, 2024
Short summary
Short summary
Our study explores climate feedbacks, vital for understanding global warming. It links them to shifts in Earth's energy balance at the atmosphere's top due to natural temperature variations. It takes roughly 50-years to establish this connection. Combined satellite observations and reanalysis suggest that Earth cools more than expected under carbon dioxide influence. However, continuous satellite data until at least the mid-2030s are crucial for refining our understanding of climate feedbacks.
Alejandro Baró Pérez, Michael S. Diamond, Frida A.-M. Bender, Abhay Devasthale, Matthias Schwarz, Julien Savre, Juha Tonttila, Harri Kokkola, Hyunho Lee, David Painemal, and Annica M. L. Ekman
Atmos. Chem. Phys., 24, 4591–4610, https://doi.org/10.5194/acp-24-4591-2024, https://doi.org/10.5194/acp-24-4591-2024, 2024
Short summary
Short summary
We use a numerical model to study interactions between humid light-absorbing aerosol plumes, clouds, and radiation over the southeast Atlantic. We find that the warming produced by the aerosols reduces cloud cover, especially in highly polluted situations. Aerosol impacts on drizzle play a minor role. However, aerosol effects on cloud reflectivity and moisture-induced changes in cloud cover dominate the climatic response and lead to an overall cooling by the biomass burning plumes.
Sushant Das, Frida Bender, and Thorsten Mauritsen
EGUsphere, https://doi.org/10.5194/egusphere-2023-1605, https://doi.org/10.5194/egusphere-2023-1605, 2023
Preprint archived
Short summary
Short summary
Quantifying global and Indian precipitation responses to anthropogenic aerosol and CO2 forcings using multiple models is needed for reducing climate uncertainty. The response to global warming from CO2 increases precipitation both globally and over India, whereas the cooling response to sulfate aerosol leads to a reduction in precipitation in both cases. An opposite response to black carbon is noted i.e., a global decrease but an increase of precipitation over India implying changes in dynamics.
Peter Kuma, Frida A.-M. Bender, Alex Schuddeboom, Adrian J. McDonald, and Øyvind Seland
Atmos. Chem. Phys., 23, 523–549, https://doi.org/10.5194/acp-23-523-2023, https://doi.org/10.5194/acp-23-523-2023, 2023
Short summary
Short summary
We present a machine learning method for determining cloud types in climate model output and satellite observations based on ground observations of cloud genera. We analyse cloud type biases and changes with temperature in climate models and show that the bias is anticorrelated with climate sensitivity. Models simulating decreasing stratiform and increasing cumuliform clouds with increased CO2 concentration tend to have higher climate sensitivity than models simulating the opposite tendencies.
Alejandro Baró Pérez, Abhay Devasthale, Frida A.-M. Bender, and Annica M. L. Ekman
Atmos. Chem. Phys., 21, 6053–6077, https://doi.org/10.5194/acp-21-6053-2021, https://doi.org/10.5194/acp-21-6053-2021, 2021
Short summary
Short summary
We study the impacts of above-cloud biomass burning plumes on radiation and clouds over the southeast Atlantic using data derived from satellite observations and data-constrained model simulations. A substantial amount of the aerosol within the plumes is not classified as smoke by the satellite. The atmosphere warms more with increasing smoke aerosol loading. No clear influence of aerosol type, loading, or moisture within the overlying aerosol plumes is detected on the cloud top cooling rates.
Lena Frey, Frida A.-M. Bender, and Gunilla Svensson
Atmos. Chem. Phys., 21, 577–595, https://doi.org/10.5194/acp-21-577-2021, https://doi.org/10.5194/acp-21-577-2021, 2021
Short summary
Short summary
We investigate the vertical distribution of aerosol in the climate model NorESM1-M in five regions of marine stratocumulus clouds. We thereby analyze the total aerosol extinction to facilitate a comparison with satellite data. We find that the model underestimates aerosol extinction throughout the troposphere, especially elevated aerosol layers. Further, we perform sensitivity experiments to identify the processes most important for vertical aerosol distribution in our model.
Anna Possner, Ryan Eastman, Frida Bender, and Franziska Glassmeier
Atmos. Chem. Phys., 20, 3609–3621, https://doi.org/10.5194/acp-20-3609-2020, https://doi.org/10.5194/acp-20-3609-2020, 2020
Short summary
Short summary
Cloud water content and the number of droplets inside clouds covary with boundary layer depth. This covariation may amplify the change in water content due to a change in droplet number inferred from long-term observations. Taking this into account shows that the change in water content for increased droplet number in observations and high-resolution simulations agrees in shallow boundary layers. Meanwhile, deep boundary layers are under-sampled in process-scale simulations and observations.
Quentin Bourgeois, Annica M. L. Ekman, Jean-Baptiste Renard, Radovan Krejci, Abhay Devasthale, Frida A.-M. Bender, Ilona Riipinen, Gwenaël Berthet, and Jason L. Tackett
Atmos. Chem. Phys., 18, 7709–7720, https://doi.org/10.5194/acp-18-7709-2018, https://doi.org/10.5194/acp-18-7709-2018, 2018
Short summary
Short summary
The altitude of aerosols is crucial as they can impact cloud formation and radiation. In this study, satellite observations have been used to characterize the global aerosol optical depth (AOD) in the boundary layer and the free troposphere. The free troposphere contributes 39 % to the global AOD during daytime. Overall, the results have implications for the description of budgets, sources, sinks and transport of aerosol particles as presently described in the atmospheric model.
Daniel T. McCoy, Paul R. Field, Anja Schmidt, Daniel P. Grosvenor, Frida A.-M. Bender, Ben J. Shipway, Adrian A. Hill, Jonathan M. Wilkinson, and Gregory S. Elsaesser
Atmos. Chem. Phys., 18, 5821–5846, https://doi.org/10.5194/acp-18-5821-2018, https://doi.org/10.5194/acp-18-5821-2018, 2018
Short summary
Short summary
Here we use a combination of global convection-permitting models, satellite observations and the Holuhraun volcanic eruption to demonstrate that aerosol enhances the cloud liquid content and brightness of midlatitude cyclones. This is important because the strength of anthropogenic radiative forcing is uncertain, leading to uncertainty in the climate sensitivity consistent with observed temperature record.
Daniel T. McCoy, Frida A.-M. Bender, Daniel P. Grosvenor, Johannes K. Mohrmann, Dennis L. Hartmann, Robert Wood, and Paul R. Field
Atmos. Chem. Phys., 18, 2035–2047, https://doi.org/10.5194/acp-18-2035-2018, https://doi.org/10.5194/acp-18-2035-2018, 2018
Short summary
Short summary
The interaction between clouds and aerosols represents the largest source of uncertainty in the anthropogenic radiative forcing. Cloud droplet number concentration (CDNC) is the state variable that moderates the interaction between aerosol and clouds. Here we show that CDNC decreases off the coasts of East Asia and North America due to controls on emissions. We support this analysis through an examination of volcanism in Hawaii and Vanuatu.
Lena Frey, Frida A.-M. Bender, and Gunilla Svensson
Atmos. Chem. Phys., 17, 9145–9162, https://doi.org/10.5194/acp-17-9145-2017, https://doi.org/10.5194/acp-17-9145-2017, 2017
Short summary
Short summary
In this study, the cloud albedo effect in climate models is investigated, separating the influence of anthropogenic sulfate and non-sulfate aerosols. Cloud albedo changes induced by added anthropogenic aerosols are found to be determined by changes in the cloud water content rather than model sensitivity to monthly aerosol variations. The results also indicate that the background aerosol is the main driver for a cloud brightening effect on the month-to-month scale.
Kristina Pistone, Puppala S. Praveen, Rick M. Thomas, Veerabhadran Ramanathan, Eric M. Wilcox, and Frida A.-M. Bender
Atmos. Chem. Phys., 16, 5203–5227, https://doi.org/10.5194/acp-16-5203-2016, https://doi.org/10.5194/acp-16-5203-2016, 2016
Short summary
Short summary
A recent field campaign (CARDEX) in the northern Indian Ocean concurrently measured cloud and aerosol properties and atmospheric structure and dynamics from a ground-based observatory and unmanned aerial vehicles (UAVs). These new measurements show a correlation between highly polluted conditions and increased cloud water content, concurrent with higher atmospheric temperature and humidity. Such correlations may be of interest in future studies of the effects of pollution on cloud properties.
F. Höpner, F. A.-M. Bender, A. M. L. Ekman, P. S. Praveen, C. Bosch, J. A. Ogren, A. Andersson, Ö. Gustafsson, and V. Ramanathan
Atmos. Chem. Phys., 16, 1045–1064, https://doi.org/10.5194/acp-16-1045-2016, https://doi.org/10.5194/acp-16-1045-2016, 2016
Short summary
Short summary
The paper presents aerosol properties measured during the Cloud Aerosol Radiative Forcing Experiment (CARDEX) on the Maldives Islands in winter 2012. The vertical distribution of absorbing aerosol which is very relevant to the radiative forcing in that region, is investigated. A method for determining particle absorption and equivalent black carbon concentration from lidar extinction coefficients, characteristic single scattering albedo and mass absorption efficiency, is presented and evaluated.
Related subject area
Earth system change: climate scenarios
Countries most exposed to individual and concurrent extremes and near-permanent extreme conditions at different global warming levels
Direct and indirect application of univariate and multivariate bias corrections on heat-stress indices based on multiple regional-climate-model simulations
Overview: The Baltic Earth Assessment Reports (BEAR)
Robust global detection of forced changes in mean and extreme precipitation despite observational disagreement on the magnitude of change
Rapid attribution analysis of the extraordinary heat wave on the Pacific coast of the US and Canada in June 2021
Evidence of localised Amazon rainforest dieback in CMIP6 models
Emit now, mitigate later? Earth system reversibility under overshoots of different magnitudes and durations
STITCHES: creating new scenarios of climate model output by stitching together pieces of existing simulations
An updated assessment of past and future warming over France based on a regional observational constraint
Combining machine learning and SMILEs to classify, better understand, and project changes in ENSO events
Impact of an acceleration of ice sheet melting on monsoon systems
Indices of extremes: geographic patterns of change in extremes and associated vegetation impacts under climate intervention
Present and future synoptic circulation patterns associated with cold and snowy spells over Italy
Multi-century dynamics of the climate and carbon cycle under both high and net negative emissions scenarios
Atmospheric rivers in CMIP5 climate ensembles downscaled with a high-resolution regional climate model
Climate change in the Baltic Sea region: a summary
The Mediterranean climate change hotspot in the CMIP5 and CMIP6 projections
Climate change signal in the ocean circulation of the Tyrrhenian Sea
Oceanographic regional climate projections for the Baltic Sea until 2100
Ubiquity of human-induced changes in climate variability
Storylines of weather-induced crop failure events under climate change
Weather extremes over Europe under 1.5 and 2.0 °C global warming from HAPPI regional climate ensemble simulations
Robust increase of Indian monsoon rainfall and its variability under future warming in CMIP6 models
Seasonal discharge response to temperature-driven changes in evaporation and snow processes in the Rhine Basin
Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6
Historical and future contributions of inland waters to the Congo Basin carbon balance
Impact of precipitation and increasing temperatures on drought trends in eastern Africa
Comparing interannual variability in three regional single-model initial-condition large ensembles (SMILEs) over Europe
A continued role of short-lived climate forcers under the Shared Socioeconomic Pathways
Storylines of the 2018 Northern Hemisphere heatwave at pre-industrial and higher global warming levels
ESD Ideas: Global climate response scenarios for IPCC assessments
Incremental improvements of 2030 targets insufficient to achieve the Paris Agreement goals
Reaching 1.5 and 2.0 °C global surface temperature targets using stratospheric aerosol geoengineering
Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6
Long-term variance of heavy precipitation across central Europe using a large ensemble of regional climate model simulations
Differing precipitation response between solar radiation management and carbon dioxide removal due to fast and slow components
Changes in the future summer Mediterranean climate: contribution of teleconnections and local factors
Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2)
Heat stress risk in European dairy cattle husbandry under different climate change scenarios – uncertainties and potential impacts
Changes in statistical distributions of sub-daily surface temperatures and wind speed
The economically optimal warming limit of the planet
Arctic amplification under global warming of 1.5 and 2 °C in NorESM1-Happi
Tracking the moisture transport from the Pacific towards Central and northern South America since the late 19th century
Freshwater resources under success and failure of the Paris climate agreement
The response of precipitation characteristics to global warming from climate projections
The effect of overshooting 1.5 °C global warming on the mass loss of the Greenland ice sheet
ESD Ideas: a simple proposal to improve the contribution of IPCC WGI to the assessment and communication of climate change risks
The point of no return for climate action: effects of climate uncertainty and risk tolerance
Varying soil moisture–atmosphere feedbacks explain divergent temperature extremes and precipitation projections in central Europe
Population exposure to droughts in China under the 1.5 °C global warming target
Fulden Batibeniz, Mathias Hauser, and Sonia Isabelle Seneviratne
Earth Syst. Dynam., 14, 485–505, https://doi.org/10.5194/esd-14-485-2023, https://doi.org/10.5194/esd-14-485-2023, 2023
Short summary
Short summary
We study single and concurrent heatwaves, droughts, precipitation, and wind extremes. Globally, these extremes become more frequent and affect larger land areas under future warming, with several countries experiencing extreme events every single month. Concurrent heatwaves–droughts (precipitation–wind) are projected to increase the most in mid–high-latitude countries (tropics). Every mitigation action to avoid further warming will reduce the number of people exposed to extreme weather events.
Liying Qiu, Eun-Soon Im, Seung-Ki Min, Yeon-Hee Kim, Dong-Hyun Cha, Seok-Woo Shin, Joong-Bae Ahn, Eun-Chul Chang, and Young-Hwa Byun
Earth Syst. Dynam., 14, 507–517, https://doi.org/10.5194/esd-14-507-2023, https://doi.org/10.5194/esd-14-507-2023, 2023
Short summary
Short summary
This study evaluates four bias correction methods (three univariate and one multivariate) for correcting multivariate heat-stress indices. We show that the multivariate method can benefit the indirect correction that first adjusts individual components before index calculation, and its advantage is more evident for indices relying equally on multiple drivers. Meanwhile, the direct correction of heat-stress indices by the univariate quantile delta mapping approach also has comparable performance.
H. E. Markus Meier, Marcus Reckermann, Joakim Langner, Ben Smith, and Ira Didenkulova
Earth Syst. Dynam., 14, 519–531, https://doi.org/10.5194/esd-14-519-2023, https://doi.org/10.5194/esd-14-519-2023, 2023
Short summary
Short summary
The Baltic Earth Assessment Reports summarise the current state of knowledge on Earth system science in the Baltic Sea region. The 10 review articles focus on the regional water, biogeochemical and carbon cycles; extremes and natural hazards; sea-level dynamics and coastal erosion; marine ecosystems; coupled Earth system models; scenario simulations for the regional atmosphere and the Baltic Sea; and climate change and impacts of human use. Some highlights of the results are presented here.
Iris Elisabeth de Vries, Sebastian Sippel, Angeline Greene Pendergrass, and Reto Knutti
Earth Syst. Dynam., 14, 81–100, https://doi.org/10.5194/esd-14-81-2023, https://doi.org/10.5194/esd-14-81-2023, 2023
Short summary
Short summary
Precipitation change is an important consequence of climate change, but it is hard to detect and quantify. Our intuitive method yields robust and interpretable detection of forced precipitation change in three observational datasets for global mean and extreme precipitation, but the different observational datasets show different magnitudes of forced change. Assessment and reduction of uncertainties surrounding forced precipitation change are important for future projections and adaptation.
Sjoukje Y. Philip, Sarah F. Kew, Geert Jan van Oldenborgh, Faron S. Anslow, Sonia I. Seneviratne, Robert Vautard, Dim Coumou, Kristie L. Ebi, Julie Arrighi, Roop Singh, Maarten van Aalst, Carolina Pereira Marghidan, Michael Wehner, Wenchang Yang, Sihan Li, Dominik L. Schumacher, Mathias Hauser, Rémy Bonnet, Linh N. Luu, Flavio Lehner, Nathan Gillett, Jordis S. Tradowsky, Gabriel A. Vecchi, Chris Rodell, Roland B. Stull, Rosie Howard, and Friederike E. L. Otto
Earth Syst. Dynam., 13, 1689–1713, https://doi.org/10.5194/esd-13-1689-2022, https://doi.org/10.5194/esd-13-1689-2022, 2022
Short summary
Short summary
In June 2021, the Pacific Northwest of the US and Canada saw record temperatures far exceeding those previously observed. This attribution study found such a severe heat wave would have been virtually impossible without human-induced climate change. Assuming no nonlinear interactions, such events have become at least 150 times more common, are about 2 °C hotter and will become even more common as warming continues. Therefore, adaptation and mitigation are urgently needed to prepare society.
Isobel M. Parry, Paul D. L. Ritchie, and Peter M. Cox
Earth Syst. Dynam., 13, 1667–1675, https://doi.org/10.5194/esd-13-1667-2022, https://doi.org/10.5194/esd-13-1667-2022, 2022
Short summary
Short summary
Despite little evidence of regional Amazon rainforest dieback, many localised abrupt dieback events are observed in the latest state-of-the-art global climate models under anthropogenic climate change. The detected dieback events would still cause severe consequences for local communities and ecosystems. This study suggests that 7 ± 5 % of the northern South America region would experience abrupt downward shifts in vegetation carbon for every degree of global warming past 1.5 °C.
Jörg Schwinger, Ali Asaadi, Norman Julius Steinert, and Hanna Lee
Earth Syst. Dynam., 13, 1641–1665, https://doi.org/10.5194/esd-13-1641-2022, https://doi.org/10.5194/esd-13-1641-2022, 2022
Short summary
Short summary
We test whether climate change can be partially reversed if CO2 is removed from the atmosphere to compensate for too large past and near-term emissions by using idealized model simulations of overshoot pathways. On a timescale of 100 years, we find a high degree of reversibility if the overshoot size remains small, and we do not find tipping points even for intense overshoots. We caution that current Earth system models are most likely not able to skilfully model tipping points in ecosystems.
Claudia Tebaldi, Abigail Snyder, and Kalyn Dorheim
Earth Syst. Dynam., 13, 1557–1609, https://doi.org/10.5194/esd-13-1557-2022, https://doi.org/10.5194/esd-13-1557-2022, 2022
Short summary
Short summary
Impact modelers need many future scenarios to characterize the consequences of climate change. The climate modeling community cannot fully meet this need because of the computational cost of climate models. Emulators have fallen short of providing the entire range of inputs that modern impact models require. Our proposal, STITCHES, meets these demands in a comprehensive way and may thus support a fully integrated impact research effort and save resources for the climate modeling enterprise.
Aurélien Ribes, Julien Boé, Saïd Qasmi, Brigitte Dubuisson, Hervé Douville, and Laurent Terray
Earth Syst. Dynam., 13, 1397–1415, https://doi.org/10.5194/esd-13-1397-2022, https://doi.org/10.5194/esd-13-1397-2022, 2022
Short summary
Short summary
We use a novel statistical method to combine climate simulations and observations, and we deliver an updated assessment of past and future warming over France. As a key result, we find that the warming over that region was underestimated in previous multi-model ensembles by up to 50 %. We also assess the contribution of greenhouse gases, aerosols, and other factors to the observed warming, as well as the impact on the seasonal temperature cycle, and we discuss implications for climate services.
Nicola Maher, Thibault P. Tabarin, and Sebastian Milinski
Earth Syst. Dynam., 13, 1289–1304, https://doi.org/10.5194/esd-13-1289-2022, https://doi.org/10.5194/esd-13-1289-2022, 2022
Short summary
Short summary
El Niño events occur as two broad types: eastern Pacific (EP) and central Pacific (CP). EP and CP events differ in strength, evolution, and in their impacts. In this study we create a new machine learning classifier to identify the two types of El Niño events using observed sea surface temperature data. We apply our new classifier to climate models and show that CP events are unlikely to change in frequency or strength under a warming climate, with model disagreement for EP events.
Alizée Chemison, Dimitri Defrance, Gilles Ramstein, and Cyril Caminade
Earth Syst. Dynam., 13, 1259–1287, https://doi.org/10.5194/esd-13-1259-2022, https://doi.org/10.5194/esd-13-1259-2022, 2022
Short summary
Short summary
We study the impact of a rapid melting of the ice sheets on monsoon systems during the 21st century. The impact of a partial Antarctica melting is moderate. Conversely, Greenland melting slows down the oceanic Atlantic circulation and changes winds, temperature and pressure patterns, resulting in a southward shift of the tropical rain belt over Africa and America. The seasonality, duration and intensity of rainfall events are affected, with potential severe impacts on vulnerable populations.
Mari R. Tye, Katherine Dagon, Maria J. Molina, Jadwiga H. Richter, Daniele Visioni, Ben Kravitz, and Simone Tilmes
Earth Syst. Dynam., 13, 1233–1257, https://doi.org/10.5194/esd-13-1233-2022, https://doi.org/10.5194/esd-13-1233-2022, 2022
Short summary
Short summary
We examined the potential effect of stratospheric aerosol injection (SAI) on extreme temperature and precipitation. SAI may cause daytime temperatures to cool but nighttime to warm. Daytime cooling may occur in all seasons across the globe, with the largest decreases in summer. In contrast, nighttime warming may be greatest at high latitudes in winter. SAI may reduce the frequency and intensity of extreme rainfall. The combined changes may exacerbate drying over parts of the global south.
Miriam D'Errico, Flavio Pons, Pascal Yiou, Soulivanh Tao, Cesare Nardini, Frank Lunkeit, and Davide Faranda
Earth Syst. Dynam., 13, 961–992, https://doi.org/10.5194/esd-13-961-2022, https://doi.org/10.5194/esd-13-961-2022, 2022
Short summary
Short summary
Climate change is already affecting weather extremes. In a warming climate, we will expect the cold spells to decrease in frequency and intensity. Our analysis shows that the frequency of circulation patterns leading to snowy cold-spell events over Italy will not decrease under business-as-usual emission scenarios, although the associated events may not lead to cold conditions in the warmer scenarios.
Charles D. Koven, Vivek K. Arora, Patricia Cadule, Rosie A. Fisher, Chris D. Jones, David M. Lawrence, Jared Lewis, Keith Lindsay, Sabine Mathesius, Malte Meinshausen, Michael Mills, Zebedee Nicholls, Benjamin M. Sanderson, Roland Séférian, Neil C. Swart, William R. Wieder, and Kirsten Zickfeld
Earth Syst. Dynam., 13, 885–909, https://doi.org/10.5194/esd-13-885-2022, https://doi.org/10.5194/esd-13-885-2022, 2022
Short summary
Short summary
We explore the long-term dynamics of Earth's climate and carbon cycles under a pair of contrasting scenarios to the year 2300 using six models that include both climate and carbon cycle dynamics. One scenario assumes very high emissions, while the second assumes a peak in emissions, followed by rapid declines to net negative emissions. We show that the models generally agree that warming is roughly proportional to carbon emissions but that many other aspects of the model projections differ.
Matthias Gröger, Christian Dieterich, Cyril Dutheil, H. E. Markus Meier, and Dmitry V. Sein
Earth Syst. Dynam., 13, 613–631, https://doi.org/10.5194/esd-13-613-2022, https://doi.org/10.5194/esd-13-613-2022, 2022
Short summary
Short summary
Atmospheric rivers transport high amounts of water from subtropical regions to Europe. They are an important driver of heavy precipitation and flooding. Their response to a warmer future climate in Europe has so far been assessed only by global climate models. In this study, we apply for the first time a high-resolution regional climate model that allow to better resolve and understand the fate of atmospheric rivers over Europe.
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
Josep Cos, Francisco Doblas-Reyes, Martin Jury, Raül Marcos, Pierre-Antoine Bretonnière, and Margarida Samsó
Earth Syst. Dynam., 13, 321–340, https://doi.org/10.5194/esd-13-321-2022, https://doi.org/10.5194/esd-13-321-2022, 2022
Short summary
Short summary
The Mediterranean has been identified as being more affected by climate change than other regions. We find that amplified warming during summer and annual precipitation declines are expected for the 21st century and that the magnitude of the changes will mainly depend on greenhouse gas emissions. By applying a method giving more importance to models with greater performance and independence, we find that the differences between the last two community modelling efforts are reduced in the region.
Alba de la Vara, Iván M. Parras-Berrocal, Alfredo Izquierdo, Dmitry V. Sein, and William Cabos
Earth Syst. Dynam., 13, 303–319, https://doi.org/10.5194/esd-13-303-2022, https://doi.org/10.5194/esd-13-303-2022, 2022
Short summary
Short summary
We study with the regionally coupled climate model ROM the impact of climate change on the Tyrrhenian Sea circulation, as well as the possible mechanisms and consequences in the NW Mediterranean Sea. Our results show a shift towards the summer circulation pattern by the end of the century. Also, water flowing via the Corsica Channel is more stratified and smaller in volume. Both factors may contribute to the interruption of deep water formation in the Gulf of Lions in the future.
H. E. Markus Meier, Christian Dieterich, Matthias Gröger, Cyril Dutheil, Florian Börgel, Kseniia Safonova, Ole B. Christensen, and Erik Kjellström
Earth Syst. Dynam., 13, 159–199, https://doi.org/10.5194/esd-13-159-2022, https://doi.org/10.5194/esd-13-159-2022, 2022
Short summary
Short summary
In addition to environmental pressures such as eutrophication, overfishing and contaminants, climate change is believed to have an important impact on the marine environment in the future, and marine management should consider the related risks. Hence, we have compared and assessed available scenario simulations for the Baltic Sea and found considerable uncertainties of the projections caused by the underlying assumptions and model biases, in particular for the water and biogeochemical cycles.
Keith B. Rodgers, Sun-Seon Lee, Nan Rosenbloom, Axel Timmermann, Gokhan Danabasoglu, Clara Deser, Jim Edwards, Ji-Eun Kim, Isla R. Simpson, Karl Stein, Malte F. Stuecker, Ryohei Yamaguchi, Tamás Bódai, Eui-Seok Chung, Lei Huang, Who M. Kim, Jean-François Lamarque, Danica L. Lombardozzi, William R. Wieder, and Stephen G. Yeager
Earth Syst. Dynam., 12, 1393–1411, https://doi.org/10.5194/esd-12-1393-2021, https://doi.org/10.5194/esd-12-1393-2021, 2021
Short summary
Short summary
A large ensemble of simulations with 100 members has been conducted with the state-of-the-art CESM2 Earth system model, using historical and SSP3-7.0 forcing. Our main finding is that there are significant changes in the variance of the Earth system in response to anthropogenic forcing, with these changes spanning a broad range of variables important to impacts for human populations and ecosystems.
Henrique M. D. Goulart, Karin van der Wiel, Christian Folberth, Juraj Balkovic, and Bart van den Hurk
Earth Syst. Dynam., 12, 1503–1527, https://doi.org/10.5194/esd-12-1503-2021, https://doi.org/10.5194/esd-12-1503-2021, 2021
Short summary
Short summary
Agriculture is sensitive to weather conditions and to climate change. We identify the weather conditions linked to soybean failures and explore changes related to climate change. Additionally, we build future versions of a historical extreme season under future climate scenarios. Results show that soybean failures are likely to increase with climate change. Future events with similar physical conditions to the extreme season are not expected to increase, but events with similar impacts are.
Kevin Sieck, Christine Nam, Laurens M. Bouwer, Diana Rechid, and Daniela Jacob
Earth Syst. Dynam., 12, 457–468, https://doi.org/10.5194/esd-12-457-2021, https://doi.org/10.5194/esd-12-457-2021, 2021
Short summary
Short summary
This paper presents new estimates of future extreme weather in Europe, including extreme heat, extreme rainfall and meteorological drought. These new estimates were achieved by repeating model calculations many times, thereby reducing uncertainties of these rare events at low levels of global warming at 1.5 and 2 °C above
pre-industrial temperature levels. These results are important, as they help to assess which weather extremes could increase at moderate warming levels and where.
Anja Katzenberger, Jacob Schewe, Julia Pongratz, and Anders Levermann
Earth Syst. Dynam., 12, 367–386, https://doi.org/10.5194/esd-12-367-2021, https://doi.org/10.5194/esd-12-367-2021, 2021
Short summary
Short summary
All state-of-the-art global climate models that contributed to the latest Coupled Model Intercomparison Project (CMIP6) show a robust increase in Indian summer monsoon rainfall that is even stronger than in the previous intercomparison (CMIP5). Furthermore, they show an increase in the year-to-year variability of this seasonal rainfall that crucially influences the livelihood of more than 1 billion people in India.
Joost Buitink, Lieke A. Melsen, and Adriaan J. Teuling
Earth Syst. Dynam., 12, 387–400, https://doi.org/10.5194/esd-12-387-2021, https://doi.org/10.5194/esd-12-387-2021, 2021
Short summary
Short summary
Higher temperatures influence both evaporation and snow processes. These two processes have a large effect on discharge but have distinct roles during different seasons. In this study, we study how higher temperatures affect the discharge via changed evaporation and snow dynamics. Higher temperatures lead to enhanced evaporation but increased melt from glaciers, overall lowering the discharge. During the snowmelt season, discharge was reduced further due to the earlier depletion of snow.
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
Adam Hastie, Ronny Lauerwald, Philippe Ciais, Fabrice Papa, and Pierre Regnier
Earth Syst. Dynam., 12, 37–62, https://doi.org/10.5194/esd-12-37-2021, https://doi.org/10.5194/esd-12-37-2021, 2021
Short summary
Short summary
We used a model of the Congo Basin to investigate the transfer of carbon (C) from land (vegetation and soils) to inland waters. We estimate that leaching of C to inland waters, emissions of CO2 from the water surface, and the export of C to the coast have all increased over the last century, driven by increasing atmospheric CO2 levels and climate change. We predict that these trends may continue through the 21st century and call for long-term monitoring of these fluxes.
Sarah F. Kew, Sjoukje Y. Philip, Mathias Hauser, Mike Hobbins, Niko Wanders, Geert Jan van Oldenborgh, Karin van der Wiel, Ted I. E. Veldkamp, Joyce Kimutai, Chris Funk, and Friederike E. L. Otto
Earth Syst. Dynam., 12, 17–35, https://doi.org/10.5194/esd-12-17-2021, https://doi.org/10.5194/esd-12-17-2021, 2021
Short summary
Short summary
Motivated by the possible influence of rising temperatures, this study synthesises results from observations and climate models to explore trends (1900–2018) in eastern African (EA) drought measures. However, no discernible trends are found in annual soil moisture or precipitation. Positive trends in potential evaporation indicate that for irrigated regions more water is now required to counteract increased evaporation. Precipitation deficit is, however, the most useful indicator of EA drought.
Fabian von Trentini, Emma E. Aalbers, Erich M. Fischer, and Ralf Ludwig
Earth Syst. Dynam., 11, 1013–1031, https://doi.org/10.5194/esd-11-1013-2020, https://doi.org/10.5194/esd-11-1013-2020, 2020
Short summary
Short summary
We compare the inter-annual variability of three single-model initial-condition large ensembles (SMILEs), downscaled with three regional climate models over Europe for seasonal temperature and precipitation, the number of heatwaves, and maximum length of dry periods. They all show good consistency with observational data. The magnitude of variability and the future development are similar in many cases. In general, variability increases for summer indicators and decreases for winter indicators.
Marianne T. Lund, Borgar Aamaas, Camilla W. Stjern, Zbigniew Klimont, Terje K. Berntsen, and Bjørn H. Samset
Earth Syst. Dynam., 11, 977–993, https://doi.org/10.5194/esd-11-977-2020, https://doi.org/10.5194/esd-11-977-2020, 2020
Short summary
Short summary
Achieving the Paris Agreement temperature goals requires both near-zero levels of long-lived greenhouse gases and deep cuts in emissions of short-lived climate forcers (SLCFs). Here we quantify the near- and long-term global temperature impacts of emissions of individual SLCFs and CO2 from 7 economic sectors in 13 regions in order to provide the detailed knowledge needed to design efficient mitigation strategies at the sectoral and regional levels.
Kathrin Wehrli, Mathias Hauser, and Sonia I. Seneviratne
Earth Syst. Dynam., 11, 855–873, https://doi.org/10.5194/esd-11-855-2020, https://doi.org/10.5194/esd-11-855-2020, 2020
Short summary
Short summary
The 2018 summer was unusually hot for large areas in the Northern Hemisphere, and heatwaves on three continents led to major impacts on agriculture and society. This study investigates storylines for the extreme 2018 summer, given the observed atmospheric circulation but different levels of background global warming. The results reveal a strong contribution by the present-day level of global warming and show a dramatic outlook for similar events in a warmer climate.
Rowan T. Sutton and Ed Hawkins
Earth Syst. Dynam., 11, 751–754, https://doi.org/10.5194/esd-11-751-2020, https://doi.org/10.5194/esd-11-751-2020, 2020
Short summary
Short summary
Policy making on climate change routinely employs socioeconomic scenarios to sample the uncertainty in future forcing of the climate system, but the Intergovernmental Panel on Climate Change has not employed similar discrete scenarios to sample the uncertainty in the global climate response. Here, we argue that to enable risk assessments and development of robust policies this gap should be addressed, and we propose a simple methodology.
Andreas Geiges, Alexander Nauels, Paola Yanguas Parra, Marina Andrijevic, William Hare, Peter Pfleiderer, Michiel Schaeffer, and Carl-Friedrich Schleussner
Earth Syst. Dynam., 11, 697–708, https://doi.org/10.5194/esd-11-697-2020, https://doi.org/10.5194/esd-11-697-2020, 2020
Short summary
Short summary
Current global mitigation ambition in the National Determined Contributions (NDCs) up to 2030 is insufficient to achieve the 1.5 °C long-term temperature limit. As governments are preparing new and updated NDCs for 2020, we address the question of what level of collective ambition is pivotal regarding the Paris Agreement goals. We provide estimates for global mean temperature increase by 2100 for different incremental NDC update scenarios and illustrate climate impacts under those scenarios.
Simone Tilmes, Douglas G. MacMartin, Jan T. M. Lenaerts, Leo van Kampenhout, Laura Muntjewerf, Lili Xia, Cheryl S. Harrison, Kristen M. Krumhardt, Michael J. Mills, Ben Kravitz, and Alan Robock
Earth Syst. Dynam., 11, 579–601, https://doi.org/10.5194/esd-11-579-2020, https://doi.org/10.5194/esd-11-579-2020, 2020
Short summary
Short summary
This paper introduces new geoengineering model experiments as part of a larger model intercomparison effort, using reflective particles to block some of the incoming solar radiation to reach surface temperature targets. Outcomes of these applications are contrasted based on a high greenhouse gas emission pathway and a pathway with strong mitigation and negative emissions after 2040. We compare quantities that matter for societal and ecosystem impacts between the different scenarios.
Flavio Lehner, Clara Deser, Nicola Maher, Jochem Marotzke, Erich M. Fischer, Lukas Brunner, Reto Knutti, and Ed Hawkins
Earth Syst. Dynam., 11, 491–508, https://doi.org/10.5194/esd-11-491-2020, https://doi.org/10.5194/esd-11-491-2020, 2020
Short summary
Short summary
Projections of climate change are uncertain because climate models are imperfect, future greenhouse gases emissions are unknown and climate is to some extent chaotic. To partition and understand these sources of uncertainty and make the best use of climate projections, large ensembles with multiple climate models are needed. Such ensembles now exist in a public data archive. We provide several novel applications focused on global and regional temperature and precipitation projections.
Florian Ehmele, Lisa-Ann Kautz, Hendrik Feldmann, and Joaquim G. Pinto
Earth Syst. Dynam., 11, 469–490, https://doi.org/10.5194/esd-11-469-2020, https://doi.org/10.5194/esd-11-469-2020, 2020
Short summary
Short summary
This study presents a large novel data set of climate model simulations for central Europe covering the years 1900–2028 at a 25 km resolution. The focus is on intensive areal precipitation values. The data set is validated against observations using different statistical approaches. The results reveal an adequate quality in a statistical sense as well as some long-term variability with phases of increased and decreased heavy precipitation. The predictions of the near future show continuity.
Anton Laakso, Peter K. Snyder, Stefan Liess, Antti-Ilari Partanen, and Dylan B. Millet
Earth Syst. Dynam., 11, 415–434, https://doi.org/10.5194/esd-11-415-2020, https://doi.org/10.5194/esd-11-415-2020, 2020
Short summary
Short summary
Geoengineering techniques have been proposed to prevent climate warming in the event of insufficient greenhouse gas emission reductions. Simultaneously, these techniques have an impact on precipitation, which depends on the techniques used, geoengineering magnitude, and background circumstances. We separated the independent and dependent components of precipitation responses to temperature, which were then used to explain the precipitation changes in the studied climate model simulations.
Monika J. Barcikowska, Sarah B. Kapnick, Lakshmi Krishnamurty, Simone Russo, Annalisa Cherchi, and Chris K. Folland
Earth Syst. Dynam., 11, 161–181, https://doi.org/10.5194/esd-11-161-2020, https://doi.org/10.5194/esd-11-161-2020, 2020
Anders Levermann, Ricarda Winkelmann, Torsten Albrecht, Heiko Goelzer, Nicholas R. Golledge, Ralf Greve, Philippe Huybrechts, Jim Jordan, Gunter Leguy, Daniel Martin, Mathieu Morlighem, Frank Pattyn, David Pollard, Aurelien Quiquet, Christian Rodehacke, Helene Seroussi, Johannes Sutter, Tong Zhang, Jonas Van Breedam, Reinhard Calov, Robert DeConto, Christophe Dumas, Julius Garbe, G. Hilmar Gudmundsson, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, William H. Lipscomb, Malte Meinshausen, Esmond Ng, Sophie M. J. Nowicki, Mauro Perego, Stephen F. Price, Fuyuki Saito, Nicole-Jeanne Schlegel, Sainan Sun, and Roderik S. W. van de Wal
Earth Syst. Dynam., 11, 35–76, https://doi.org/10.5194/esd-11-35-2020, https://doi.org/10.5194/esd-11-35-2020, 2020
Short summary
Short summary
We provide an estimate of the future sea level contribution of Antarctica from basal ice shelf melting up to the year 2100. The full uncertainty range in the warming-related forcing of basal melt is estimated and applied to 16 state-of-the-art ice sheet models using a linear response theory approach. The sea level contribution we obtain is very likely below 61 cm under unmitigated climate change until 2100 (RCP8.5) and very likely below 40 cm if the Paris Climate Agreement is kept.
Sabrina Hempel, Christoph Menz, Severino Pinto, Elena Galán, David Janke, Fernando Estellés, Theresa Müschner-Siemens, Xiaoshuai Wang, Julia Heinicke, Guoqiang Zhang, Barbara Amon, Agustín del Prado, and Thomas Amon
Earth Syst. Dynam., 10, 859–884, https://doi.org/10.5194/esd-10-859-2019, https://doi.org/10.5194/esd-10-859-2019, 2019
Short summary
Short summary
Decreasing humidity and increasing wind speed regionally alleviate the heat load on farm animals, but future temperature rise considerably increases the heat stress risk. Livestock housed in open barns (or on pastures), such as dairy cattle, is particularly vulnerable. Without adaptation, heat waves will considerably reduce the gross margin of a livestock producer. Negative effects on productivity, health and animal welfare as well as increasing methane and ammonia emissions are expected.
Robert J. H. Dunn, Kate M. Willett, and David E. Parker
Earth Syst. Dynam., 10, 765–788, https://doi.org/10.5194/esd-10-765-2019, https://doi.org/10.5194/esd-10-765-2019, 2019
Short summary
Short summary
Using a sub-daily dataset of in situ observations, we have performed a study to see how the distributions of temperatures and wind speeds have changed over the last 45 years. Changes in the location or shape of these distributions show how extreme temperatures or wind speeds have changed. Our results show that cool extremes are warming more rapidly than warm ones in high latitudes but that in other parts of the world the opposite is true.
Falko Ueckerdt, Katja Frieler, Stefan Lange, Leonie Wenz, Gunnar Luderer, and Anders Levermann
Earth Syst. Dynam., 10, 741–763, https://doi.org/10.5194/esd-10-741-2019, https://doi.org/10.5194/esd-10-741-2019, 2019
Short summary
Short summary
We compute the global mean temperature increase at which the costs from climate-change damages and climate-change mitigation are minimal. This temperature is computed robustly around 2 degrees of global warming across a wide range of normative assumptions on the valuation of future welfare and inequality aversion.
Lise S. Graff, Trond Iversen, Ingo Bethke, Jens B. Debernard, Øyvind Seland, Mats Bentsen, Alf Kirkevåg, Camille Li, and Dirk J. L. Olivié
Earth Syst. Dynam., 10, 569–598, https://doi.org/10.5194/esd-10-569-2019, https://doi.org/10.5194/esd-10-569-2019, 2019
Short summary
Short summary
Differences between a 1.5 and a 2.0 °C warmer global climate than 1850 conditions are discussed based on a suite of global atmosphere-only, fully coupled, and slab-ocean runs with the Norwegian Earth System Model. Responses, such as the Arctic amplification of global warming, are stronger with the fully coupled and slab-ocean configurations. While ice-free Arctic summers are rare under 1.5 °C warming in the slab-ocean runs, they are estimated to occur 18 % of the time under 2.0 °C warming.
David Gallego, Ricardo García-Herrera, Francisco de Paula Gómez-Delgado, Paulina Ordoñez-Perez, and Pedro Ribera
Earth Syst. Dynam., 10, 319–331, https://doi.org/10.5194/esd-10-319-2019, https://doi.org/10.5194/esd-10-319-2019, 2019
Short summary
Short summary
By analysing old wind direction observations taken aboard sailing ships, it has been possible to build an index quantifying the moisture transport from the equatorial Pacific into large areas of Central America and northern South America starting in the late 19th century. This transport is deeply related to a low-level jet known as the Choco jet. Our results suggest that the seasonal distribution of the precipitation associated with this transport could have changed over the time.
Jens Heinke, Christoph Müller, Mats Lannerstad, Dieter Gerten, and Wolfgang Lucht
Earth Syst. Dynam., 10, 205–217, https://doi.org/10.5194/esd-10-205-2019, https://doi.org/10.5194/esd-10-205-2019, 2019
Filippo Giorgi, Francesca Raffaele, and Erika Coppola
Earth Syst. Dynam., 10, 73–89, https://doi.org/10.5194/esd-10-73-2019, https://doi.org/10.5194/esd-10-73-2019, 2019
Short summary
Short summary
The paper revisits the critical issue of precipitation characteristics in response to global warming through a new analysis of global and regional climate projections and a summary of previous work. Robust responses are identified and the underlying processes investigated. Examples of applications are given, such as the evaluation of risks associated with extremes. The paper, solicited by the EGU executive office, is based on the 2018 EGU Alexander von Humboldt medal lecture by Filippo Giorgi.
Martin Rückamp, Ulrike Falk, Katja Frieler, Stefan Lange, and Angelika Humbert
Earth Syst. Dynam., 9, 1169–1189, https://doi.org/10.5194/esd-9-1169-2018, https://doi.org/10.5194/esd-9-1169-2018, 2018
Short summary
Short summary
Sea-level rise associated with changing climate is expected to pose a major challenge for societies. Based on the efforts of COP21 to limit global warming to 2.0 °C by the end of the 21st century (Paris Agreement), we simulate the future contribution of the Greenland ice sheet (GrIS) to sea-level change. The projected sea-level rise ranges between 21–38 mm by 2100
and 36–85 mm by 2300. Our results indicate that uncertainties in the projections stem from the underlying climate data.
Rowan T. Sutton
Earth Syst. Dynam., 9, 1155–1158, https://doi.org/10.5194/esd-9-1155-2018, https://doi.org/10.5194/esd-9-1155-2018, 2018
Short summary
Short summary
The purpose of the Intergovernmental Panel on Climate Change (IPCC) is to provide policy-relevant assessments of the scientific evidence about climate change. Policymaking necessarily involves risk assessments, so it is important that IPCC reports are designed accordingly. This paper proposes a specific idea, illustrated with examples, to improve the contribution of IPCC Working Group I to informing climate risk assessments.
Matthias Aengenheyster, Qing Yi Feng, Frederick van der Ploeg, and Henk A. Dijkstra
Earth Syst. Dynam., 9, 1085–1095, https://doi.org/10.5194/esd-9-1085-2018, https://doi.org/10.5194/esd-9-1085-2018, 2018
Short summary
Short summary
We determine the point of no return (PNR) for climate change, which is the latest year to take action to reduce greenhouse gases to stay, with a certain probability, within thresholds set by the Paris Agreement. For a 67 % probability and a 2 K threshold, the PNR is the year 2035 when the share of renewable energy rises by 2 % per year. We show the impact on the PNR of the speed by which emissions are cut, the risk tolerance, climate uncertainties and the potential for negative emissions.
Martha M. Vogel, Jakob Zscheischler, and Sonia I. Seneviratne
Earth Syst. Dynam., 9, 1107–1125, https://doi.org/10.5194/esd-9-1107-2018, https://doi.org/10.5194/esd-9-1107-2018, 2018
Short summary
Short summary
Climate change projections of temperature extremes are particularly uncertain in central Europe. We demonstrate that varying soil moisture–atmosphere feedbacks in current climate models leads to an enhancement of model differences; thus, they can explain the large uncertainties in extreme temperature projections. Using an observation-based constraint, we show that the strong drying and large increase in temperatures exhibited by models on the hottest day in central Europe are highly unlikely.
Jie Chen, Yujie Liu, Tao Pan, Yanhua Liu, Fubao Sun, and Quansheng Ge
Earth Syst. Dynam., 9, 1097–1106, https://doi.org/10.5194/esd-9-1097-2018, https://doi.org/10.5194/esd-9-1097-2018, 2018
Short summary
Short summary
Results show that an additional 6.97 million people will be exposed to droughts in China under a 1.5 ºC target relative to reference period, mostly in the east of China. Demographic change is the primary contributor to exposure. Moderate droughts contribute the most to exposure among 3 grades of drought. Our simulations suggest that drought impact on people will continue to be a large threat to China under the 1.5 ºC target. It will be helpful in guiding adaptation and mitigation strategies.
Cited articles
Bender, F. A.-M., Engström, A., Wood, R., and Charlson, R. J.: Evaluation of
Hemispheric Asymmetries in Marine Cloud Radiative Properties, J.
Climate, 30, 4131–4147, https://doi.org/10.1175/JCLI-D-16-0263.1, 2017. a, b
Bentsen, M., Oliviè, D. J. L., Seland, y., Toniazzo, T., Gjermundsen, A.,
Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y., Kirkevåg, A.,
Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller,
J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren, O. A.,
Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang,
Z., Heinze, C., Iversen, T., and Schulz, M.: NCC NorESM2-MM model output
prepared for CMIP6 CMIP abrupt-4xCO2, Earth System Grid Federation, [data set],
version 20191108, https://doi.org/10.22033/ESGF/CMIP6.7840, 2019a. a
Bentsen, M., Oliviè, D. J. L., Seland, y., Toniazzo, T., Gjermundsen, A.,
Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y., Kirkevåg, A.,
Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller,
J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren, O. A.,
Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang,
Z., Heinze, C., Iversen, T., and Schulz, M.: NCC NorESM2-MM model output
prepared for CMIP6 CMIP piControl, Earth System Grid Federation, [data set],
version 20191108, https://doi.org/10.22033/ESGF/CMIP6.8221, 2019b. a
Bentsen, M., Oliviè, D. J. L., Seland, y., Toniazzo, T., Gjermundsen, A.,
Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y., Kirkevåg, A.,
Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller,
J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren, O. A.,
Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang,
Z., Heinze, C., Iversen, T., and Schulz, M.: NCC NorESM2-MM model output
prepared for CMIP6 CMIP historical, Earth System Grid Federation, [data set],
version 20191108, https://doi.org/10.22033/ESGF/CMIP6.8040, 2019c. a
Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols,
M.-A., Meurdesoif, Y., Cadule, P., Devilliers, M., Ghattas, J., Lebas, N.,
Lurton, T., Mellul, L., Musat, I., Mignot, J., and Cheruy, F.: IPSL
IPSL-CM6A-LR model output prepared for CMIP6 CMIP abrupt-4xCO2, Earth System
Grid Federation, [data set], version 20190118, https://doi.org/10.22033/ESGF/CMIP6.5109,
2018a. a
Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols,
M.-A., Meurdesoif, Y., Cadule, P., Devilliers, M., Ghattas, J., Lebas, N.,
Lurton, T., Mellul, L., Musat, I., Mignot, J., and Cheruy, F.: IPSL
IPSL-CM6A-LR model output prepared for CMIP6 CMIP historical, Earth System
Grid Federation, [data set], version 20180803, https://doi.org/10.22033/ESGF/CMIP6.5195,
2018b. a
Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols,
M.-A., Meurdesoif, Y., Cadule, P., Devilliers, M., Ghattas, J., Lebas, N.,
Lurton, T., Mellul, L., Musat, I., Mignot, J., and Cheruy, F.: IPSL
IPSL-CM6A-LR model output prepared for CMIP6 CMIP piControl, Earth System
Grid Federation, [data set], version 20200326, https://doi.org/10.22033/ESGF/CMIP6.5251,
2018c. a
Byun, Y.-H., Lim, Y.-J., Sung, H. M., Kim, J., Sun, M., and Kim, B.-H.:
NIMS-KMA KACE1.0-G model output prepared for CMIP6 CMIP abrupt-4xCO2, Earth
System Grid Federation, [data set], version 20190916, https://doi.org/10.22033/ESGF/CMIP6.8348,
2019a. a
Byun, Y.-H., Lim, Y.-J., Sung, H. M., Kim, J., Sun, M., and Kim, B.-H.:
NIMS-KMA KACE1.0-G model output prepared for CMIP6 CMIP historical, Earth
System Grid Federation, [data set], version 20190910, https://doi.org/10.22033/ESGF/CMIP6.8378,
2019b. a
Byun, Y.-H., Lim, Y.-J., Sung, H. M., Kim, J., Sun, M., and Kim, B.-H.:
NIMS-KMA KACE1.0-G model output prepared for CMIP6 CMIP piControl, Earth
System Grid Federation, [data set], version 20191017, https://doi.org/10.22033/ESGF/CMIP6.8425,
2019c. a
Cao, J. and Wang, B.: NUIST NESMv3 model output prepared for CMIP6 CMIP
abrupt-4xCO2, Earth System Grid Federation, [data set], version 20190707, https://doi.org/10.22033/ESGF/CMIP6.8719,
2019a. a
Cao, J. and Wang, B.: NUIST NESMv3 model output prepared for CMIP6 CMIP
historical, Earth System Grid Federation,[data set], version 20190630, https://doi.org/10.22033/ESGF/CMIP6.8769, 2019b. a
Cao, J. and Wang, B.: NUIST NESMv3 model output prepared for CMIP6 CMIP
piControl, Earth System Grid Federation, [data set], version 20190708, https://doi.org/10.22033/ESGF/CMIP6.8776,
2019c. a
Ceppi, P. and Hartmann, D. L.: Connections Between Clouds, Radiation, and
Midlatitude Dynamics: a Review, Curr. Clim. Change Rep., 1, 94–102,
https://doi.org/10.1007/s40641-015-0010-x, 2015. a
Ceppi, P. and Nowack, P.: Observational evidence that cloud feedback amplifies
global warming, P. Natl. Acad. Sci. USA, 118,
e2026290118, https://doi.org/10.1073/pnas.2026290118, 2021. a
Choudhury, A. D., Raghavan, K., Gopinathan, P. A., Narayanasetti, S., Singh,
M., Panickal, S., and Modi, A.: CCCR-IITM IITM-ESM model output prepared for
CMIP6 CMIP historical, Earth System Grid Federation, [data set], version 20191226,
https://doi.org/10.22033/ESGF/CMIP6.3708, 2019. a
Danabasoglu, G.: NCAR CESM2 model output prepared for CMIP6 CMIP abrupt-4xCO2,
Earth System Grid Federation, [data set], version
20190927, https://doi.org/10.22033/ESGF/CMIP6.7519, 2019a. a
Danabasoglu, G.: NCAR CESM2-WACCM model output prepared for CMIP6 CMIP
abrupt-4xCO2, Earth System Grid Federation, [data set], version 20190425, https://doi.org/10.22033/ESGF/CMIP6.10039,
2019b. a
Danabasoglu, G.: NCAR CESM2-FV2 model output prepared for CMIP6 CMIP
historical, Earth System Grid Federation, [data set], version 20191120, https://doi.org/10.22033/ESGF/CMIP6.11297,
2019c. a
Danabasoglu, G.: NCAR CESM2 model output prepared for CMIP6 CMIP historical,
Earth System Grid Federation, [data set], version
20190308, https://doi.org/10.22033/ESGF/CMIP6.7627, 2019d. a
Danabasoglu, G.: NCAR CESM2-WACCM-FV2 model output prepared for CMIP6 CMIP
historical, Earth System Grid Federation, [data set], version 20191120, https://doi.org/10.22033/ESGF/CMIP6.11298,
2019e. a
Danabasoglu, G.: NCAR CESM2-WACCM model output prepared for CMIP6 CMIP
historical, Earth System Grid Federation, [data set], version 20190227, https://doi.org/10.22033/ESGF/CMIP6.10071,
2019f. a
Danabasoglu, G.: NCAR CESM2-FV2 model output prepared for CMIP6 CMIP piControl,
Earth System Grid Federation, [data set], version
20191120, https://doi.org/10.22033/ESGF/CMIP6.11301, 2019g. a
Danabasoglu, G.: NCAR CESM2-WACCM model output prepared for CMIP6 CMIP
piControl, Earth System Grid Federation, [data set], version 20190320, https://doi.org/10.22033/ESGF/CMIP6.10094,
2019h. a
Danabasoglu, G.: NCAR CESM2-WACCM-FV2 model output prepared for CMIP6 CMIP
piControl, Earth System Grid Federation, [data set], version 20191120, https://doi.org/10.22033/ESGF/CMIP6.11302,
2019i. a
Danabasoglu, G.: NCAR CESM2-FV2 model output prepared for CMIP6 CMIP
abrupt-4xCO2, Earth System Grid Federation, [data set], version 20200403, https://doi.org/10.22033/ESGF/CMIP6.11285,
2020a. a
Danabasoglu, G.: NCAR CESM2-WACCM-FV2 model output prepared for CMIP6 CMIP
abrupt-4xCO2, Earth System Grid Federation, [data set], version 20200403, https://doi.org/10.22033/ESGF/CMIP6.11286, 2020b. a
Danabasoglu, G., Lawrence, D., Lindsay, K., Lipscomb, W., and Strand, G.: NCAR
CESM2 model output prepared for CMIP6 CMIP piControl, Earth System Grid
Federation, [data set], version 20190320, https://doi.org/10.22033/ESGF/CMIP6.7733, 2019. a
Datseris, G. and Stevens, B.: Earth's Albedo and Its Symmetry, AGU Adv.,
2, e2021AV000440, https://doi.org/10.1029/2021AV000440, 2021. a, b, c, d
Diamond, M. S., Gristey, J. J., Kay, J. E., and Feingold, G.: Anthropogenic
aerosol and cryosphere changes drive Earth's strong but transient clear-sky
hemispheric albedo asymmetry, Commun. Earth Environ., 3, 206,
https://doi.org/10.1038/s43247-022-00546-y, 2022. a, b, c, d
Dix, M., Bi, D., Dobrohotoff, P., Fiedler, R., Harman, I., Law, R., Mackallah,
C., Marsland, S., O'Farrell, S., Rashid, H., Srbinovsky, J., Sullivan, A.,
Trenham, C., Vohralik, P., Watterson, I., Williams, G., Woodhouse, M.,
Bodman, R., Dias, F. B., Domingues, C., Hannah, N., Heerdegen, A., Savita,
A., Wales, S., Allen, C., Druken, K., Evans, B., Richards, C., Ridzwan,
S. M., Roberts, D., Smillie, J., Snow, K., Ward, M., and Yang, R.:
CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 CMIP abrupt-4xCO2,
Earth System Grid Federation, [data set], version
20191108, https://doi.org/10.22033/ESGF/CMIP6.4237, 2019a. a
Dix, M., Bi, D., Dobrohotoff, P., Fiedler, R., Harman, I., Law, R., Mackallah,
C., Marsland, S., O'Farrell, S., Rashid, H., Srbinovsky, J., Sullivan, A.,
Trenham, C., Vohralik, P., Watterson, I., Williams, G., Woodhouse, M.,
Bodman, R., Dias, F. B., Domingues, C., Hannah, N., Heerdegen, A., Savita,
A., Wales, S., Allen, C., Druken, K., Evans, B., Richards, C., Ridzwan,
S. M., Roberts, D., Smillie, J., Snow, K., Ward, M., and Yang, R.:
CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 CMIP piControl, Earth
System Grid Federation, [data set], version 20191112, https://doi.org/10.22033/ESGF/CMIP6.4311,
2019b. a
Dix, M., Bi, D., Dobrohotoff, P., Fiedler, R., Harman, I., Law, R., Mackallah,
C., Marsland, S., O'Farrell, S., Rashid, H., Srbinovsky, J., Sullivan, A.,
Trenham, C., Vohralik, P., Watterson, I., Williams, G., Woodhouse, M.,
Bodman, R., Dias, F. B., Domingues, C. M., Hannah, N., Heerdegen, A., Savita,
A., Wales, S., Allen, C., Druken, K., Evans, B., Richards, C., Ridzwan,
S. M., Roberts, D., Smillie, J., Snow, K., Ward, M., and Yang, R.:
CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 CMIP historical,
Earth System Grid Federation, [data set], version
20191108, https://doi.org/10.22033/ESGF/CMIP6.4271, 2019c. a
Donohoe, A., Armour, K. C., Roe, G. H., Battisti, D. S., and Hahn, L.: The
Partitioning of Meridional Heat Transport from the Last Glacial Maximum to
CO2 Quadrupling in Coupled Climate Models, J. Climate, 33, 4141–4165, https://doi.org/10.1175/JCLI-D-19-0797.1, 2020. a
EC-Earth Consortium: EC-Earth-Consortium EC-Earth3-Veg model output prepared
for CMIP6 CMIP abrupt-4xCO2, Earth System Grid Federation, [data set],
version 20200225, https://doi.org/10.22033/ESGF/CMIP6.4524, 2019a. a
EC-Earth Consortium: EC-Earth-Consortium EC-Earth3-Veg model output prepared
for CMIP6 CMIP historical, Earth System Grid Federation, [data set],
version 20200225, https://doi.org/10.22033/ESGF/CMIP6.4706, 2019b. a
EC-Earth Consortium: EC-Earth-Consortium EC-Earth3-Veg model output prepared
for CMIP6 CMIP piControl, Earth System Grid Federation, [data set],
version 20200226, https://doi.org/10.22033/ESGF/CMIP6.4848,2019c. a
EC-Earth Consortium: EC-Earth-Consortium EC-Earth3-AerChem model output
prepared for CMIP6 CMIP abrupt-4xCO2, Earth System Grid Federation, [data set],
version 20200622, https://doi.org/10.22033/ESGF/CMIP6.4519, 2020a. a
EC-Earth Consortium: EC-Earth-Consortium EC-Earth3-AerChem model output
prepared for CMIP6 CMIP historical, Earth System Grid Federation, [data set],
version 20200624, https://doi.org/10.22033/ESGF/CMIP6.4701, 2020b. a
EC-Earth Consortium: EC-Earth-Consortium EC-Earth3-AerChem model output
prepared for CMIP6 CMIP piControl, Earth System Grid Federation, [data set],
version 20200821, https://doi.org/10.22033/ESGF/CMIP6.4843, 2020c. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a, b
Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J. L., Frame,
D., Lunt, D. J., Mauritsen, T., Palmer, M. D., Watanabe, M., Wild, M., and
Zhang, H.: The Earth's Energy Budget, Climate Feedbacks, and Climate
Sensitivity, in: Climate Change 2021: The Physical Science Basis.
Contribution of Working Group I to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V.,
Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen,
Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E.,
Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and
Zhou, B., book section 7, Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, 923–1054,
https://doi.org/:10.1017/9781009157896.009, 2021. a, b
Frey, W. R., Maroon, E. A., Pendergrass, A. G., and Kay, J. E.: Do Southern
Ocean Cloud Feedbacks Matter for 21st Century Warming?, Geophys. Res. Lett., 44, 12447–12456, https://doi.org/10.1002/2017GL076339,
2017. a
Geng, Y.-F., Xie, S.-P., Zheng, X.-T., Long, S.-M., Kang, S. M., Lin, X., and
Song, Z.-H.: CMIP6 Intermodel Spread in Interhemispheric Asymmetry of
Tropical Climate Response to Greenhouse Warming: Extratropical Ocean Effects,
J. Climate, 35, 4869–4882, https://doi.org/10.1175/JCLI-D-21-0541.1, 2022. a, b
Gettelman, A., Bardeen, C. G., McCluskey, C. S., Järvinen, E., Stith, J.,
Bretherton, C., McFarquhar, G., Twohy, C., D'Alessandro, J., and Wu, W.:
Simulating Observations of Southern Ocean Clouds and Implications for
Climate, J. Geophys. Res.-Atmos., 125, e2020JD032619,
https://doi.org/10.1029/2020JD032619, 2020. a
Gjermundsen, A., Nummelin, A., Olivié, D., Bentsen, M., Seland, Ø., and
Schulz, M.: Shutdown of Southern Ocean convection controls long-term
greenhouse gas-induced warming, Nat. Geosci., 14, 724–731,
https://doi.org/10.1038/s41561-021-00825-x, 2021. a, b, c
Gopinathan, P. A., Narayanasetti, S., Choudhury, A. D., Singh, M., Raghavan,
K., Panickal, S., and Modi, A.: CCCR-IITM IITM-ESM model output prepared for
CMIP6 CMIP abrupt-4xCO2, Earth System Grid Federation, [data set],
version 20191223, https://doi.org/10.22033/ESGF/CMIP6.3516, 2019. a
Gregory, J. M., Ingram, W. J., Palmer, M. A., Jones, G. S., Stott, P. A.,
Thorpe, R. B., Lowe, J. A., Johns, T. C., and Williams, K. D.: A new method
for diagnosing radiative forcing and climate sensitivity, Geophys.
Res. Lett., 31, L03205, https://doi.org/10.1029/2003GL018747, 2004. a
Guo, H., John, J. G., Blanton, C., McHugh, C., Nikonov, S., Radhakrishnan, A.,
Rand, K., Zadeh, N. T., Balaji, V., Durachta, J., Dupuis, C., Menzel, R.,
Robinson, T., Underwood, S., Vahlenkamp, H., Bushuk, M., Dunne, K. A.,
Dussin, R., Gauthier, P. P., Ginoux, P., Griffies, S. M., Hallberg, R.,
Harrison, M., Hurlin, W., Lin, P., Malyshev, S., Naik, V., Paulot, F.,
Paynter, D. J., Ploshay, J., Reichl, B. G., Schwarzkopf, D. M., Seman, C. J.,
Shao, A., Silvers, L., Wyman, B., Yan, X., Zeng, Y., Adcroft, A., Dunne,
J. P., Held, I. M., Krasting, J. P., Horowitz, L. W., Milly, P., Shevliakova,
E., Winton, M., Zhao, M., and Zhang, R.: NOAA-GFDL GFDL-CM4 model output
abrupt-4xCO2, Earth System Grid Federation, [data set], version 20180701, https://doi.org/10.22033/ESGF/CMIP6.8486,
2018a. a
Guo, H., John, J. G., Blanton, C., McHugh, C., Nikonov, S., Radhakrishnan, A.,
Rand, K., Zadeh, N. T., Balaji, V., Durachta, J., Dupuis, C., Menzel, R.,
Robinson, T., Underwood, S., Vahlenkamp, H., Bushuk, M., Dunne, K. A.,
Dussin, R., Gauthier, P. P., Ginoux, P., Griffies, S. M., Hallberg, R.,
Harrison, M., Hurlin, W., Lin, P., Malyshev, S., Naik, V., Paulot, F.,
Paynter, D. J., Ploshay, J., Reichl, B. G., Schwarzkopf, D. M., Seman, C. J.,
Shao, A., Silvers, L., Wyman, B., Yan, X., Zeng, Y., Adcroft, A., Dunne,
J. P., Held, I. M., Krasting, J. P., Horowitz, L. W., Milly, P., Shevliakova,
E., Winton, M., Zhao, M., and Zhang, R.: NOAA-GFDL GFDL-CM4 model output
piControl, Earth System Grid Federation, [data set], version 20180701, https://doi.org/10.22033/ESGF/CMIP6.8666,
2018b. a
Guo, H., John, J. G., Blanton, C., McHugh, C., Nikonov, S., Radhakrishnan, A.,
Rand, K., Zadeh, N. T., Balaji, V., Durachta, J., Dupuis, C., Menzel, R.,
Robinson, T., Underwood, S., Vahlenkamp, H., Bushuk, M., Dunne, K. A.,
Dussin, R., Gauthier, P. P., Ginoux, P., Griffies, S. M., Hallberg, R.,
Harrison, M., Hurlin, W., Lin, P., Malyshev, S., Naik, V., Paulot, F.,
Paynter, D. J., Ploshay, J., Reichl, B. G., Schwarzkopf, D. M., Seman, C. J.,
Shao, A., Silvers, L., Wyman, B., Yan, X., Zeng, Y., Adcroft, A., Dunne,
J. P., Held, I. M., Krasting, J. P., Horowitz, L. W., Milly, P., Shevliakova,
E., Winton, M., Zhao, M., and Zhang, R.: NOAA-GFDL GFDL-CM4 model output
historical, Earth System Grid Federation, version 20180701, https://doi.org/10.22033/ESGF/CMIP6.8594,
2018c. a
Hahn, L. C., Armour, K. C., Zelinka, M. D., Bitz, C. M., and Donohoe, A.:
Contributions to Polar Amplification in CMIP5 and CMIP6 Models, Front. Earth Sci., 9, 710036, https://doi.org/10.3389/feart.2021.710036, 2021. a
Hwang, Y.-T. and Frierson, D. M. W.: Link between the double-Intertropical
Convergence Zone problem and cloud biases over the Southern Ocean,
P. Natl. Acad. Sci. USA, 110, 4935–4940,
https://doi.org/10.1073/pnas.1213302110, 2013. a
Jungclaus, J., Bittner, M., Wieners, K.-H., Wachsmann, F., Schupfner, M.,
Legutke, S., Giorgetta, M., Reick, C., Gayler, V., Haak, H., de Vrese, P.,
Raddatz, T., Esch, M., Mauritsen, T., von Storch, J.-S., Behrens, J.,
Brovkin, V., Claussen, M., Crueger, T., Fast, I., Fiedler, S., Hagemann, S.,
Hohenegger, C., Jahns, T., Kloster, S., Kinne, S., Lasslop, G., Kornblueh,
L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K.,
Müller, W., Nabel, J., Notz, D., Peters-von Gehlen, K., Pincus, R.,
Pohlmann, H., Pongratz, J., Rast, S., Schmidt, H., Schnur, R., Schulzweida,
U., Six, K., Stevens, B., Voigt, A., and Roeckner, E.: MPI-M MPI-ESM1.2-HR
model output prepared for CMIP6 CMIP abrupt-4xCO2, Earth System Grid
Federation, [data set], version 20190710, https://doi.org/10.22033/ESGF/CMIP6.6458,
2019a. a
Jungclaus, J., Bittner, M., Wieners, K.-H., Wachsmann, F., Schupfner, M.,
Legutke, S., Giorgetta, M., Reick, C., Gayler, V., Haak, H., de Vrese, P.,
Raddatz, T., Esch, M., Mauritsen, T., von Storch, J.-S., Behrens, J.,
Brovkin, V., Claussen, M., Crueger, T., Fast, I., Fiedler, S., Hagemann, S.,
Hohenegger, C., Jahns, T., Kloster, S., Kinne, S., Lasslop, G., Kornblueh,
L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K.,
Müller, W., Nabel, J., Notz, D., Peters-von Gehlen, K., Pincus, R.,
Pohlmann, H., Pongratz, J., Rast, S., Schmidt, H., Schnur, R., Schulzweida,
U., Six, K., Stevens, B., Voigt, A., and Roeckner, E.: MPI-M MPI-ESM1.2-HR
model output prepared for CMIP6 CMIP piControl, Earth System Grid Federation, [data set], version 20190710,
https://doi.org/10.22033/ESGF/CMIP6.6674, 2019b. a
Jungclaus, J., Bittner, M., Wieners, K.-H., Wachsmann, F., Schupfner, M.,
Legutke, S., Giorgetta, M., Reick, C., Gayler, V., Haak, H., de Vrese, P.,
Raddatz, T., Esch, M., Mauritsen, T., von Storch, J.-S., Behrens, J.,
Brovkin, V., Claussen, M., Crueger, T., Fast, I., Fiedler, S., Hagemann, S.,
Hohenegger, C., Jahns, T., Kloster, S., Kinne, S., Lasslop, G., Kornblueh,
L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K.,
Müller, W., Nabel, J., Notz, D., Peters-von Gehlen, K., Pincus, R.,
Pohlmann, H., Pongratz, J., Rast, S., Schmidt, H., Schnur, R., Schulzweida,
U., Six, K., Stevens, B., Voigt, A., and Roeckner, E.: MPI-M MPI-ESM1.2-HR
model output prepared for CMIP6 CMIP historical, Earth System Grid
Federation, [data set], version 20190710, https://doi.org/10.22033/ESGF/CMIP6.6594,
2019c. a
Kajtar, J. B., Santoso, A., Collins, M., Taschetto, A. S., England, M. H., and
Frankcombe, L. M.: CMIP5 Intermodel Relationships in the Baseline Southern
Ocean Climate System and With Future Projections, Earth's Future, 9,
e2020EF001873, https://doi.org/10.1029/2020EF001873, 2021. a
Krasting, J. P., John, J. G., Blanton, C., McHugh, C., Nikonov, S.,
Radhakrishnan, A., Rand, K., Zadeh, N. T., Balaji, V., Durachta, J., Dupuis,
C., Menzel, R., Robinson, T., Underwood, S., Vahlenkamp, H., Dunne, K. A.,
Gauthier, P. P., Ginoux, P., Griffies, S. M., Hallberg, R., Harrison, M.,
Hurlin, W., Malyshev, S., Naik, V., Paulot, F., Paynter, D. J., Ploshay, J.,
Reichl, B. G., Schwarzkopf, D. M., Seman, C. J., Silvers, L., Wyman, B.,
Zeng, Y., Adcroft, A., Dunne, J. P., Dussin, R., Guo, H., He, J., Held,
I. M., Horowitz, L. W., Lin, P., Milly, P., Shevliakova, E., Stock, C.,
Winton, M., Wittenberg, A. T., Xie, Y., and Zhao, M.: NOAA-GFDL GFDL-ESM4
model output prepared for CMIP6 CMIP abrupt-4xCO2, Earth System Grid
Federation, [data set], version 20180701, https://doi.org/10.22033/ESGF/CMIP6.8489,
2018a. a
Krasting, J. P., John, J. G., Blanton, C., McHugh, C., Nikonov, S.,
Radhakrishnan, A., Rand, K., Zadeh, N. T., Balaji, V., Durachta, J., Dupuis,
C., Menzel, R., Robinson, T., Underwood, S., Vahlenkamp, H., Dunne, K. A.,
Gauthier, P. P., Ginoux, P., Griffies, S. M., Hallberg, R., Harrison, M.,
Hurlin, W., Malyshev, S., Naik, V., Paulot, F., Paynter, D. J., Ploshay, J.,
Reichl, B. G., Schwarzkopf, D. M., Seman, C. J., Silvers, L., Wyman, B.,
Zeng, Y., Adcroft, A., Dunne, J. P., Dussin, R., Guo, H., He, J., Held,
I. M., Horowitz, L. W., Lin, P., Milly, P., Shevliakova, E., Stock, C.,
Winton, M., Wittenberg, A. T., Xie, Y., and Zhao, M.: NOAA-GFDL GFDL-ESM4
model output prepared for CMIP6 CMIP piControl, Earth System Grid Federation, [data set], version 20180701,
https://doi.org/10.22033/ESGF/CMIP6.8669, 2018b. a
Krasting, J. P., John, J. G., Blanton, C., McHugh, C., Nikonov, S.,
Radhakrishnan, A., Rand, K., Zadeh, N. T., Balaji, V., Durachta, J., Dupuis,
C., Menzel, R., Robinson, T., Underwood, S., Vahlenkamp, H., Dunne, K. A.,
Gauthier, P. P., Ginoux, P., Griffies, S. M., Hallberg, R., Harrison, M.,
Hurlin, W., Malyshev, S., Naik, V., Paulot, F., Paynter, D. J., Ploshay, J.,
Reichl, B. G., Schwarzkopf, D. M., Seman, C. J., Silvers, L., Wyman, B.,
Zeng, Y., Adcroft, A., Dunne, J. P., Dussin, R., Guo, H., He, J., Held,
I. M., Horowitz, L. W., Lin, P., Milly, P., Shevliakova, E., Stock, C.,
Winton, M., Wittenberg, A. T., Xie, Y., and Zhao, M.: NOAA-GFDL GFDL-ESM4
model output prepared for CMIP6 CMIP historical, Earth System Grid
Federation, [data set], version 20190726, https://doi.org/10.22033/ESGF/CMIP6.8597,
2018c. a
Kuma, P., Bender, F. A.-M., Schuddeboom, A., McDonald, A. J., and Seland, Ø.: Machine learning of cloud types in satellite observations and climate models, Atmos. Chem. Phys., 23, 523–549, https://doi.org/10.5194/acp-23-523-2023, 2023. a
Lee, W.-L. and Liang, H.-C.: AS-RCEC TaiESM1.0 model output prepared for CMIP6
CMIP abrupt-4xCO2, Earth System Grid Federation, [data set], version 20200310,
https://doi.org/10.22033/ESGF/CMIP6.9709, 2020a. a
Lee, W.-L. and Liang, H.-C.: AS-RCEC TaiESM1.0 model output prepared for CMIP6
CMIP historical, Earth System Grid Federation, [data set], version 20200623,
https://doi.org/10.22033/ESGF/CMIP6.9755, 2020b. a
Lee, W.-L. and Liang, H.-C.: AS-RCEC TaiESM1.0 model output prepared for CMIP6
CMIP piControl, Earth System Grid Federation, [data set], version 20200211, https://doi.org/10.22033/ESGF/CMIP6.9798,
2020c. a
Li, L.: CAS FGOALS-g3 model output prepared for CMIP6 CMIP abrupt-4xCO2, Earth
System Grid Federation, [data set], version 20191230, https://doi.org/10.22033/ESGF/CMIP6.3177,
2019a. a
Li, L.: CAS FGOALS-g3 model output prepared for CMIP6 CMIP historical, Earth
System Grid Federation, [data set], version 20190818, https://doi.org/10.22033/ESGF/CMIP6.3356,
2019b. a
Li, L.: CAS FGOALS-g3 model output prepared for CMIP6 CMIP piControl, Earth
System Grid Federation, [data set], version 20190818, https://doi.org/10.22033/ESGF/CMIP6.3448,
2019c. a
Loeb, N. G., Doelling, D. R., Wang, H., Su, W., Nguyen, C., Corbett, J. G.,
Liang, L., Mitrescu, C., Rose, F. G., and Kato, S.: Clouds and the Earth's
Radiant Energy System (CERES) Energy Balanced and Filled (EBAF)
Top-of-Atmosphere (TOA) Edition-4.0 Data Product, J. Climate, 31, 895–918, https://doi.org/10.1175/JCLI-D-17-0208.1, 2018. a
Lovato, T. and Peano, D.: CMCC CMCC-CM2-SR5 model output prepared for CMIP6
CMIP abrupt-4xCO2, Earth System Grid Federation, [data set], version 20200616,
https://doi.org/10.22033/ESGF/CMIP6.3731, 2020a. a
Lovato, T. and Peano, D.: CMCC CMCC-CM2-SR5 model output prepared for CMIP6
CMIP historical, Earth System Grid Federation, [data set], version 20200616,
https://doi.org/10.22033/ESGF/CMIP6.3825, 2020b. a
Lovato, T. and Peano, D.: CMCC CMCC-CM2-SR5 model output prepared for CMIP6
CMIP piControl, Earth System Grid Federation, [data set], version 20200616, https://doi.org/10.22033/ESGF/CMIP6.3874,
2020c. a
McCoy, D. T., Hartmann, D. L., and Grosvenor, D. P.: Observed Southern Ocean
Cloud Properties and Shortwave Reflection, Part II: Phase Changes and Low
Cloud Feedback, J. Climate, 27, 8858–8868,
https://doi.org/10.1175/JCLI-D-14-00288.1, 2014. a
Meehl, G. A., Senior, C. A., Eyring, V., Flato, G., Lamarque, J.-F., Stouffer,
R. J., Taylor, K. E., and Schlund, M.: Context for interpreting equilibrium
climate sensitivity and transient climate response from the CMIP6 Earth
system models, Sci. Adv., 6, eaba1981, https://doi.org/10.1126/sciadv.aba1981,
2020. a
Mülmenstädt, J., Salzmann, M., Kay, J. E., Zelinka, M. D., Ma, P.-L.,
Nam, C., Kretzschmar, J., Hörnig, S., and Quaas, J.: An underestimated
negative cloud feedback from cloud lifetime changes, Nat. Clim. Change,
11, 508–513, https://doi.org/10.1038/s41558-021-01038-1, 2021. a
Myhre, G., Boucher, O., Bréon, F.-M., Forster, P., and Shindell, D.:
Declining uncertainty in transient climate response as CO2 forcing dominates future climate change, Nat. Geosci., 8, 181–185,
https://doi.org/10.1038/ngeo2371, 2015. a
Narayanasetti, S., Panickal, S., Raghavan, K., Gopinathan, P. A., Choudhury,
A. D., and Singh, M.: CCCR-IITM IITM-ESM model output prepared for CMIP6 CMIP
piControl, Earth System Grid Federation, [data set], version 20191120, https://doi.org/10.22033/ESGF/CMIP6.3710,
2019. a
NASA Goddard Institute for Space Studies: NASA-GISS GISS-E2.1G model output
prepared for CMIP6 CMIP abrupt-4xCO2, Earth System Grid Federation, [data set],
version 20181002, https://doi.org/10.22033/ESGF/CMIP6.6976, 2018a. a
NASA Goddard Institute for Space Studies: NASA-GISS GISS-E2.1G model output
prepared for CMIP6 CMIP historical, Earth System Grid Federation, [data set],
version 20180827, https://doi.org/10.22033/ESGF/CMIP6.7127, 2018b. a
NASA Goddard Institute for Space Studies: NASA-GISS GISS-E2.1G model output
prepared for CMIP6 CMIP piControl, Earth System Grid Federation, [data set],
version 20180824, https://doi.org/10.22033/ESGF/CMIP6.7380, 2018c. a
NASA Goddard Institute for Space Studies: NASA-GISS GISS-E2.1H model output
prepared for CMIP6 CMIP piControl, Earth System Grid Federation,
version 20190410, https://doi.org/10.22033/ESGF/CMIP6.7381, 2018d. a
NASA Goddard Institute for Space Studies: NASA-GISS GISS-E2.1H model output
prepared for CMIP6 CMIP abrupt-4xCO2, Earth System Grid Federation, [data set],
version 20190403, https://doi.org/10.22033/ESGF/CMIP6.6977, 2019a. a
NASA Goddard Institute for Space Studies: NASA-GISS GISS-E2.1H model output
prepared for CMIP6 CMIP historical, Earth System Grid Federation, [data set],
version 20190403, https://doi.org/10.22033/ESGF/CMIP6.7128, 2019b. a
NASA Goddard Institute for Space Studies: NASA-GISS GISS-E2-2-G model output
prepared for CMIP6 CMIP abrupt-4xCO2, Earth System Grid Federation, [data set],
version 20191120, https://doi.org/10.22033/ESGF/CMIP6.6978, 2019c. a
NASA Goddard Institute for Space Studies: NASA-GISS GISS-E2-2-G model output
prepared for CMIP6 CMIP piControl, Earth System Grid Federation, [data set],
version 20191120, https://doi.org/10.22033/ESGF/CMIP6.7382, 2019d. a
NASA/LARC/SD/ASDC: CERES Energy Balanced and Filled (EBAF) TOA and Surface Monthly means data in netCDF Edition 4.1 [data set], NASA Langley Atmospheric Science Data Center DAAC, [data set], https://doi.org/10.5067/TERRA-AQUA/CERES/EBAF_L3B.004.1 (last access: 28 October 2022), 2019. a
Neubauer, D., Ferrachat, S., Siegenthaler-Le Drian, C., Stoll, J., Folini,
D. S., Tegen, I., Wieners, K.-H., Mauritsen, T., Stemmler, I., Barthel, S.,
Bey, I., Daskalakis, N., Heinold, B., Kokkola, H., Partridge, D., Rast, S.,
Schmidt, H., Schutgens, N., Stanelle, T., Stier, P., Watson-Parris, D., and
Lohmann, U.: HAMMOZ-Consortium MPI-ESM1.2-HAM model output prepared for CMIP6
CMIP abrupt-4xCO2, Earth System Grid Federation, [data set],
version 20190629, https://doi.org/10.22033/ESGF/CMIP6.5000, 2019a. a
Neubauer, D., Ferrachat, S., Siegenthaler-Le Drian, C., Stoll, J., Folini,
D. S., Tegen, I., Wieners, K.-H., Mauritsen, T., Stemmler, I., Barthel, S.,
Bey, I., Daskalakis, N., Heinold, B., Kokkola, H., Partridge, D., Rast, S.,
Schmidt, H., Schutgens, N., Stanelle, T., Stier, P., Watson-Parris, D., and
Lohmann, U.: HAMMOZ-Consortium MPI-ESM1.2-HAM model output prepared for CMIP6
CMIP piControl, Earth System Grid Federation, [data set], version 20200120, https://doi.org/10.22033/ESGF/CMIP6.5037,
2019b. a
Neubauer, D., Ferrachat, S., Siegenthaler-Le Drian, C., Stoll, J., Folini,
D. S., Tegen, I., Wieners, K.-H., Mauritsen, T., Stemmler, I., Barthel, S.,
Bey, I., Daskalakis, N., Heinold, B., Kokkola, H., Partridge, D., Rast, S.,
Schmidt, H., Schutgens, N., Stanelle, T., Stier, P., Watson-Parris, D., and
Lohmann, U.: HAMMOZ-Consortium MPI-ESM1.2-HAM model output prepared for CMIP6
CMIP historical, Earth System Grid Federation, [data set], version 20190627,
https://doi.org/10.22033/ESGF/CMIP6.5016, 2019c. a
Park, S. and Shin, J.: SNU SAM0-UNICON model output prepared for CMIP6 CMIP
abrupt-4xCO2, Earth System Grid Federation, [data set], version 20190323, https://doi.org/10.22033/ESGF/CMIP6.7783,
2019a. a
Park, S. and Shin, J.: SNU SAM0-UNICON model output prepared for CMIP6 CMIP
historical, Earth System Grid Federation, [data set], version 20190323, https://doi.org/10.22033/ESGF/CMIP6.7789,
2019b. a
Park, S. and Shin, J.: SNU SAM0-UNICON model output prepared for CMIP6 CMIP
piControl, Earth System Grid Federation, [data set], version 20190910, https://doi.org/10.22033/ESGF/CMIP6.7791,
2019c. a
Pedro, J. B., Martin, T., Steig, E. J., Jochum, M., Park, W., and Rasmussen,
S. O.: Southern Ocean deep convection as a driver of Antarctic warming
events, Geophys. Res. Lett., 43, 2192–2199,
https://doi.org/10.1002/2016GL067861, 2016. a
Rong, X.: CAMS CAMS_CSM1.0 model output prepared for CMIP6 CMIP abrupt-4xCO2,
Earth System Grid Federation, [data set], version
20190708, https://doi.org/10.22033/ESGF/CMIP6.9708, 2019a. a
Rong, X.: CAMS CAMS_CSM1.0 model output prepared for CMIP6 CMIP historical,
Earth System Grid Federation, [data set], version
20190708, https://doi.org/10.22033/ESGF/CMIP6.9754, 2019b. a
Rong, X.: CAMS CAMS_CSM1.0 model output prepared for CMIP6 CMIP piControl,
Earth System Grid Federation, [data set], version
20190729, https://doi.org/10.22033/ESGF/CMIP6.9797, 2019c. a
Rugenstein, M. and Hakuba, M.: Connecting hemispheric asymmetries of planetary
albedo and surface temperature, Geophys. Res. Lett.,
https://doi.org/10.1029/2022GL101802, accepted, 2023. a, b, c
Rugenstein, M., Bloch-Johnson, J., Gregory, J., Andrews, T., Mauritsen, T., Li,
C., Frölicher, T. L., Paynter, D., Danabasoglu, G., Yang, S., Dufresne,
J.-L., Cao, L., Schmidt, G. A., Abe-Ouchi, A., Geoffroy, O., and Knutti, R.:
Equilibrium Climate Sensitivity Estimated by Equilibrating Climate Models,
Geophys. Res. Lett., 47, e2019GL083898,
https://doi.org/10.1029/2019GL083898, 2020. a
Semmler, T., Danilov, S., Rackow, T., Sidorenko, D., Barbi, D., Hegewald, J.,
Sein, D., Wang, Q., and Jung, T.: AWI AWI-CM1.1MR model output prepared for
CMIP6 CMIP abrupt-4xCO2, Earth System Grid Federation, [data set],
version 20191108, https://doi.org/10.22033/ESGF/CMIP6.2568, 2018a. a
Semmler, T., Danilov, S., Rackow, T., Sidorenko, D., Barbi, D., Hegewald, J.,
Sein, D., Wang, Q., and Jung, T.: AWI AWI-CM1.1MR model output prepared for
CMIP6 CMIP historical, Earth System Grid Federation, [data set],
version 20200511, https://doi.org/10.22033/ESGF/CMIP6.2686, 2018b. a
Semmler, T., Danilov, S., Rackow, T., Sidorenko, D., Barbi, D., Hegewald, J.,
Sein, D., Wang, Q., and Jung, T.: AWI AWI-CM1.1MR model output prepared for
CMIP6 CMIP piControl, Earth System Grid Federation, [data set],
version 20191015, https://doi.org/10.22033/ESGF/CMIP6.2777, 2018c. a
Sledd, A. and L'Ecuyer, T. S.: A Cloudier Picture of Ice-Albedo Feedback in
CMIP6 Models, Front. Earth Sci., 9, 769844, https://doi.org/10.3389/feart.2021.769844,
2021. a, b
Stephens, G. L., Hakuba, M. Z., Kato, S., Gettleman, A., Dufresne, J.-L.,
Andrews, T., Cole, J. N. S., Willem, U., and Mauritsen, T.: The changing
nature of Earth's reflected sunlight, P. Roy. Soc. A-Math. Phy., 478, 20220053,
https://doi.org/10.1098/rspa.2022.0053, 2022. a
Stevens, B. and Schwartz, S. E.: Observing and Modeling Earth's Energy Flows,
Surv. Geophys., 33, 779–816, https://doi.org/10.1007/s10712-012-9184-0, 2012. a
Swart, N. C., Cole, J. N., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett,
N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee, W. G.,
Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Solheim, L.,
von Salzen, K., Yang, D., Winter, B., and Sigmond, M.: CCCma CanESM5 model
output prepared for CMIP6 CMIP abrupt-4xCO2, Earth System Grid Federation, [data set],
version 20190429, https://doi.org/10.22033/ESGF/CMIP6.3532, 2019a. a
Swart, N. C., Cole, J. N., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett,
N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee, W. G.,
Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Solheim, L.,
von Salzen, K., Yang, D., Winter, B., and Sigmond, M.: CCCma CanESM5 model
output prepared for CMIP6 CMIP piControl, Earth System Grid Federation, [data set],
version 20190429, https://doi.org/10.22033/ESGF/CMIP6.3673, 2019b. a
Swart, N. C., Cole, J. N., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett,
N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee, W. G.,
Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Solheim, L.,
von Salzen, K., Yang, D., Winter, B., and Sigmond, M.: CCCma CanESM5 model
output prepared for CMIP6 CMIP historical, Earth System Grid Federation, [data set],
version 20190429, https://doi.org/10.22033/ESGF/CMIP6.3610, 2019c. a
Szopa, S., Naik, V., Adhikary, B., Artaxo, P., Berntsen, T., Collins, W. D.,
Fuzzi, S., Gallardo, L., Kiendler Scharr, A., Klimont, Z., Liao, H., Unger,
N., and Zanis, P.: Short-Lived Climate Forcers, in: Climate Change 2021: The
Physical Science Basis. Contribution of Working Group I to the Sixth
Assessment Report of the Intergovernmental Panel on Climate Change, edited by:
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger,
S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K.,
Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O.,
Yu, R., and Zhou, B., book section 6, Cambridge University
Press, Cambridge, United Kingdom and New York, NY, USA,
817–922, https://doi.org/10.1017/9781009157896.008, 2021. a
Tatebe, H. and Watanabe, M.: MIROC MIROC6 model output prepared for CMIP6 CMIP
abrupt-4xCO2, Earth System Grid Federation, [data set], version 20190705, https://doi.org/10.22033/ESGF/CMIP6.5411,
2018a. a
Tatebe, H. and Watanabe, M.: MIROC MIROC6 model output prepared for CMIP6 CMIP
historical, Earth System Grid Federation, [data set], version 20190311, https://doi.org/10.22033/ESGF/CMIP6.5603,
2018b. a
Tatebe, H. and Watanabe, M.: MIROC MIROC6 model output prepared for CMIP6 CMIP
piControl, Earth System Grid Federation, [data set], version 20190311, https://doi.org/10.22033/ESGF/CMIP6.5711,
2018c. a
Tian, B. and Dong, X.: The Double-ITCZ Bias in CMIP3, CMIP5, and CMIP6 Models
Based on Annual Mean Precipitation, Geophys. Res. Lett., 47,
e2020GL087232, https://doi.org/10.1029/2020GL087232, 2020. a
Voigt, A., Stevens, B., Bader, J., and Mauritsen, T.: Compensation of
Hemispheric Albedo Asymmetries by Shifts of the ITCZ and Tropical Clouds,
J. Climate, 27, 1029–1045, https://doi.org/10.1175/JCLI-D-13-00205.1, 2014. a
Volodin, E., Mortikov, E., Gritsun, A., Lykossov, V., Galin, V., Diansky, N.,
Gusev, A., Kostrykin, S., Iakovlev, N., Shestakova, A., and Emelina, S.: INM
INM-CM4-8 model output prepared for CMIP6 CMIP abrupt-4xCO2, Earth System
Grid Federation, [data set], version 20190529, https://doi.org/10.22033/ESGF/CMIP6.4931,
2019a. a
Volodin, E., Mortikov, E., Gritsun, A., Lykossov, V., Galin, V., Diansky, N.,
Gusev, A., Kostrykin, S., Iakovlev, N., Shestakova, A., and Emelina, S.: INM
INM-CM4-8 model output prepared for CMIP6 CMIP historical, Earth System Grid
Federation, [data set], version 20190530,
https://doi.org/10.22033/ESGF/CMIP6.5069,
2019b. a
Volodin, E., Mortikov, E., Gritsun, A., Lykossov, V., Galin, V., Diansky, N.,
Gusev, A., Kostrykin, S., Iakovlev, N., Shestakova, A., and Emelina, S.: INM
INM-CM4-8 model output prepared for CMIP6 CMIP piControl, Earth System Grid
Federation, [data set], version 20190605, https://doi.org/10.22033/ESGF/CMIP6.5080,
2019c. a
Volodin, E., Mortikov, E., Gritsun, A., Lykossov, V., Galin, V., Diansky, N.,
Gusev, A., Kostrykin, S., Iakovlev, N., Shestakova, A., and Emelina, S.: INM
INM-CM5-0 model output prepared for CMIP6 CMIP abrupt-4xCO2, Earth System
Grid Federation, [data set], version 20190610, https://doi.org/10.22033/ESGF/CMIP6.4932,
2019d. a
Volodin, E., Mortikov, E., Gritsun, A., Lykossov, V., Galin, V., Diansky, N.,
Gusev, A., Kostrykin, S., Iakovlev, N., Shestakova, A., and Emelina, S.: INM
INM-CM5-0 model output prepared for CMIP6 CMIP historical, Earth System Grid
Federation, [data set], version 20190610, https://doi.org/10.22033/ESGF/CMIP6.5070,
2019e. a
Volodin, E., Mortikov, E., Gritsun, A., Lykossov, V., Galin, V., Diansky, N.,
Gusev, A., Kostrykin, S., Iakovlev, N., Shestakova, A., and Emelina, S.: INM
INM-CM5-0 model output prepared for CMIP6 CMIP piControl, Earth System Grid
Federation, [data set], version 20190619, https://doi.org/10.22033/ESGF/CMIP6.5081,
2019f. a
Vonder Haar, T. H. and Suomi, V. E.: Measurements of the Earth's Radiation
Budget from Satellites During a Five-Year Period, Part I: Extended Time and
Space Means, J. Atmos. Sci., 28, 305–314,
https://doi.org/10.1175/1520-0469(1971)028<0305:MOTERB>2.0.CO;2, 1971. a
Wieners, K.-H., Giorgetta, M., Jungclaus, J., Reick, C., Esch, M., Bittner, M.,
Legutke, S., Schupfner, M., Wachsmann, F., Gayler, V., Haak, H., de Vrese,
P., Raddatz, T., Mauritsen, T., von Storch, J.-S., Behrens, J., Brovkin, V.,
Claussen, M., Crueger, T., Fast, I., Fiedler, S., Hagemann, S., Hohenegger,
C., Jahns, T., Kloster, S., Kinne, S., Lasslop, G., Kornblueh, L., Marotzke,
J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Müller, W.,
Nabel, J., Notz, D., Peters-von Gehlen, K., Pincus, R., Pohlmann, H.,
Pongratz, J., Rast, S., Schmidt, H., Schnur, R., Schulzweida, U., Six, K.,
Stevens, B., Voigt, A., and Roeckner, E.: MPI-M MPI-ESM1.2-LR model output
prepared for CMIP6 CMIP abrupt-4xCO2, Earth System Grid Federation, [data set],
version 20190710, https://doi.org/10.22033/ESGF/CMIP6.6459, 2019a. a
Wieners, K.-H., Giorgetta, M., Jungclaus, J., Reick, C., Esch, M., Bittner, M.,
Legutke, S., Schupfner, M., Wachsmann, F., Gayler, V., Haak, H., de Vrese,
P., Raddatz, T., Mauritsen, T., von Storch, J.-S., Behrens, J., Brovkin, V.,
Claussen, M., Crueger, T., Fast, I., Fiedler, S., Hagemann, S., Hohenegger,
C., Jahns, T., Kloster, S., Kinne, S., Lasslop, G., Kornblueh, L., Marotzke,
J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Müller, W.,
Nabel, J., Notz, D., Peters-von Gehlen, K., Pincus, R., Pohlmann, H.,
Pongratz, J., Rast, S., Schmidt, H., Schnur, R., Schulzweida, U., Six, K.,
Stevens, B., Voigt, A., and Roeckner, E.: MPI-M MPI-ESM1.2-LR model output
prepared for CMIP6 CMIP piControl, Earth System Grid Federation, [data set],
version 20190710, https://doi.org/10.22033/ESGF/CMIP6.6675, 2019b. a
Wieners, K.-H., Giorgetta, M., Jungclaus, J., Reick, C., Esch, M., Bittner, M.,
Legutke, S., Schupfner, M., Wachsmann, F., Gayler, V., Haak, H., de Vrese,
P., Raddatz, T., Mauritsen, T., von Storch, J.-S., Behrens, J., Brovkin, V.,
Claussen, M., Crueger, T., Fast, I., Fiedler, S., Hagemann, S., Hohenegger,
C., Jahns, T., Kloster, S., Kinne, S., Lasslop, G., Kornblueh, L., Marotzke,
J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Müller, W.,
Nabel, J., Notz, D., Peters-von Gehlen, K., Pincus, R., Pohlmann, H.,
Pongratz, J., Rast, S., Schmidt, H., Schnur, R., Schulzweida, U., Six, K.,
Stevens, B., Voigt, A., and Roeckner, E.: MPI-M MPI-ESM1.2-LR model output
prepared for CMIP6 CMIP historical, Earth System Grid Federation, [data set],
version 20190710, https://doi.org/10.22033/ESGF/CMIP6.6595, 2019c. a
Wu, T., Chu, M., Dong, M., Fang, Y., Jie, W., Li, J., Li, W., Liu, Q., Shi, X.,
Xin, X., Yan, J., Zhang, F., Zhang, J., Zhang, L., and Zhang, Y.: BCC
BCC-CSM2MR model output prepared for CMIP6 CMIP abrupt-4xCO2, Earth System
Grid Federation, [data set], version 20181016,
https://doi.org/10.22033/ESGF/CMIP6.2845,
2018a. a
Wu, T., Chu, M., Dong, M., Fang, Y., Jie, W., Li, J., Li, W., Liu, Q., Shi, X.,
Xin, X., Yan, J., Zhang, F., Zhang, J., Zhang, L., and Zhang, Y.: BCC
BCC-CSM2MR model output prepared for CMIP6 CMIP historical, Earth System Grid
Federation, [data set], version 20181126, https://doi.org/10.22033/ESGF/CMIP6.2948,
2018b. a
Wu, T., Chu, M., Dong, M., Fang, Y., Jie, W., Li, J., Li, W., Liu, Q., Shi, X.,
Xin, X., Yan, J., Zhang, F., Zhang, J., Zhang, L., and Zhang, Y.: BCC
BCC-CSM2MR model output prepared for CMIP6 CMIP esm-piControl, Earth System
Grid Federation, [data set], version 20181016, https://doi.org/10.22033/ESGF/CMIP6.2907,
2018c. a
Yu, Y.: CAS FGOALS-f3-L model output prepared for CMIP6 CMIP abrupt-4xCO2,
Earth System Grid Federation, [data set], version
20191018 https://doi.org/10.22033/ESGF/CMIP6.3176,, 2019a. a
Yu, Y.: CAS FGOALS-f3-L model output prepared for CMIP6 CMIP historical, Earth
System Grid Federation, [data set], version 20190927, https://doi.org/10.22033/ESGF/CMIP6.3355,
2019b. a
Yu, Y.: CAS FGOALS-f3-L model output prepared for CMIP6 CMIP piControl, Earth
System Grid Federation, [data set], version 20191029, https://doi.org/10.22033/ESGF/CMIP6.3447,
2019c. a
Yukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, S.,
Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yoshimura, H., Shindo, E.,
Mizuta, R., Ishii, M., Obata, A., and Adachi, Y.: MRI MRI-ESM2.0 model output
prepared for CMIP6 CMIP historical, Earth System Grid Federation, [data set],
version 20190222, https://doi.org/10.22033/ESGF/CMIP6.6842, 2019a. a
Yukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, S.,
Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yoshimura, H., Shindo, E.,
Mizuta, R., Ishii, M., Obata, A., and Adachi, Y.: MRI MRI-ESM2.0 model output
prepared for CMIP6 CMIP abrupt-4xCO2, Earth System Grid Federation, [data set],
version 20190308, https://doi.org/10.22033/ESGF/CMIP6.6755, 2019b. a
Yukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, S.,
Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yoshimura, H., Shindo, E.,
Mizuta, R., Ishii, M., Obata, A., and Adachi, Y.: MRI MRI-ESM2.0 model output
prepared for CMIP6 CMIP piControl, Earth System Grid Federation, [data set],
version 20190222, https://doi.org/10.22033/ESGF/CMIP6.6900, 2019c.
a
Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M.,
Ceppi, P., Klein, S. A., and Taylor, K. E.: Causes of Higher Climate
Sensitivity in CMIP6 Models, Geophys. Res. Lett., 47,
e2019GL085782, https://doi.org/10.1029/2019GL085782, 2020. a, b
Zelinka, M. D., Klein, S. A., Qin, Y., and Myers, T. A.: Evaluating Climate
Models’ Cloud Feedbacks Against Expert Judgment, J. Geophys. Res.-Atmos., 127, e2021JD035198,
https://doi.org/10.1029/2021JD035198, 2022. a, b
Zhang, G. J., Song, X., and Wang, Y.: The double ITCZ syndrome in GCMs: A
coupled feedback problem among convection, clouds, atmospheric and ocean
circulations, Atmos. Res., 229, 255–268,
https://doi.org/10.1016/j.atmosres.2019.06.023, 2019a. a
Zhang, J., Wu, T., Shi, X., Zhang, F., Li, J., Chu, M., Liu, Q., Yan, J., Ma,
Q., and Wei, M.: BCC BCC-ESM1 model output prepared for CMIP6 CMIP
historical, Earth System Grid Federation, [data set], version 20181214, https://doi.org/10.22033/ESGF/CMIP6.2949,
2018a. a
Zhang, J., Wu, T., Shi, X., Zhang, F., Li, J., Chu, M., Liu, Q., Yan, J., Ma,
Q., and Wei, M.: BCC BCC-ESM1 model output prepared for CMIP6 CMIP piControl,
Earth System Grid Federation, [data set], version
20181214, https://doi.org/10.22033/ESGF/CMIP6.3017, 2018b. a
Zhang, J., Wu, T., Shi, X., Zhang, F., Li, J., Chu, M., Liu, Q., Yan, J., Ma,
Q., and Wei, M.: BCC BCC-ESM1 model output prepared for CMIP6 CMIP
abrupt-4xCO2, Earth System Grid Federation, [data set], version 20190613, https://doi.org/10.22033/ESGF/CMIP6.2846,
2019b. a
Short summary
The Earth has nearly the same mean albedo in both hemispheres, a feature not well replicated by climate models. Global warming causes changes in surface and cloud properties that affect albedo and that feed back into the warming. We show that models predict more darkening due to ice loss in the Northern than in the Southern Hemisphere in response to increasing CO2 concentrations. This is, to varying degrees, counteracted by changes in cloud cover, with implications for cloud feedback on climate.
The Earth has nearly the same mean albedo in both hemispheres, a feature not well replicated by...
Altmetrics
Final-revised paper
Preprint